
1

Improving Transfer Learning Accuracy by Reusing
Stacked Denoising Autoencoders

Chetak Kandaswamy, Luís M. Silva, Luís A. Alexandre, Ricardo Sousa, Jorge M. Santos, Joaquim Marques de Sá

Abstract—Transfer learning is a process that allows reusing
a learning machine trained on a problem to solve a new
problem. Transfer learning studies on shallow architectures show
low performance as they are generally based on hand-crafted
features obtained from experts. It is therefore interesting to study
transference on deep architectures, known to directly extract the
features from the input data. A Stacked Denoising Autoencoder
(SDA) is a deep model able to represent the hierarchical features
needed for solving classification problems. In this paper we
study the performance of SDAs trained on one problem and
reused to solve a different problem not only with different
distribution but also with a different tasks. We propose two
different approaches: 1) unsupervised feature transference, and
2) supervised feature transference using deep transfer learning.
We show that SDAs using the unsupervised feature transference
outperform randomly initialized machines on a new problem. We
achieved 7% relative improvement on average error rate and
41% on average computation time to classify typed uppercase
letters. In the case of supervised feature transference, we achieved
5.7% relative improvement in the average error rate, by reusing
the first and second hidden layer, and 8.5% relative improvement
for the average error rate and 54% speed up w.r.t the baseline by
reusing all three hidden layers for the same data. We also explore
transfer learning between geometrical shapes and canonical
shapes, we achieved 7.4% relative improvement on average error
rate in case of supervised feature transference approach.

Index Terms—Transfer Learning, Deep Learning

I. INTRODUCTION

THE study of transfer learning was inspired by the ability
of humans to reuse prior experience under different

environments. Naturally, the transfer learning paradigm im-
plies reusing learning machines previously trained for a given
source problem S in order to solve, with minor modifications,
a different target problem T . An ideal transfer learning method
should improve the reused classifier over the one trained from
scratch.

Currently, the most popular transfer learning approach is
domain adaptation (see [1], [2], [3]) in which a machine learns
to perform a task on training instances drawn from the source
problem, but then needs to perform the same task on the
target problem instances drawn from a related distribution.

Chetak Kandaswamy is with Instituto de Engenharia Biomédica (INEB)
and Universidade do Porto, Portugal, e-mail: chetak.kand@gmail.com.

Luís M. Silva is with INEB and also with Dep. de Matemática at
Universidade de Aveiro, Portugal, e-mail: lmas@ua.pt

Luís A. Alexandre is with Universidade da Beira Interior and Instituto de
Telecomunicações, Covilhã, Portugal.

Ricardo Sousa is with INEB at Universidade do Porto, Portugal.
Jorge M. Santos is with INEB and also with Dep. de Matemática at Instituto

Superior de Engenharia do Instituto Politécnico do Porto, Portugal.
Joaquim Marques de Sá is with INEB and also with Dep. de Engenharia

Electronica e de Computadores at FEUP, Porto, Portugal.

Domain adaptation expects that the closer the distributions of
the problem are, the better the features trained on the source
problem will perform on the target problem, thus limited to
transfer learning problems where the distributions are related.

In this paper we explore transfer learning between com-
pletely different tasks drawn from different distributions, i.e.,
a classifier learns to perform task on training examples
drawn from the source problem, but then needs to perform
a different task on a target problem instances drawn from
a different distribution. In order to distinguish how different
the target distribution is from the source distribution, we use
Jensen-Shannon divergence [4] as a metric to measure the
degree of heterogeneity between distributions. In addition,
we also explore transfer learning between problems with the
same task, but drawn from different distributions. We use
state-of-the-art deep learning methods (see [7], [8], [9]) that
learn high-level features from large datasets and measure the
classification performance of images for the above described
transfer learning approaches.

Deep Transfer Learning (DTL) emerged as an new paradigm
in machine learning in which, a machine is trained using
deep models on a source problem, and then transfer learning
to solve a target problem. DTL is an alternative to transfer
learning with shallow architectures [11], in which one specifies
a model to several hidden levels of non-linear operations and
then estimates the parameters via the likelihood principle. The
advantage of DTL is that it offers a far greater flexibility in
extracting high-level features and transferring it from a source
to a target problem, and unlike the classical approach, it is not
affected by experts bias [11].

