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Abstract—In this paper, we propose a robust detection and
tracking method for 3D objects by using keypoint information
in a particle filter. Our method consists of three distinct steps:
Segmentation, Tracking Initialization and Tracking. The segmen-
tation is made in order to remove all the background information,
in order to reduce the number of points for further processing.
In the initialization, we use a keypoint detector with biological
inspiration. The information of the object that we want to follow
is given by the extracted keypoints. The particle filter does the
tracking of the keypoints, so with that we can predict where the
keypoints will be in the next frame. In a recognition system, one
of the problems is the computational cost of keypoint detectors
with this we intend to solve this problem. The experiments with
PFBIK-Tracking method are done indoors in an office/home
environment, where personal robots are expected to operate. The
Tracking Error evaluate the stability of the general tracking
method. We also quantitatively evaluate this method using a
“Tracking Error”. Our evaluation is done by the computation of
the keypoint and particle centroid. Comparing our system with
the tracking method which exists in the Point Cloud Library,
we archive better results, with a much smaller number of points
and computational time. Our method is faster and more robust
to occlusion when compared to the OpenniTracker.

I. INTRODUCTION

Tracking is the process of following moving objects over
time using a camera. There is a vast range of applications
for tracking, such as, vehicle collision warning and avoidance,
mobile robotics, speaker localization, people and animal track-
ing, tracking a military target [1], [2] and medical imaging [3].
To perform tracking an algorithm analyzes sequential video
frames and outputs the location of targets on each frame.

There are two major components of a visual tracking
system: target representation and filtering. Target represen-
tation is mostly a bottom-up process, whereas filtering is
mostly a top-down process. These methods give a variety of
tools for identifying the moving object. The following are
some common target representation algorithms: Blob tracking,
Kernel-based or mean-shift tracking [4] and contour tracking.
Filtering involves incorporating prior information about the
scene or object, dealing with object dynamics, and evaluation
of different hypotheses. These methods allow the tracking of
complex objects along with more complex object interaction
like tracking objects moving behind obstructions [5]. The
following are some common filtering algorithms: Particle filter
and Kalman filter.

The interest on using depth information on computer vision
applications has been growing recently due to the decreasing
prices of 3D cameras like Kinect and Asus Xtion. Depth
information facilitates object perception, as it allows for the
determination of its shape or geometry.

In this work, we will use directly the information given
by a Kinect camera and the Point Cloud Library (PCL) [6].
With this camera, we do not spend time to produce the depth
map, since this is given by the camera. In traditional stereo
vision, two cameras, placed horizontally from one another are
used to obtain two differing views on a scene, in a manner
similar to human binocular vision [7]. PCL contains many
algorithms that deal with point cloud data, from segmentation
to recognition, from search to input/output [8].

In figure 1, we present the setup/pipeline of our recognition
system and we will focus on the Particle Filter with Bio-
Inspired Keypoints Tracking (PFBIK-Tracking) block. The
PFBIK-Tracking block is composed by three main steps:
Segmentation, Tracking Initialization and Tracking. The input
cloud is segmented using two steps: Pass Through Filter (PTF)
and Planar Segmentation (PS). These steps are performed in
order to remove the background and keep only the object
information. This is used to initialize the tracking, where
the Cluster Extraction (CE) and the keypoint extraction are
performed. This step (Tracking Initialization) is done only in
the first iteration in order to select one cluster and extract the
points interest of the selected cluster. In [9], [10], they use
a similar tracking method, but it’s the user who makes this
initialization manually. The Tracking step uses a particle filter
in order to follow the keypoints, which represent the object. In
[11], [12], we have made an evaluation of keypoint detectors,
and concluded that Scale Invariant Feature Transform 3D
(SIFT3D) [13], [14] and Intrinsic Shape Signatures (ISS) [15]
are the detectors with the best results regarding the rotation,
translation and change scale. We use the SIFT3D keypoint
detector because of its biological properties mentioned [16].

