
On the evaluation of energy-efficient deep learning
using stacked autoencoders on mobile GPUs

G. Falcao*, L. A. Alexandre†, J. Marques*, X. Frazao†, J. Maria*
*Instituto de Telecomunicações, Department of Electrical and Computer Engineering, University of Coimbra, Portugal

†Instituto de Telecomunicações, Department of Informatics, University of Beira Interior, Portugal

Abstract—Over the last years, deep learning architectures have
gained attention by winning important international detection
and classification challenges. However, due to high levels of
energy consumption, the need to use low-power devices at
acceptable throughput performance is higher than ever. This
paper tries to solve this problem by introducing energy efficient
deep learning based on local training and using low-power mobile
GPU parallel architectures, all conveniently supported by the
same high-level description of the deep network. Also, it proposes
to discover the maximum dimensions that a particular type
of deep learning architecture—the stacked autoencoder—can
support by finding the hardware limitations of a representative
group of mobile GPUs and platforms.

Index Terms—Parallel processing, Mobile GPU, Low-power,
Energy savings, Deep Learning, Stacked Autoencoders

I. INTRODUCTION

To address both the increasing size of training datasets and

corresponding high computational cost, modern deep learning

approaches of neural networks have been turning towards the

cooperative use of GPU clusters [1]. However, training can

still take hours, days or even weeks to complete.

While the current trend in machine learning is using con-

volutional neural networks (CNNs), such current state-of-the-

art implementations tend to consume high levels of energy in

order to produce the expected results, which directly impacts

the processing costs of big data and creates constraints in their

utilization in low-power-driven autonomous vehicles/robots,

that consume at least one order of magnitude less energy while

guaranteeing equally competitive throughput and classification

error performance, when compared to desktop GPUs or CPUs.

In this paper we propose a scalable parallel solution for

stacked autoencoder (SAE) architectures in mobile GPUs, that

allow providing to small autonomous robots/vehicles deep

learning capabilites. The paper builds upon [2] as a first step

towards the implementation of more complex approaches to

deep learning, such as CNNs, so as to understand the possible

gains in terms of energy savings, as well as comprehend the

limitations at hardware and software levels.

The goal is to conciliate the performance of deep learning

applications, such as object detection and classification, with

real-time execution capabilities at low-energy consumption

budgets and discover the associated hardware constraints.

Currently, several frameworks allow the training and eval-

uation of deep learning models, (e.g. Theano [3]). However,

these do not allow to change all aspects of the algorithm for

the proposed experiments, which required the development of

code to support higher control degrees over several aspects of

execution and model parallelization.

II. DEEP LEARNING AND STACKED AUTOENCODERS

The use of more than two hidden layers in neural network

supervised learning was seen as unnecessary until recently [4].

The exceptions were the neocognitron [5] and the convolu-

tional neural networks (CNNs) [6], both developed mostly for

visual tasks with the main issue being the difficulty in training

several hidden layers using standard back-propagation: there

were problems with adjusting the weights as the depth in-

creased (vanishing gradients) [7].

After that, it has become a major trend in machine learning

(deep learning is currently the state-of-the-art approach in mul-

tiple domains), when the efforts by Hinton and co-workers [8]

resulted in the ability to train deep neural networks (DNNs),

namely Deep Belief Networks (DBNs). At the same time,

other groups proposed a way to train deep networks based

on stacking autoencoders[9].

The potential advantages that come with using deep learning

are the possibility of having increasingly more abstract levels

of representation, reusing the intermediate level representa-

tions across different tasks and also obtaining a more compact

and efficient representation for certain types of problems [10].

A. Stacked autoencoders

An autoencoder (AE) is a network that tries to produce at

the output what is presented in the input [2]. The most basic

AE is a multi-layered perceptron that has one hidden and one

output layer, such that the weight matrix of the last layer is the

transpose of the weight matrix of the hidden layer (clamped

weights) and the number of output neurons is equal to the

number of inputs. An AE is trained in an unsupervised manner

(no class information is used).