Despite the vast body of literature on the subject (see
[1] [11] [12] [13]), there are still many contentious issues
regarding problems with different distributions. The most
popular transfer learning approaches, like domain adaptation
[1], multi-task learning [11] and curriculum learning perform
well, yet these concepts are based on the assumption that
both source and target problems are drawn from related
distributions. Even self-taught learning which uses unlabeled
data to train, needs the input type (either image, audio or text)
of the source and target datasets to be from the same, see [5,
Section 2].

In this paper, we analyze DTL using Stacked Denoising Au-
toencoders (SDA) in two different approaches: 1) unsupervised
feature transference (USDA), and 2) supervised layer based
feature transference (SSDA). We focus on training a classifier
on an harder problem and reusing it on a simpler problem with
a completely different tasks drawn from a different distribution.
For example we pick the features of a machine built to classify

2

images of digits from 0-to-9 and reuse them to classify images
of letters from a-to-z. Similar experiments are conducted by
reversing the role played by each problem (simpler to harder).
In addition, we also explore transfer learning between same
task problems drawn from different distributions of geomet-
rical shapes. Processing large data as we did, on millions of
neural connections, would take several weeks using traditional
CPUs. Instead, we used a GPU for faster processing of these
large networks and to allow repetitions of each experiment
several times for statistical significance.

The present paper is organized as follows. In section 2 we
formulate the problem of transfer learning and in section 3 we
explain our approach. In section 4 we outline the experimental
procedure and the results for USDA and SSDA are presented
in sections 5, 6 and 7; finally section 8 and section 9 outline
the summary and the conclusions.

II. PROBLEM FORMULATION: TRANSFER LEARNING

Given an input space X and a set of labels Y , a
classifier is any function g(x) : X → Y that maps
instances x ∈ X to labels. Essentially, Y is a coding
set for the labels using some one-to-one mapping (e.g.,
Ω = {”equilateral”, ”circle”, ”square”} → Y = {0, 1, 2}
with number of labels c = 3). We assume that nds instances
are drawn by an i.i.d. sampling process from the input
space X with a certain probability distribution P (X), thus
giving a design data set Xds = {x1, . . . ,xnds

} which is
accompanied by a set of label codes Yds = {y1, . . . , ynds

}
for each instance. The classifier performance, like error rate
ε to predict and computation time is measured on a test set
Xts = {x1, . . . ,xnts} with nts unlabeled instances drawn
from the same distribution P (X).

Traditionally, the goal of the transfer learning is to transfer
the learning (knowledge) from a source-problem input space
XS to one or more problems, or distributions to efficiently
develop an effective hypothesis for a new task, problem, or
distribution [3]. In this framework of transfer learning, the
source and target problems may come from equal or different
distributions. In supervised learning problems, the source YS
and target YT labels may be equal or different. Four possible
cases of transfer learning problems can be identified:

1) The distributions are equal PS (X) = PT (X) and the
labels are also equal YS = YT .

2) The distributions are equal PS (X) = PT (X) and the
labels are not equal YS 6= YT .

3) The distributions are different PS (X) 6= PT (X) and
the labels are equal YS = YT .

4) The distributions are different PS (X) 6= PT (X) and
the labels are not equal YS 6= YT .

Under such hypothesis, our goal is to obtain an accurate
classification for target-domain instances by exploiting labeled
training instances from the source-domain.

Given a design data set Xds a classifier attempts to learn
features, represented as a vector wj of optimal weights and
biases. For a classifier with k number of layers, the features
wj are represented as a set of vectors of each layer, i.e.,
w = (w1, ..., wk).

