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Abstract. EEG is the preferred technique for objective diagnosis of men-
tal disorders. Unfortunately, complex methods of EEG signal processing do
not generalize well beyond a single data set and have not yet provided clini-
cally useful biomarkers. Good biomarkers should be simple to interpret, use
a minimal number of electrodes, and be based on short resting state EEG
recordings. We have used the vector autoregressive EEG signal represen-
tation of two schizophrenia data sets, showing that a simple k-NN classifier
provides state-of-the-art results with only 5 or 6 EEG channels.
Keywords: EEG, Resting State, Schizophrenia Diagnosis, Electrode Selec-
tion

1. Introduction

EEG has been used as a simple means to detect several brain disorders and
increase our understanding of the brain. In this paper, we focus on the relative
importance of the electrodes used in EEG. We expect that results will strongly de-
pend on the type of disorder. With a large number of electrodes and small data sets
(typically less than 100 cases, including the control group), many input combina-
tions may give similar accuracy. Although our method is general, We focus here
on the detection of schizophrenia using two popular data sets. The importance of
identifying which electrodes have more discriminative power is twofold: first, it
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can help as a feature selection technique to use the best possible combination of
EEG signal sources to improve the detection; second, it helps to identify which
brain regions are involved in schizophrenia pathology.

A review of candidate biomarkers in psychiatric disorders has recently been
published in [1]. Despite enormous investment in biomarkers based on neuroimag-
ing, genetics, molecular and peripheral assays for autism, schizophrenia, anxiety
disorders, major depression, bipolar disorder, substance use disorders, and PTSD,
we do not have reliable biomarkers for objective diagnosis of patients. Many so-
phisticated methods have been proposed for diagnosis based on EEG, reviewed in
[2], but they are too complex and thus difficult to use in clinical practice. Only
simple and robust methods have a chance to be useful in practice and provide a
real baseline for more refined approaches.

This paper is organized as follows: the next section presents a description
of both the data used in this work and the methods used in the evaluation; the
following section contains the experiments, followed by a discussion and some
conclusions.

2. Methods and Data

To identify the most relevant electrode(s) for schizophrenia diagnosis, we will
use a brute force approach that tries all possible electrode combinations and, for
each of these, perform a k-fold cross-validation. The brute force method is done
only once and ensures that we discover all sets of electrodes that give the best
results. The data sets are not completely balanced; therefore, we will select the
combinations that show the best F1 score for analysis.

2.1. Data Sets

For tests, we have selected the two most commonly used data sets [2]. The first
[3], which we will refer to in the paper as data set A, contains measurements col-
lected from 84 male adolescent subjects, 45 with schizophrenia, and the remaining
39 in the healthy control group. The data was collected using 16 electrodes at the
128Hz sampling rate.

The second data set [4], which we will call data set B, contains data from
only 28 subjects, 14 control and 14 with schizophrenia. It was collected using 19
electrodes at the 250Hz sampling rate. To make the data sets similar in terms of the
number of electrodes used and facilitate the comparison of results and the ability
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to obtain results in an acceptable time frame, we reduce the 19 electrodes in this
data set to the same 16 used in data set A. We also subsample the data from 250Hz
to 128Hz, and use only the first minute of data recordings for all subjects. This
makes both data sets comparable in terms of the position of electrodes, sampling
frequency, and signal duration. For both data sets, the only pre-processing done
consisted of applying a high-pass filter to remove data below 0.1Hz.

2.2. Data Representation

The data is a set of N (C × S ) matrices, where N is the number of subjects, C
the number of channels (electrodes), and S is the number of samples. Each of these
matrices is represented using the Vector AutoRegressive (VAR) approach [5], by
considering the data at each time step i as a random vector yi, and modeling each
subject’s data at a given time step t as a combination of the previous L random
vectors:

yt = ν + ut +

L∑
i=1

Aiyt−i

where the C×C matrices Ai and the C×1 vector ν contain the model’s parameters.
These will be used to represent the data. The value L is called the lag, and ut is a
zero mean random noise vector.

