Using PCL Gobal Descriptors in a DenseFusion Architecture

Nuno Pereira
nuno.pereira@ubi.pt
Luis A. Alexandre
luis.alexandre@ubi.pt

Departamento de Informatica
Universidade da Beira Interior
Instituto de Telecomunicacdes
6201-001 Covilha, Portugal

Abstract

In this paper, we present an alternative architecture to the state-of-the-art
in 6D pose - DenseFusion. We changed the architecture of the method in
the depth feature extraction phase. Instead of using the PointNet, as used
in the original DenseFusion, we used global descriptors from the Point
Cloud Library (PCL) to extract features. We made a comparison in terms
of average accuracy between the Ensemble of Shape Functions (ESF),
Viewpoint Feature Histogram (VHF) and the original PointNet.

1 Introduction

Object detection and pose estimation is an important problem in the com-
puter vision domain, for which many solutions have been proposed. Ob-
ject detection and pose estimation of objects is a fundamental task due to
its use in many different areas, ranging from robotics to augmented reality
and many others.

6D pose of an object is the representation of its position in space (X,
y, z) and orientation in each one of the axis. This type of object pose is
usually represented by a Rotation matrix, R, and a Translation vector, 7.
With this data, we can know the placement and orientation of an object in
the scene or we can place virtual objects in scenes and both these motiva-
tions justify the importance of this area in robot grasping and augmented
reality.

In this paper we use DenseFusion [S] which is one of the state-of-
the-art solutions to achieve 6D pose estimation of an object. This method
performs a fusing step of 3D data with 2D appearance features while re-
taining the geometric structure of the input space. The authors present
results where this method outperforms PoseCNN [7] on the YCB-Video
dataset without the post-processing. DenseFusion in its base is more sim-
ilar to PointFusion [8], in which geometric and appearance information is
fused in a heterogeneous architecture. DenseFusion is a generic frame-
work for 6D pose estimation of a set of known objects from RGB-D im-
ages. It has a heterogeneous architecture that processes two data sources
individually and uses them to extract pixel-wise features, from where the
pose is estimated. The method also contains an iterative pose refinement
procedure that further improves the pose estimation.

DenseFusion architecture can be divided into four phases as shown
in Figure 1. The first one is the step where the method receives the raw
RGB data and applies object segmentation to get the masks that represent
the objects in the scene. The second phase is the feature extraction, where
features are extracted from the RGB and depth images. After the feature
extraction, both the features of the RGB images and the depth are fused
in a pixel-wise manner in the third phase, and immediately after, the pose
predictor estimates the pose of each object in the scene, giving as output
the rotation matrix and the translation vector. Finally, on the last phase,
the pose refinement executes small adjustments on the poses of the objects
and returns the final results. Denote that this last phase - the refinement
phase, is optional.

One of the most important phases of DenseFusion architecture is the
feature extraction phase, where features are extracted from RGB images
and depth. In the original architecture of DenseFusion, the authors use a
fully convolutional neural network (FCNN) to extract features from the
RGB images and use the PointNet [3] method to extract features from the
depth. These extraction procedures and their fusion is shown in Figure 2.

This work was supported by project 026653 (POCI-01-0247-FEDER-026653) INDTECH
4.0 — New technologies for smart manufacturing, cofinanced by the Portugal 2020 Program
(PT 2020), Compete 2020 Program and the European Union through the European Regional
Development Fund (ERDF).

[RGB Image J

r N
Object Segmentation [

Depth Image

—

Y

Feature Extraction <

Y

Pixel-wise Fusion and

Pose Predictor
L J

[(R; 1)]
Y

I

Pose Refinement

Figure 1: Overview of DenseFusion architecture.

Feature Extraction

Depth Image

RGB Image } ----------- ECNN bemmmmmmmcc e '

Figure 2: DenseFusion feature extraction phase.

—

—

2 Proposed Method

What we propose in this paper, is a modification in the architecture of the
DenseFusion, wherein the feature extraction phase instead of using the
PointNet method, uses PCL global descriptors to extract features from
the depth of the objects and then fuses these features with the RGB fea-
tures. The main reason to choose global descriptors is the fixed size of the
features vector. We tested two global descriptors available in PCL, En-
semble of Shape Functions [6] (ESF) and Viewpoint Feature Histogram
[4] (VFH). We changed the blue block of Figure 2. This change required
us to change the first layer of the neural network where the pixel-wise fu-
sion occurs so it could receive the output from the ESF and VFH because
the size of this output differs from the original size that the DenseFusion
CNN was capable of receiving. This change was require due to the fact
that FCNNs require a fixed-size input length.

Ensemble of Shape Functions (ESF) is a global descriptor that con-
sists of 10 concatenated 64-bin histograms. It outputs a single normalized
histogram with a size of 640 for a point cloud. We choose the ESF de-
scriptor from the PCL to extract the features of the point cloud generated
from the depth data that we also receive from the RGB-D cameras. Our
main reason to choose this descriptor is that it does not need the calcula-
tions of the normals and this helps our method in terms of the performance
and it is a global descriptor [1].