The Recognition block is presented in this work only in
a illustrative way and we will not discuss in this work. But
in [8], [17], the author give us a good perspective on how to
solve the issue of objects recognition. In [8], the focus is on
the descriptors available in PCL (Feature Extraction step). He
briefly explain how they work and made a comparative evalu-
ation on publicly available data. It compares descriptors based
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Figure 1. Setup of our recognition system. The diagram presents a complete object recognition system in order to understand better how the communication
between the different stages is processed.

on two methods for keypoint extraction: one is a keypoint
detector and the second approach consists on sub-sampling
the input cloud with two different sizes. One conclusion in
this work is that the increased number of keypoints improves
recognition results at the expense of size and time. The same
author studies the accuracy of the distances both for objects
and category recognition and finds that simple distances give
competitive results. Our work will use the distance measure
with the best accuracy presented in [17].

The paper is organized as follows: the next section presents
an overview on keypoint detectors and particle filters; in
section III, we describe our Particle Filter with Keypoints
Tracking method; and the last two sections will discuss the
results obtained and present the conclusions.

II. OVERVIEW

The image analysis methods used in this work can be
divided into two areas: the spatial analysis (keypoint detectors)
and temporal analysis (particle filters). The spatial analysis
are points that stand out from the objects according to certain
criteria result. Their coordinates are estimated in every frame
of the image sequence, if a temporal analysis is not performed.
Temporal analysis detects particles that are connected from
frame to frame using another set of criteria to form tracks,
removing the need to extract spatial information in all frames.

A. Keypoint Detectors

Keypoint detectors are used to find interest points in 3D
point clouds. Interest points have been long used in the
context of motion, stereo, and tracking problems. A desirable
quality of an interest point is its invariance to changes in
illumination and camera viewpoint. In PCL, commonly used
interest point detectors include Harris keypoint detector [18],
[19] (and its variants Lowe [16] and Noble [20]), Kanade-
Lucas-Tomasi (KLT) detector [21], SIFT3D detector [13], [14],
Smallest Univalue Segment Assimilating Nucleus (SUSAN)
[22] and ISS [15]. For a comparative evaluation of 2D keypoint
detectors, we refer the reader [23], [24], [25] and for 3D
keypoint detectors to [26], [11], [12]. In [11], [12], we provide
a detailed description of the keypoint detectors present int the
PCL and focus on the invariance evaluation of the detectors.
Example of the most important 3D keypoint detectors applied
in a point cloud are shown in figure 2.

B. Particle Filters

Particle filters can be described as a sample-based imple-
mentation of a Bayes filter. The posterior probability density
over the state space of a dynamic system is estimated by the
particle filters [27], [28]. The main idea of the particle filter is
to represent the probability density by sets of samples, where
each particle has a weight assigned to it that represents the
probability of that particle being sampled from the probability



(a) SIFT3D method. (b) Harris3D method.

(c) ISS method. (d) SUSAN method.

Figure 2. Example of keypoints extraction in 3D point clouds using different methods. The keypoints are the red dots.

density function. This representation allows the particle filters
to combine the efficiency with the ability to represent a wide
range of probability densities [29]. Particle filter methods can
be divided into four sub-groups: Multi-hypothesis methods
represent the state by mixtures of Gaussians. These approaches
are able to solve the global localization problem, since each
hypothesis is tracked using a Kalman filter; Topological meth-
ods are based on symbolic, graph structured representations
of the environment. The advantage of these approaches lies
in their efficiency and in the fact that they can represent
arbitrary distributions over the discrete state space; Grid-based
methods rely on discrete, piece-wise constant representations.
Topological and in particular grid-based implementations of
Bayes filters for robot localization are often referred to as
Markov localization [29]; Sample-based methods are repre-
sented by sets of samples. Since they focus their resources
on regions with high likelihood. The efficiency of particle
filters strongly depends on the number of samples used for
the filtering process, several attempts have been made to make
more efficient use of the available samples [30], [31], [32].