2.3. Classification

For each combination of electrodes, a k-fold cross-validation is used to evalu-
ate the capability of the combination to distinguish between normal and schizophrenic
patients. As a classifier, we used the 3-NN. It is very fast for small data sets, avoids
draws for the two class problems, and provides deterministic results. Following the
most used approaches in the literature, 5-fold cross-validation on data set A and
10-fold on the smaller data set B was used.

3. Experiments

Calculations were performed on a PC with an AMD Ryzen 7 3700X 8-Core
processor, Pop!_OS 22.04, 32GB RAM, 1TB SSD and an NVidia RTX 3080TI
GPU. The code was made in Python 3.10, and we used the libraries Scikit-learn
for the classifier, Statsmodels for the VAR model, and Matplotlib for the figures.
These calculations took around 40 hours to execute for each data set.
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Figure 1. The two best subsets of electrodes for data set A, both with F1 score of
0.945. Note that they only differ in electrode O2.
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Figure 2. The three best subsets of electrodes for data set B, all with an F1 score
of 0.897. Note that the two on the left and center only differ in electrode T5.

Searching for minimal sets of electrodes that reliably distinguish schizophrenic
patients, we check all possible combinations of electrodes. For m electrodes, we
conduct 2m − 1 k-fold cross-validation runs to obtain an estimate of the classifi-
cation F1 score for each subset. For both data sets, we have 16 electrodes, so the
total number of possible combinations is 216 − 1 = 65535 (all combinations with
the exception of the case where no electrodes are used).

In data set A, out of the 65535 combinations, the best two yielded an excellent
F1 score of 0.940. Figure 1 shows the electrodes used in these two subsets. For
data set B, the three best subsets with F1 score of 0.897 were discovered. Classifi-
cation using all electrodes (the original data set) gave an F1 score of 0.854 in data
set A and 0.667 in data set B.
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4. Discussion

Our goal was to establish a simple reference for more advanced machine learn-
ing approaches to the diagnosis of mental disorders. We have found that reducing
19 or 16 EEG channels to just five or six, and using the simplest classification
method leads to excellent results. Comparison of results achieved with deep learn-
ing methods [2] shows that our simple approach is as good as any other method.
Fusion of a vector autoregressive model, partial directed coherence, complex net-
work measures of network topology to generate hand-crafted and learned features,
followed by three convolutional neural networks (CNNs) in 2730 dimensional in-
put space, reaches 91.7±4.6% accuracy, or F1=0.93 [6]. Dozens of papers have
reached significantly worse results than our simple benchmark calculations.

Positions of the electrodes, presented in Figures 1 and 2 for both data sets, may
be justified based on the interpretation of differences in EEG power distribution
between healthy controls and schizophrenic adolescents. We have already done a
preliminary analysis of 5 classical frequency bands (delta-gamma), finding that in
θ band F8, T3, T4, P4 electrodes are most important, in α bend F8, O2, Pz, and
in β band P3 [7]. Unfortunately, we do not have space here to describe a detailed
relationship of these findings with the vast literature on schizophrenia.

5. Conclusions

The main contribution of this paper is to show that a simple baseline approach
should be performed before sophisticated deep-learning methods are applied to
complex data. They frequently obfuscate the interpretation and are not more ac-
curate than simple approaches. Therefore, it should be mandatory to compare
results with simpler methods. Second, we have performed a selection of EEG
channels showing that simple equipment, with just 5 electrodes, may provide ac-
curate data. Here, we have analyzed two data sets commonly used to test methods
for schizophrenia diagnosis. They are rather small, but in this field, it is impossible
to find large data sets.

We will perform a similar analysis on other schizophrenia data sets, describe
the relations of our findings to known brain processes that characterize schizophre-
nia, analyze power distributions in relevant brain regions, and use other EEG data
sets to check if a simple reference model can also be used for other psychiatric
conditions.
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