To obtain a deep architecture using AEs they are stacked

on top of each other such that the output of an AE is the

input for the next one. This stacking can produce a deep

network: the SAE. The SAE is obtained as follows: first pre-

train several AEs such that the first learns to approximate the

inputs from the dataset, the second learns to approximate the

hidden representations of the first and so on. A final layer of

neurons is placed on top of the AE that is the output layer and

will have as many neurons as there are classes in the problem

(e.g. a softmax layer). The training is then performed for all

layers in a supervised manner (called fine-tuning).

2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

1066-6192/17 $31.00 © 2017 IEEE

DOI 10.1109/PDP.2017.98

270

2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

2377-5750/17 $31.00 © 2017 IEEE

DOI 10.1109/PDP.2017.98

270



Algorithm 1: Training Phase

1: Load training set from disk
2: if load checkpoint = true then
3: Load weights from previous checkpoint
4: else
5: Generate random weights
6: end if
7: Initialize OpenCL
8: for layer = 0 to number of layers: do
9: Allocate INPUT, OUTPUT and WEIGHTS buffers

10: Allocate ERROR and GRADIENT buffers
11: for batch = 0 to number of batches: do
12: {Parallel Encoder’s Feed-Forward}
13: INPUT ⇐ Host, WEIGHTS ⇐ Host
14: Enqueue the Feed-Forward parallel kernel (HiddenNodes × BatchSize

work-items)
15: Compute the encoder’s feed-forward phase on the OpenCL device
16: Host ⇐ OUTPUT
17: {Parallel Decoder’s Feed-Forward}
18: Decoder INPUT ⇐ Encoder OUTPUT
19: Enqueue the Feed-Forward parallel kernel (VisibleNodes × BatchSize

work-items)
20: Compute the decoder’s feed-forward phase on the OpenCL device
21: Host ⇐ OUTPUT
22: {Parallel Decoder’s Back-Propagation}
23: Enqueue the Back-Propagation - Output Layer parallel kernel (VisibleNodes

work-items)
24: Compute the encoder’s Back-Propagation phase on the OpenCL device
25: Host ⇐ ERROR
26: {Parallel Encoder’s Back-Propagation}
27: Decoder GRADIENT ⇐ Encoder GRADIENT
28: Enqueue the Back-Propagation - Hidden Layer parallel kernel

(HiddenNodes work-items)
29: Compute the decoder’s back-propagation phase on the OpenCL device
30: Host ⇐ GRADIENT
31: Update weights for the next epoch
32: end for
33: Release all buffers
34: end for

III. HARDWARE PARALLELISM FOR NEURAL NETWORKS

A. Mapping parallel OpenCL kernels on the device

For the parallel development of the training phase, three

OpenCL kernels were created. The first one relates to the

feed-forward algorithm, sending the data through the network,

layer-by-layer, and computing the results. The second kernel

computes the AE reconstruction error at the output layer and

begins the gradient-based back-propagation algorithm. The

back-propagation, as the feed-forward, has data-dependencies

from the previous layer. Since the back-propagation for the

hidden layer is dependent on the gradient calculations from

the output layer, this results in a third kernel for that purpose.

The training phase is described in Algorithm 1.

After the training process, the SAE is ready to classify

the provided test samples. The decoder’s feed-forward and all

back-propagation are now withdrawn from the computation,

leaving the network with only the encoder from each AE.

This phase is described in Algorithm 2.

1) Feed-forward: When the samples from the dataset and

weights for that layer are loaded to the device’s global mem-

ory, the initial phase is started by sending data through the

network. The kernel is launched on the device across two

dimensions, the first being equal to the output nodes of the

current layer and the second relative to the amount of samples

from the dataset. This means that one particular work-item

is responsible for one output node when all the input nodes

Algorithm 2: Testing Phase

1: Load training set from disk
2: Load weights from training phase
3: Initialize OpenCL
4: for layer = 0 to number of layers: do
5: Allocate INPUT, OUTPUT and WEIGHTS buffers
6: for batch = 0 to number of batches: do
7: {Parallel Encoder’s Feed-Forward}
8: INPUT ⇐ Host, WEIGHTS ⇐ Host
9: Enqueue the Feed-Forward parallel kernel (HiddenNodes × BatchSize