A. Stacked Denoising Autoencoders

An autoencoder is a simple neural network with one hidden
layer designed to reconstruct its own input,having,for that
reason,an equal number of input and output neurons. The
reconstruction accuracy is obtained by minimizing the average
reconstruction error between the original and the reconstructed
instances. The encoding and decoding feature sets (input-
hidden and hidden-output weights, respectively) may option-
ally be constrained as transpose of each other, in which case
the autoencoder is said to have tied weights. A denoising
Autoencoder (dA) [6] is a variant of the autoencoder where
now a corrupted version of the input is used to reconstruct
the original instances. Moreover, the dA makes an excellent
building block for deep networks [12, Section 5.4]. Stacking
multiple dA’s one on top of each other, gives the model
the advantage of hierarchical features with low-layer features
represented at lower layers and higher-layer features repre-
sented at upper layers [12, Section 3]. In this paper the term
“Baseline” to refer a SDA trained on a target problem with no
transference from the source problem (trained from scratch).
SDA training [10, Section 6.2] comprises of two stages: an
unsupervised pre-training stage followed by a supervised fine-
tuning stage.

zx x~
ReconstructionUnlabeled inputCorrupted

input

Unsupervised
features

Pre-trained

(a) (b)
x

33 3
3

w1 w1

Cost

enc
ode

decode

~

U(w1)

U(w1)

U(w2)

U(wk)

Figure 1. (a) Pre-training first layer feature set, (b) Pre-trained k layers

In the unsupervised pre-training stage, the design data set
Xds is used alone without their corresponding label set. The
pre-training of the first hidden layer L1 is performed by
considering it as a regular dA as shown in Fig.1a. Its features
w1 are trained for several epochs until the cost function
hopefully reaches a global minimum. After the first layer is
completely pre-trained, we keep only the unsupervised features
of w1 of the dA and discard the decoding features. Then we
begin pre-training the second hidden layer L2 in a similar way,
except that in this case, we reconstruct w2 values instead of
Xds. Then we repeat the pre-training until the kth hidden layer
is completely pre-trained to obtain wk as shown in Fig.1b. We
represent each layer training of this multi-layered network as
a function U(w).

In the supervised fine-tuning stage, a logistic regression
layer with c neurons is added to the top of the pre-trained
machine, where c is the number of labels in Xds. Then, the
entire classifier is trained (fine-tuned) using both Xds and Yds
in order to minimize a cross-entropy loss function measuring
the error between the classifier’s predictions and the correct
labels [16]. We represent this supervised fine-tuning process
as a function: S(w, c).

3

III. PROPOSED APPROACH

Our approach are inspired by the 1959 biological model
proposed by Nobel laureates David H. Hubel and Torsten
Wiesel, who found two types of cells in the visual primary
cortex: simple cells and complex cells. The visual cortex is
the part of the brain that is responsible for processing the
visual information. Deep architectures try to mimic the human
primary visual cortex (see [7] [8] [9] [10, Section 11.3]).

We propose a feature transference approach which enables
deep neural networks to transfer hidden layers features for
a classifier trained in either unsupervised or supervised way.
For that purpose, SDA’s are trained on a source problem and
its features transferred to help in solving a target problem.
We represent this transference by wS ⇒ wT . Therefore we
explore feature transference in SDA either at the pre-training
stage U(w), unsupervised feature transference (USDA), or
at the fine-tuning stage S(w), supervised layer based feature
transference (SSDA).

A. Unsupervised Feature Transference using SDA

x =

Logistic Regression

Fine-tuned
B

a
ck P

ro
p

o
g

a
tio

n

ex = 3
Source Problem Target Problem

Pre-trained

⇒U(w)s w
T

CT

1 1

⇒U(w)s w
T

2 2

⇒U(w)s w
T

k k

Figure 2. Unsupervised feature transference

In the USDA approach we transfer the unsupervised features
of the SDA model from the source to the target problem, that
is, the source feature set wS is pre-trained U (wS), until the
kth hidden layer and then transferred to the target problem
features wT , that is, U(wS) ⇒ wT as depicted in Fig.2.
Once the features are transferred to the target problem, we
add a logistic regression layer for the target ΩT with labels
cT on top of the transferred machine. We fine-tune this entire
classifier S(wT , cT) as a multi-layer perceptron using back-
propagation. This approach is listed as USDA in Table I.