The time complexity of one update of a particle filter
algorithm is linear in the number of samples needed for the
estimation [29]. Several authors have tried to make a more
efficient use of the available samples, allowing sample sets
of reasonable size. In [32], they incorporate Markov chain
Monte Carlo steps to improve the quality of the sample-based
posterior approximation [32]. An auxiliary particle filter is
presented in [30]. Initially they applied an one-step lookahead
to minimize the mismatch between the proposal and the target
distribution. This minimizes the variability of the importance
weights, which in turn determines the efficiency of the im-
portance sampler. This type of approach has been applied in
locating robots [33].

III. PARTICLE FILTER WITH BIO-INSPIRED KEYPOINTS
TRACKING

In this section, we will focus on the PFBIK-Tracking block
presented in the figure 1. Our method is composed by two main
steps: Segmentation and Tracking, which we will now describe
in detail.

A. Segmentation

The segmentation starts with the PTF. This filter removes
depth regions that are not contained on the desired working
distances [dmin, dmax], where dmin is the minimum distance
at which the system should work and dmax the maximum
distance. Depth regions that are not included between these
distances are considered background and are discarded by
our tracking system. By removing these regions (shown in
figure 3(b)), which do not have interesting information for the
object tracking system, a considerable reduction in the time is
obtained.

The second step of the segmentation is the PS, which is
based on the Random Sample Consensus (RANSAC) algo-
rithm [34]. It is an iterative method to estimate parameters
of a mathematical model from a set of observed data which
contains outliers. Basically, the data consists of “inliers” and
“outliers”. The distribuition of the inliers data can be explained
by some set of model parameters, but may be subject to
noise and outliers, which are data that do not fit the model.
The outliers can come from extreme values of the noise or
from erroneous measurements or incorrect hypotheses about
the interpretation of data.

Let w be the probability of choosing an inlier each time a
single point is selected, that is, w = #inliers

#points . Using n points,
selected independently, for estimating the model, wn is the
probability that all n points are inliers and 1 − wn is the
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Figure 3. Representation of the segmentation steps. Figure (a) represents a cloud captured by our camera. Figure (b) is the output of the pass through filter
with dmin = 0.0 m and dmax = 1.6 m, and in (c) the result of the removal of planar regions. Figure (d) are the clusters of the objects, wherein each object
is represented by a different color.

probability that at least one of the n points is an outlier. That
probability to the power of k (number of iterations) is the
probability that the algorithm never selects a set of n points
which all are inliers and this must be the same as 1−p. Where p
is the probability that the RANSAC algorithm in some iteration
selects only inliers from the input cloud set when it chooses
the n points from which the model parameters are estimated.
Consequently,

1− p = (1− wn)k (1)

which, after taking the logarithm of both sides, leads to

k =
log(1− p)
log(1− wn)

. (2)

Given the planar region estimated by RANSAC algorithm,
we can remove the planar regions from our cloud, keeping
only the remaining objects (shown in figure 3(c)).

B. Tracking Initialization

In the first frame captured, to initialize the tracking, we
perform the third step of segmentation, the CE. Clustering is
the process of examining a collection of “points”, and grouping
the points into “clusters” according to some distance measure
[35]. That is, the goal is that points in the same cluster have
a small distance from one another, while points in different
clusters are at a large distance from one another. This step will
return a list of the clusters (shown in figure 3(d)), where each
one contains the information of an object present in the cloud
scene. In this work, we use a Euclidean Clustering method.
As the name implies, the distance between two points p1, p2
is given by the Euclidean distance:

D(p1, p2) =
√
(p1x − p2x)2 + (p1y − p2y )2 + (p1z − p2z )2.

(3)

This PCL implementation is explained in [36].

As we mentioned earlier, in [11], [12], we presented an
evaluation of the keypoint detectors available on PCL. The
Scale Invariant Feature Transform (SIFT) keypoint detector
was proposed in [16]. The SIFT features are vectors that
represent local cloud measurements.