work-items)
10: Compute the encoder’s feed-forward phase on the OpenCL device
11: Host ⇐ OUTPUT
12: end for
13: end for
14: Compute final classification accuracy

from one sample go through it. Inside the kernel, a weighted

sum is computed in a loop, over all the layer input nodes and

respective weights for that particular output node, computing

the overall sum of that product. An activation function (the

sigmoid function), is then applied to that sum plus the bias of

that output node. This kernel is valid for both the encoder and

decoder phase of the AE, the only difference being the input

varying between the original image for the encoder layer and

the encoder output for the decoder layer.

2) Back-propagation (output layer): After computing the

feed-forward across the AE (encoder, then decoder), the result-

ing decoder output is of the same size as the encoder’s input.

We then have the possibility of calculating a reconstruction

error. The kernel developed for this phase calculates that

error and then computes the gradient descent on the back-

propagation. Since we are batch training the network, this time

the kernel is launched only on one dimension, as opposed to

two dimension like the feedforward phase, so as to fit into the

device’s memoryThe algorithm inside the kernel then loops

over all dataset samples, computing the reconstruction error

and gradient for each sample. The partial derivative for the

weights is then calculated via the gradient. The value for the

bias is obtained directly from the gradient, with the weights

also being dependent on the output from the previous hidden

layer. When all the samples have been processed, the mean of

the gradient is needed due to the batch training.

3) Back-propagation (hidden layer): The kernel used for

the back propagation in the hidden layer is close to that of the

output layer. We do not have a reconstruction error for this

layer but we are dependent on the gradient calculated in the

output layer. The kernel is then launched with one dimension,

the size of the hidden layer output nodes. The product of the

weights of this layer and the output gradient is summed across

the input nodes, with the resulting sum replacing the error

in the previous algorithm, finally obtaining the gradient for

this layer. The kernel then proceeds to compute the partial

derivatives as described in the output layer kernel. When the

back propagation for this hidden layer comes to an end, the

partial derivatives are then copied to the host where a simple

loop updates the weights and bias, this being a fast and low

computationally demanding operation. In order to implement

the aforementioned parallel kernels, we developed parallel

271271



kernels for mobile GPUs with optimizations that are identified

in the next subsections.

B. Mobile GPU specific high-level memory optimizations

For the mobile GPU case, the memory embedded in the

system on chip (SoC), present in smartphones with ARM

CPUs and mobile GPUs, differs from regular OpenCL devices.

Usually, on conventional desktop GPUs, there is a host mem-

ory and a separate memory, directly on the device’s (GPU)

board. These systems require memory transactions (copies,

reads and writes) between the host and device, usually via

the PCI-e bus linking them together, so the data is accessible

on the faster device’s memory. For SoC implemented in

smartphone and similar devices, a single memory is available

and thus shared by host and device. The memory transactions

between host and device are therefore unnecessary, as the

memory space is the same across both of them.

1) Shared memory: An algorithmic limitation with impact

in the utilization of mobile resources consists of the need of

floating-point calculation to be performed on input data and

weights product between host and device. To ensure an im-

plementation with zero-copy buffers, allocation of said buffers

must be first performed via a call to clCreateBuffer with

the flag CL_MEM_ALLOC_HOST_PTR, resulting in a buffer

visible by both the host CPU and GPU OpenCL device. This

ensures the buffer is automatically memory aligned to the

device, and that an unnecessary copy and data duplication

is not performed at a later stage in the pipeline. After the

allocation is complete, the buffer can be mapped to a host

pointer with clEnqueueMapBuffer and filled with the

necessary data to be processed. The buffer can then be returned

to the device’s control via clEnqueueUnmapMemObject,

after which the kernel is launched.