B. Supervised Layer based Feature Transference using SDA

In the SSDA approach the source feature set wS was
pre-trained until the unsupervised features U(wS) of the
kth hidden layer were obtained. After pre-training, we fine-
tuned these unsupervised features U(wS) with source problem
labeled instances using stochastic gradient descent and back-
propagation to obtain supervised features S(wS). We used
supervised layer based feature transference to transfer selected
features. For example, we just transfer first layer, that is,
S(w1

S) ⇒ w1
T . This is listed as “L1” approach in Table I

and also illustrated in Fig.3 (L1 stands for Layer 1). Then we

Table I
LISTS SSDA, USDA TRANSFER LEARNING AND BASELINE APPROACH

Approaches Transference Target problem

FT S(wS)⇒ wT S (wT , cT)

L1+L2+L3 S(w1
S , w

2
S , w

3
S)⇒ w1

T , w2
T , w3

T S (cT)

L1+L3 S(w1
S , w

3
S)⇒ w1

T , w3
T S

(
w2

T , cT
)

L2+L3 S(w2
S , w

3
S)⇒ w2

T , w3
T S

(
w1

T , cT
)

L1+L2 S(w1
S , w

2
S)⇒ w1

T , w2
T S

(
w3

T , cT
)

L3 S(w3
S)⇒ w3

T S
(
w1

T , wT
3, cT

)
L2 S(w2

S)⇒ w2
T S

(
w1

T , w3
T , cT

)
L1 S(w1

S)⇒ w1
T S

(
w2

T , w3
T , cT

)
USDA U(wS)⇒ wT S (wT , cT)

Baseline - S (U(wT), cT)

again fine-tune the entire classifier like a regular multi-layer
perceptron with back-propagation using both design and label
sets of the target problem.

Similarly, we can transfer the first and second layer features,
that is, S(w1

S , w
2
S)⇒ w1

T , w
2
T , listed as the “L1+L2” approach

in Table I. It was interesting to see that this opens up various
new combinations of supervised features to reuse for the
target problem. In the case of the “FT” approach we reuse
the fully trained supervised features S(wS) ⇒ wT of the
source problem and then fine-tune again the entire classifier
S (wT , cT) for the target problem. In the case of YS 6= YT
transfer setting the “FT” approach cannot reuse the logistic
regression layer, as the label set for the source problem ΩS

with cS labels is not equal to the target problem label set ΩT

with cT labels. Thus the logistic regression layer is randomly
initialized for the target problem.

x =

B
a
ck P

ro
p
o
g
a
tio

n

ex = 3
Source Problem Target Problem

Logistic Regression

Fine-tuned

CS Logistic Regression

Fine-tuned

CT

⇒S(w)s
1 w

T

1

S(w)s
2 w

T

2

S(w)s
k w

T

k

Figure 3. SSDA for “L1” approach.

C. Comparing distributions

Traditionally, the Kullback-Leibler (KL) divergence has
been used to estimate distribution differences between two
datasets [4]. Given two probability functions p(x) and q(x),
KL divergence is defined as:

DKL(p||q) =
∑
x

p(x) log
p(x)

q(x)
. (1)

Besides the theoretical and practical limitations of this measure
(undefined when q(x)→ 0) and having no upper bound, one

4

Table II
DATASET CHARACTERISTICS. ALSO SHOWN IS THE AVERAGE CLASSIFICATION TEST ERROR (%) (ε) OBTAINED WITH THE BASELINE APPROACH ALONG

WITH THE CORRESPONDING AVERAGE TRAINING TIMES (SECONDS) WITH GTX 770.

Data set Labels Instances Average Training Time (seconds)
Distribution Ω c Train Valid Test ε Total Pre-train(%) Fine-tune(%)

Latin PL 0-to-9 Ω09 10 50,000 10,000 10,000 1.61±0.19 10698 40.0 60.0
Arabic PA •-to-9 Ω•9 10 50,000 10,000 10,000 1.37±0.07 8051 20.7 79.3
Latin-2 PL2 0-to-9 Ω09 10 13,208 6,604 10,000 2.92±0.10 2347 28.1 71.9
Digits PD 0-to-9 Ω09 10 5,080 2,540 2,540 1.88±0.14 1010 34.6 65.4
Lowercase PLC a-to-z Ωaz 26 13,208 6,604 6,604 4.95±0.16 2997 43.6 56.4
Uppercase PUC A-to-Z ΩAZ 26 13,208 6,604 6,604 5.01±0.27 2567 34.7 65.3
Shape1 PSh1 ’eqt’,’cir’,’sqr’ Ωsh1 3 10,000 5,000 5,000 7.88±0.93 3564 54.9 45.1
Shape2 PSh2 ’tri’,’ell’,’rec’ Ωsh2 3 10,000 5,000 5,000 15.51±6.31 4095 60.5 39.5