The second global descriptor that we have tested is the Viewpoint
Feature Histogram (VFH) that differentiates itself from other descriptors
by using the viewpoint vector direction. It consists of four 45-bin his-
tograms for the angles and distances between each point and one 128-bin
histogram that represents each points Normals. So the output of the de-
scriptor has a single normalized histogram with 308 values for a point
cloud. We choose to test the VFH descriptor from the PCL to extract the

Average Error (Standard Deviation) [mm]
Epoch Avg. time to train
Method 10 20 30 40 >0 (Stand. Deviation) [h]
DenseFusion using PointNet [3] | 12.9 (0.5) 12.6(0.5) 12.4(04) 125(0.4) 12.8(0.3) 42 (0.4)
DenseFusion using ESF [6] 13.4(0.4) 13.0(0.2) 129(0.1) 13.1(0.4) 13.2(0.4) 34 (1.1)
DenseFusion using VFH [4] 13.1(0.3) 13.0(0.3) 12.8(0.4) 12.7(0.3) 12.9(0.3) 34 (1.1)

Table 1: Results of our experiments. Average error and standard deviations in millimeters and average time to train in hours.

b) Object Mask

a) Original RGB Image

Figure 3: A short representation of the possible visible steps of the Dense-
Fusion method using an image from the LineMOD dataset. Image a is an
input example of a RGB image. Image b is the mask extracted after the
object segmentation phase of a specific object. Image c is the input image
with a box representing the pose prediction of the cat object.

features of the point cloud generated from the depth data because it is also
a global descriptor and has fewer values than the ESF this could help on
the size of the predictor neural network that we use after this phase [1].

3 Experiments

In our experiments, we used the LineMOD [2] dataset as input data to
all of our experiments and this dataset is also used on most of the related
work in 6D pose estimation. It contains 15 household objects. Each object
is associated with a test image showing one annotated object instance with
significant clutter but only mild occlusion. In Figure 3 we can see a visual
representation of an example image from the LineMOD passing through
the DenseFusion pipeline phases. All of our experiments were executed
on a NVIDIA GEFORCE GTX 1080 Ti.

We trained each of the three different methods (PointNet, ESF and
VFH) 50 epochs with tests occurring in epoch 10, 20, 30, 40 and 50. All
the experiments were executed without the pose refinement phase of the
DenseFusion architecture and we used the same standard hyperparame-
ters as in [5] (bash size one, 0.0001 as learning rate value and Adam op-
timizer). The results obtained are presented in Table 1 and DenseFusion
using PointNet as feature extractor from depth has the best error around
12mm. PointNet is a method based on deep learning which provides a uni-
fied architecture for applications ranging from object classification, part
segmentation, to scene semantic parsing, since it is a neural network it
needs to be trained. When we use global descriptors like ESF and VFH
they just process the data and output the unique features of the objects so
we need less time to train all the pipeline of the DenseFusion. Using ESF
and VFH methods instead of PointNet we have errors around 13mm, but
we needed 8 hours less to train the DenseFusion pipeline which represents
a 19% faster approach. In terms of the inference time we achieved 14ms
per image using ESF or VFH, comparing it with 15ms using PointNet.

In Figure 4 we present the error values in millimeters along the num-
ber of epochs of training. We can conclude that after 30 epochs the Dense-
Fusion network starts over-fitting and starts to perform worst on the test
part of the dataset. On the experience where we used VFH as depth feature
extraction of the object, the network only started to over-fit after epoch 40.

@® PointNet @ ESF VFH

Average Error [mm]
N
o

10 20 30 40 50

Epochs

Figure 4: Average error in millimeters tested in different epochs.

4 Conclusion

Our experiments showed that 30 epochs are enough to train the DenseFu-
sion. With these 30 epochs it is possible to achieve good results in terms
of pose estimation and using as less time as possible during the training
phase of the method. Pose refinement should be used after the 30 epochs
of training to obtain a minor decrease in the position errors. Using global
descriptors instead of PointNet can be an advantage due to the 19% less
time needed to train DenseFusion with the cost of less than 1mm of error.

References

[1] Luis A. Alexandre. 3D descriptors for object and category recogni-
tion: a comparative evaluation. In Workshop on Color-Depth Camera
Fusion in Robotics at the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Vilamoura, Portugal, October
2012.

Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic,
Kurt Konolige, Nassir Navab, and Vincent Lepetit. Multimodal tem-
plates for real-time detection of texture-less objects in heavily clut-
tered scenes. pages 858—865, November 2011.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation.
arXiv preprint arXiv:1612.00593, 2016.

R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition
and pose using the viewpoint feature histogram. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
2155-2162, October 2010. doi: 10.1109/IROS.2010.5651280.

Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martin-Martin, Cewu
Lu, Li Fei-Fei, and Silvio Savarese. Densefusion: 6d object pose
estimation by iterative dense fusion. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

W. Wohlkinger and M. Vincze. Ensemble of shape functions for
3d object classification. In 2011 IEEE International Conference
on Robotics and Biomimetics, pages 2987-2992, Dec 2011. doi:
10.1109/ROBIO.2011.6181760.

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
Posecnn: A convolutional neural network for 6d object pose estima-
tion in cluttered scenes. CoRR.

(2]

(3]

(4]

(3]

(6]

(7]

[8] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfusion: Deep
sensor fusion for 3d bounding box estimation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,

pages 244-253, 2018.