This process is necessary, since buffers created on the

host side via malloc() cannot be mapped to the device’s

memory space and, furthermore, buffers created with the

CL_MEM_USE_HOST_PTR flag and then linked to an existing

host side pointer will still result in a time expensive copy and

in data duplication.

IV. EXPERIMENTAL RESULTS ON LOW-POWER

ARCHITECTURES

The goal of the experiments was three-fold: 1) validate the

implementations in all devices; 2) allow comparing energy

consumption between the tested platforms; and 3) find their

hardware limitations namely due to memory and processing

capabilities. For this we have chosen a well known dataset,

the MNIST [11]. The five computing platforms used in these

experiments are listed in Table I.

The desktop GPU is used only for reference, since our

focus is on low-power devices. The training hyper-parameters

defined for the SAE consist of a training batch of 64 images

and an initial learning rate of 0.45 on a network of size

784− 500− 250− 10. For this particular SAE we achieved a

classification error of 1.47% training during 1500 epochs.

TABLE I
COMPUTING PLATFORMS. MOBILE DEVICES HAVE SHARED RAM.

Platform CPU GPU

refGPU i7 4770k, 32GB GTX Titan, 6GB

mGPU1 ARMv7 Krait 400, Adreno 330, 2GB

mGPU2 ARMv7-A Krait 450 Adreno 420, 3GB

mGPU3 ARMv7 Krait 400 Adreno 330, 3GB

mGPU4 ARMv8-A Cortex-A57 Adreno 430, 4GB

A variety of reconstruction and classification outputs were

analyzed, along with a graphical output of the estimated

classification as a function of the expected labels varying

from digit 0 to 9, and we present a few cases with a high

degree of probability (higher than 0.9) in Fig 1. It should be

noted that since the algorithm remains equal and weights are

initialized with the same random seed generator, the error is

constant in all platforms.

Fig. 1. Some of the images correctly classified (from MNIST).

For the energy consumption analysis in Table II we kept the

same SAE architecture using 1 epoch. These measurements

scale linearly with the number of epochs. Power consumption

was calculated measuring the idle requirements of the entire

system (host and device) and then launching the application,

measuring the power difference (load - idle) over the SAE

execution time, using a power meter for the desktop refGPU

and the PowerTutor [12] application for the remaining devices.

TABLE II
EXECUTION TIME OF 1 EPOCH AND ENERGY CONSUMPTION ON A

NETWORK OF SIZE 784-500-250-10 (*LOWER IS BETTER)

Exec. Average Energy Energy

Device Time Power Consump. Consump.

(min|sec) (W) (Wh)* (vs GPU)*

refGPU 54s 247 3.7050 -

mGPU1 13m25s 0.242 0.0541 1.46%

mGPU2 11m33s 0.230 0.0436 1.18%

mGPU3 12m15s 0.317 0.0593 1.61%

mGPU4 10m58s 0.140 0.0256 0.69%

Table II shows that regarding energy consumption, mobile

devices are clearly better than the reference desktop refGPU,

achieving the same results while consuming only from 0.69%

to 1.61% of the energy, which can be attributed to both the

272272



optimizations performed and the hardware, since mobile GPUs

are far more energy efficient than the desktop counterpart.

Considering the energy-efficiency point of view, mobile de-

vices clearly outperform the refGPU, despite taking 15 times

more time to complete the same task. It should be noted,

however, that using the power meter to measure the average

power for both smartphone platforms (mGPU1 and mGPU2)

we achieve approximately 3.4W, which represents the power

required by the entire development platform. Nonetheless,

using those values as basis for energy consumption calculation

would give 0.7603Wh and 0.6451Wh, respectively. Even for

such worst case scenarios, mobile devices still require only

20% of the energy of the desktop GPU.
For the hardware limitations analysis we test an increasing

number of neurons for the first hidden layer until a maximum

is reached (i.e., device kills the process), thus achieving the

maximum weights that each device can train using its GPU.

Table III indicates the maximum dimensions achieved.