drawback of this measure is that it cannot be defined as a
distance since it does not obey to two distance properties:
symmetry and the triangular inequality. An alternative to this
is the well known Jensen-Shannon (JS) divergence [4] given
by:

DJS(p||q) = αDKL(p||r) +βDKL(q||r), with r = αp+βq
(2)

where DKL is the Kullback-Leibler divergence as defined in
eq. 1.

When α = β = 1/2 in eq.2 we are dealing with the specific
Jensen-Shannon divergence and DJS is lower- and upper-
bounded by 0 and 1, respectively, when using logarithm base
2 [4]. This means that when DJS(p||q) = 0 we can consider
that p and q are identical and when DJS(p||q) = 1, the
distributions are different. We use Jensen-Shannon divergence
as a measure to compute the difference between two datasets
distribution.

IV. EXPERIMENTS

A. Datasets

To evaluate the performance of the USDA and the SSDA
transfer learning approaches we chose eight datasets of color
and gray scale images. These eight datasets are either distinct
in number of labels or distributions.

Latin and Arabic datasets are representative names for the
well-known MNIST1 and MADbase2 datasets of hand-written
Latin and Arabic digits, respectively. The original Chars74k3

dataset [14] has 64 labels consisting of typed digits, lowercase
and uppercase English language characters that was broken
into three smaller datasets: Digits dataset contains digits from
0-to-9, the Lowercase dataset contains lowercase letters from
a-to-z and finally, the Uppercase dataset contains uppercase
letters from A-to-Z. All the three modified datasets are resized
to 28×28 pixels from the original 128×128 pixels image. The
Latin-2 dataset is a modified version of MNIST to match the
number of training and validation instances of the Lowercase
dataset.

Shape1 and Shape2 are from Baby AI shape dataset4 which
was used for shape recognition. Shape2 has more complex

1http://yann.lecun.com/exdb/mnist/
2http://datacenter.aucegypt.edu/shazeem/
3We acknowledge Microsoft Research India for Chars74k dataset.
4http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/BabyAIShapes

patterns than Shape1, namely images of ellipsis, rectangles and
triangles. Both Shape1 and Shape2 were generated. In shape2
the images are ellipsis, rectangles and triangles. Both shape1
and shape2 was generated with 28×28 pixels, with variation of
colors: 0 to 7, position: left extreme to right extreme, rotation:
0 to 360o.

B. Network Architecture

Tuning hyper-parameters such as learning rate or setting the
appropriate network architecture for training the SDA model is
desirable but it is highly time consuming. We used pre-training
and fine-tuning learning rates of 0.001 and 0.1, respectively,
taken from our previously tuned models [16]. The stopping
criteria for pre-training was fixed to 40 epochs; stopping
criteria for fine-tuning was set to a maximum of 1000 epochs
with the validation dataset. Each of these experiments is
repeated 10 times and performed student t-test with confidence
interval of 0.05 to give some statistical significance.

We selected the network architecture inspired from Con-
volutional Neural Network’s pyramidal structure for classifi-
cation of visual patterns [8]. This enabled us to exploit the
geometrical properties of images. Given the number of inputs
as 28 × 28 = 784 = 16 × 72 pixels, the number of neurons
at each hidden layer is selected as a decreasing geometrical
progression. Thus, the number of neurons in kth layer is given
by Lk = 16 (7− k)

2. We represent the SDA network as
[L1,L2,..., Lk, c], where c is the number of output labels.
In the following experiments we use the SDA network has
three hidden layers and one output layer, or [16×62, 16×52,
16× 42, c] amounting to 784,384 connections. Moreover, the
induced random corruption levels for each of the three hidden
layers inputs are [10%, 20%, 30%] respectively.