The 3D implementation of SIFT’s keypoint detector was
presented in [14]. It uses a 3D version of the Hessian to
select such interest points. A density function f(x, y, z) is
approximated by sampling the data regularly in space. A scale
space is built over the density function, and a search is made
for local maxima of the Hessian determinant. The input cloud
I(x, y, z) is convolved with a number of Gaussian filters whose
standard deviations {σ1, σ2, . . . } differ by a fixed scale factor.
That is, σj+1 = kσj where k is a constant scalar that should be
set to

√
2. The convolutions yield smoothed images, denoted

by
G(x, y, z, σj), i = 1, . . . , n. (4)

The adjacent smoothed images are then subtracted to yield a
small number (3 or 4) of Difference-of-Gaussian (DoG) clouds,
by

D(x, y, z, σj) = G(x, y, z, σj+1)−G(x, y, z, σj). (5)

These two steps are repeated, yielding a number of DoG
clouds over the scale space. Once DoG clouds have been
obtained, keypoints are identified as local minima/maxima of
the DoG clouds across scales. This is done by comparing each
point in the DoG clouds to its eight neighbors at the same
scale and nine corresponding neighborhood points in each of
the neighborhood scales. If the point value is the maximum
or minimum among all compared points, it is selected as a
candidate keypoint.



The performance of human vision is obviously far superior
to that of current computer vision systems, so there is poten-
tially much to be gained by emulating biological processes.
Fortunately, there have been dramatic improvements within
the past few years in understanding how object recognition
is accomplished in animals and humans [16]. Some features
found in inferior temporal cortex (IT) are composed by
neurons that respond to various moderately complex object
features, and those that cluster in a columnar region that
runs perpendicular to the cortical surface respond to similar
features [37], [38]. These neurons maintain highly specific
responses to shape features that appear anywhere within a large
portion of the visual field and over a several octave range of
scales [39]. The complexity of many of these features appears
to be roughly the same as for the SIFT. The DoG clouds
are also similar to the “Place cells”, which are pyramidal
cells in the hippocampus which exhibit strongly increased
firing in specific spatial locations [40]. The feature responses
have been shown to depend on previous visual learning from
exposure to specific objects containing these features [41].
These features appear to be derived in the brain by a highly
computation-intensive parallel process, which is quite different
from the staged filtering given by this method. A retinotopic
organization, parallel processing, feedforward, feedback and
lateral connection are a complex composition of the human
visual system [42]. However, the results are much the same:
an image is transformed into a large set of local features that
each match a small fraction of potential objects yet are largely
invariant to common viewing transformations.

C. Tracking

The Tracking block presented in figure 1 is the Particle
Filter. For this we use an adaptive particle filter presented in
[43], [29]. They presented a statistical approach to adapting
the sample set size of particle filters on-the-fly. The number
of the particles changes adaptively based on Kullback-Leibler
Distance (KLD) sampling [44], where they bind the error
introduced by sample-based representation of the particle filter.
The samples are generated iteratively until their number is
large enough to ensure that the KLD between the maximum
likelihood estimate and the underlying posterior does not ex-
ceed a pre-specified bound. This method will choose different
numbers of samples depending on whether the density of the
3D point cloud. If selects a small number of samples, the
density is focused in a small subspace and it selects a larger
number of samples, the samples have to cover most of the state
space.

IV. RESULTS

To evaluate the performance of our method, we will use
the Euclidean distance (equation 3) between the centroid of the
keypoints and result of our method, which is our “Tracking
Error”. The purpose of performing this comparison is that
we intend that our system can track the keypoints of an
object. This is done in order to not be necessary to apply
a keypoint detector in all frames. In a real-time system is not
feasible to apply a keypoint detector in each frame, due to the
computational time spent on their calculation.

The centroid of a finite set of p points p1, p2, . . . , pk in

Rn is given by

C =

∑k
i=1 pi
k

(6)

This point minimizes the sum of squared Euclidean distances
between itself and each point in the set.

In order to properly evaluate the performance of our
method, we will compare it with the sample-based method
OpenniTracker available in PCL 1.7 (from the trunk). We apply
our segmentation step in this tracker, where the output of this
step is shown in figure 4. Thus, we will give as input exactly
the same data to both methods. The difference between the
two methods is the initialization of the particle filter. Whereas
we initialize with the results of the keypoint detector, the
OpenniTracker only makes a sub-sampling. This is a very
important difference in the object recognition frameworks,
because the sub-sampling only reduces the number of points
in a linear manner, while the keypoint detector is reducing the
number of points based on the object characteristics.