TABLE III
EXECUTION TIME OF 1 EPOCH AND MAXIMUM NUMBER OF WEIGHTS FOR

EACH MOBILE DEVICE

Device Execution First Hidden Number of

Time Layer Neurons Weights

mGPU1 1h51m24s 3150 3263010

mGPU2 3h50m19s 5950 6161010

mGPU3 3h10m44s 5000 5177760

mGPU4 3h58m13s 7250 7506510

As a term of comparison, the refGPU ran the SAE for each

mobile devices’ largest architecture in 5m43s, 9m13s, 7m40s

and 11m40s, respectively. As is normal when using SAE, the

number of weights was calculated using the following formula:

(784 + 1)×N + (N + 1)× 250 + (250 + 1)× 10 (1)

where 784 is the number of inputs, N is the number of neurons

from the first hidden layer, 250 the number of neurons from

the second hidden layer and 10 is the number of outputs.
Although Table III shows that due to hardware limitations

the devices perform significantly slower for very large neural

networks, they run fast small to medium sized networks (as

seen in Table II), albeit execution times are higher than they

normally would in desktop GPUs. However, energy consump-

tion savings make up for such higher execution times.
To further grasp hardware limitations results, there are sev-

eral factors that need to be considered: first, mobile GPUs do

not have dedicated memory, so the memory that is available is

small and managed by the SoC, varying between devices; also,

even using the same SoC, results can vary by simply using

different OS versions that can implement different resource

management policies; and finally, we have to consider that

mobile devices only recently started supporting OpenCL, so

these implementations have still margin to progress. With the

expected advances of hardware and new OpenCL implemen-

tations, OpenCL capabilities in mobile devices will likely

improve considerably in the near future.

V. CONCLUSIONS

This work presented energy-efficient training and testing of

deep neural networks of the SAE type on mobile smartphones

and low-power GPUs. We addressed implementation details

and experimental analysis by comparing the energy consump-

tion of 5 different and representative embedded architectures.

We have found the limits in terms of the maximum deep neural

network size that fits their restricted hardware resources.

Although not as fast as on a desktop GPU, the training

on mobile GPUs uses less than 2% energy than it would

on the desktop counterpart, opening room to the processing

of compute-intensive algorithms directly on autonomous vehi-

cles, robots and other low-power applications.

Moreover, this study paves the way for technology pro-

gression, as mobile GPUs with more hardware resources are

developed. This may include state-of-the-art networks, such as

CNNs, running exclusively on low-power devices, achieving

top results in terms of energy savings and classification accu-

racy as well. Additionally, the use of approaches such as Deep

compression [13] to improve speed and reduce storage needs

can further contribute to this goal.

Finally, we have made the OpenCL source code avail-

able (https://montecristo.co.it.pt/pdp17) to the community that

wishes to replicate these experiments.

VI. ACKNOWLEDGEMENT

This work was supported by FCT and Instituto de

Telecomunicações under grant UID/EEA/50008/2013.

REFERENCES

[1] A. Coates, B. Huval et al., “Deep learning with COTS HPC systems,” in
Proceedings of the 30th International Conference on Machine Learning
(ICML-13), 2013, pp. 1337–1345.

[2] J. Maria, J. Amaro et al., “Stacked autoencoders using low-power
accelerated architectures for object recognition in autonomous systems,”
Neural Processing Letters, vol. 43, no. 2, pp. 445–458, 2015.

[3] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016.

[4] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314.

[5] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, pp. 193–202, 1980.

[6] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,
and time-series,” 1995.

[7] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, 1994.

[8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[9] Y. Bengio, P. Lamblin et al., “Greedy layer-wise training of deep
networks,” in In NIPS. MIT Press, 2007.

[10] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, Jan. 2009.

[11] Y. LeCun. (2014) MNIST Dataset. http://yann.lecun.com/exdb/mnist/.
Accessed: 2015-04-15.

[12] “PowerTutor: A Power Monitor for Android-Based Mobile Platforms,”
http://ziyang.eecs.umich.edu/projects/powertutor, Accessed: 2015-04-
15.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
CoRR, vol. abs/1510.00149, 2015.

273273