We used Theano [15], a GPU compatible machine learning
library to perform all our experiments on a i7-377 (3.50GHz),
16GB RAM and GTX 770 GPU processor. Table II presents
average test error rates of the Baseline SDA for each dataset
along with the computation time in seconds for the above
defined network architecture.

C. Problem Categorization

If a problem has higher classification error than another
problem we categorize it as a harder problem. Moreover,
if the source problem is harder than the target problem we
categorize the transfer learning setting as Hard Transfer (HT).

5

Table III
CHANGING THE SET OF LABELS LABELS YS 6= YT , YS = YT FOR ARBITRARY DISTRIBUTIONS PS (X) 6= PT (X). AVERAGE CLASSIFICATION TEST

ERROR (%) (ε) OBTAINED FOR A TARGET PROBLEM USING USDA APPROACH FOR DIFFERENT COMBINATIONS OF: TARGET DATA DISTRIBUTION (PT);
TARGET LABEL SET (ΩT); SOURCE DISTRIBUTION (PS); SOURCE LABEL SET (ΩS) FOR HARD AND REVERSE TRANSFER PROBLEMS; THE DIFFERENCE

BETWEEN DISTRIBUTIONS IS GIVEN BY KULLBACK-LEIBLER (KL) AND JENSEN-SHANNON (JS) DIVERGENCE.

Hard Transfer: Harder ⇒ Simpler Reverse Transfer: Simpler ⇒ Harder
PS ΩS PT ΩT ε KL JS PS ΩS PT ΩT ε KL JS

Y
S
6=

Y
T

BL PUC ΩAZ 5.01±0.27 .. BL PL2 Ω09 2.92±0.10 ..
TL PL2 Ω09 PUC ΩAZ 4.65±0.19 ⇑ 49.3 0.99 TL PUC ΩAZ PL2 Ω09 3.34±0.09 ⇓ 42.2 0.99
TL PL Ω09 PUC ΩAZ 4.31±0.16 ⇑ 32.8 0.79 TL PLC Ωaz PL2 Ω09 3.28±0.10 ⇓ 42.2 0.99
TL PA Ω•9 PUC ΩAZ 4.41±0.22 ⇑ 48.6 0.99

BL PL Ω09 1.61±0.19 ..
BL PLC Ωaz 4.95±0.16.. TL PUC ΩAZ PL Ω09 1.81±0.19 ⇓ 4.3 0.79
TL PL2 Ω09 PLC Ωaz 4.67±0.38 ⇑ 49.3 0.99 TL PLC Ωaz PL Ω09 1.79±0.22 ⇓ 4.5 0.80
TL PL Ω09 PLC Ωaz 4.37±0.13 ⇑ 32.6 0.80
TL PA Ω•9 PLC Ωaz 4.43±0.11 ⇑ 48.6 0.99 BL PA Ω•9 1.37±0.07 ..

TL PUC ΩAZ PA Ω•9 1.47±0.08 ⇓ 22.8 0.99
TL PLC Ωaz PA Ω•9 1.49±0.07 ⇓ 22.9 0.99

Y
S

=
Y
T

BL PD Ω09 1.88±0.14 .. BL PL2 Ω09 2.92±0.10 ..
TL PL2 Ω09 PD Ω09 1.79±0.12 ◦ 44.5 0.99 TL PD Ω09 PL2 Ω09 3.27±0.16 ⇓ 43.7 0.99
TL PL Ω09 PD Ω09 1.78±0.21 ◦ 31.9 0.88
TL PA Ω•9 PD Ω09 1.75±0.21 ◦ 43.9 0.99 BL PL Ω09 1.61±0.19 ..

TL PD Ω09 PL Ω09 1.84±0.26 ⇓ 43.7 0.99
BL PSh1 Ωsh1 7.88±0.93 ..
TL PSh2 Ωsh2 PSh1 Ωsh1 7.96±0.93 ◦ 39.4 0.99 BL PA Ω•9 1.37±0.07 ..