The results presented in table I, II and III are obtained
using a dataset collected by us (shown in figure 4). This
dataset contains 10 different moving objects in a total of
3300 point clouds. We will provide the dataset at: http://socia-
lab.di.ubi.pt/s̃ilvio.

In table I, we can observe that our method performed the
tracking with a significantly lower number of points. Since our
goal is to make the recognition of each object in the scene, our
method has a stable performance with fewer points. With this
number of points it is possible to think of making recognition
in real time. On the other hand, with the number of points
shown by the OpenniTracker this is very difficult to archive.

In table II, we present the distance between the cloud
of keypoints (‘what we expect’) and the resulting cloud of
points produced by the tracker (‘what we estimate’). As already
mentioned, the Euclidean distance is calculated based on the
centroid of what was estimated and what we really are looking.
In this table, we can see that even with a large decline in the
number of points (around 50 times), our method has better
performance than OpenniTracker.

In table III, we present the mean processing time of the two
evaluated methods. These times were obtained on a computer
with Intel R©CoreTM2 Quad Processor Q9300 2.5GHz with
4 GB of RAM memory. Our method takes longer to initialize

Table I. MEAN AND STANDARD DEVIATION NUMBER OF KEYPOINTS
AND PARTICLES RESULTING FROM THE TRACKER. IN THE

OPENNITRACKER CASE, THE COLUMN KEYPOINTS REPRESENTS THE
SUB-SAMPLED CLOUD.

Number of Points
Keypoints Particles

PFBIK-Tracking 116.973 ± 76.251 102.107 ± 92.102
OpenniTracker 2502.536 ± 1325.807 2132.124 ± 1987.516

Table II. EUCLIDEAN DISTANCE BETWEEN THE OUTPUT OF THE
TRACKER AND THE EXPECTED RESULT.

Distance between Centroids
X axis Y axis Z axis All axis

PFBIK-Tracking 0.036 ± 0.032 0.013 ± 0.012 0.019 ± 0.019 0.045 ± 0.036
OpenniTracker 0.038 ± 0.023 0.013 ± 0.011 0.027 ± 0.015 0.052 ± 0.022
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Figure 4. Segmented point cloud sequences of our dataset. These point clouds are the inputs of the presented tracking methods, and these have already been
segmented.

Table III. MEAN AND STANDARD DEVIATION OF THE COMPUTATIONAL
TIME (IN SECONDS) OF THE EVALUATED METHODS. HERE WE DISCARD

THE TIME OF THE SEGMENTATION STEP, BECAUSE IT IS THE SAME IN BOTH
METHODS.

Tracking
Tracking

Initialization

PFBIK-Tracking 0.203 ± 0.162 0.081 ± 0.057
OpenniTracker 0.173 ± 0.187 0.186 ± 0.170

the tracking, but then our tracking becomes 2.3 times faster
than the other method presented. The initialization time is
not a problem since this is only done once. The initialization

is slower due to the fact that we extract keypoints, instead
of the sub-sampling process used by the other method. In
summary, our method obtains better results in terms of tracking
(increased robustness to occlusion), while using less points and
resulting in an improvement in terms of processing speed.

V. CONCLUSION

In this work, we present a system to perform the tracking
of keypoints. The goal is to remove the necessity of applying
a keypoint detector in all frames that we want to analyze.
When we do this kind of approach, we would spend a lot
computational time and the system could no longer function in



real time. We intend to make the tracking of keypoints because
our main goal is to extract the descriptors of a particular
object in the scene in order to perform the recognition. In
order to do this we present several segmentation steps, so
that we can remove all the background and objects become
isolated. When we have the objects segmented, we apply a
clustering method and the SIFT3D keypoint detector, which
is used to initialize the particle filter. We use the SIFT3D
keypoint detector because it has similar features to those in
IT [16]. Once it is initialized with the intended object, we
only need to give as input the output of the segmentation.

With our approach we were able to obtain better results
than using the OpenniTracker: we have a faster and more
robust method. For future work, we will intend to do the
tracking of multiple objects simultaneously.
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