TL PD Ω09 PA Ω•9 1.52±0.07 ⇓ 24.4 0.99

BL PSh2 Ωsh2 15.51±6.31 ..
TL PSh1 Ωsh1 PSh2 Ωsh2 13.08±0.58 ◦ 34.2 0.99

⇑, ⇓, ◦ statistically significant improvement or degradation or no change than baseline. The best ε obtained for a target dataset is marked in bold.

The reverse case, that is, when the roles of such source and
target problems are interchanged, is categorized as Reverse
Transfer (RT). In the experiments we are interested solely
in the case of different distributions of the source and target
datasets, PS (X) 6= PT (X).

V. USDA: DIFFERENT LABEL SETS

In this section we study feature transference behavior of
a machine trained on a harder problem using our USDA
approach. For that purpose we have carried out experiments
by training a machine to classify images of handwritten digits
(harder problem than synthetic digit) and reusing unsuper-
vised features to classify images of synthetic letters. We
also performed experiments by reversing the problem roles:
training a machine with simpler problems like synthetic letters
and reusing the features to classify harder problems like
handwritten digits. In both these studies, the label set ’digits’
and the label set ’letters’ are different, YS 6= YT (digits 6=
letters).

A. Classify letters reusing digits: HT

The goal is to classify images of synthetic letters by
reusing unsupervised features of a machine trained on a harder
problem like handwritten digits from 0-to-9.

The performance of classifying letters reusing a machine
pre-trained with digits is listed in Table III. The average error
rate of recognizing uppercase letters, 4.31±0.61% by reusing
a machine pre-trained with Latin digits is significantly lower
than baseline, 5.01±0.27%. Similar results are obtained from
recognizing the lowercase letters. In both cases the significance
level allows rejecting the null hypothesis of equal error rates.

Transference of unsupervised features of a machine trained
on harder source problems like handwritten digits improves the
overall performance of simpler target problem. It is interesting
to note that the source trained problems are from totally
different distributions.

B. Classify digits reusing letters: RT

The goal is to study the transference behavior by reusing un-
supervised features of a machine trained on simpler problem.
We simply reversed the roles of source and target problems
as discussed in section V-A. Here we consider a problem of
classifying handwritten digits from 0-to-9 by reusing unsu-
pervised features of a machine trained on simpler problem
like synthetic letters. We observed, that the average error rate
of classifying Latin digits had worst performance than the
baseline. The results are listed in Table III also with similar
results in the case of Arabic digits. The study confirms that the
degrading performance is due to transference of unsupervised
features trained on simpler problems like synthetic letters.

VI. USDA: EQUAL LABEL SETS

We have considered the problem of recognizing digits by
reusing unsupervised features trained with digits. Similarly,
the problem of recognizing geometrical shapes by reusing
unsupervised features trained with canonical shapes is studied.
In both cases the label sets are equal, YS = YT .

A. Canonical shapes as a subset of geometrical shapes: HT

Lets consider a classification task to determine the geometri-
cal shapes, like Shape2 dataset which classify images as either

6

Table IV
AVERAGE TEST ERROR (%) (ε) OF SSDA APPROACHES FOR HARD AND REVERSE TRANSFER PROBLEMS

Hard Transfer Reverse Transfer
Target: PUC PLC PSh1 PL2 PL2 PSh2

Source: PL2 PL2 PSh2 PUC PLC PSh1

Labels: YS 6= YT YS 6= YT YS = YT YS 6= YT YS 6= YT YS = YT

JS: 0.99 0.99 0.99 0.99 0.99 0.99
Approaches ε ε ε ε ε ε
FT 4.58±0.19 ⇑ 4.57±0.08 ⇑ 9.13±1.57 ⇓ 3.49±0.19 ⇓ 3.46±0.18 ⇓ 25.52±14.71 ⇓
L1+L2+L3 10.93±0.5 ⇓ 10.70±0.3 ⇓ 11.10±2.0 ⇓ 9.29±0.54 ⇓ 8.68±0.39 ⇓ 39.81±09.88 ⇓
L1+L3 5.28±0.16 ⇓ 5.31±0.18 ⇓ 5.23±1.45 ⇑ 4.14±0.24 ⇓ 4.14±0.15 ⇓ 20.34±16.42 ◦
L2+L3 5.41±0.25 ⇓ 5.61±0.11 ⇓ 9.94±2.54 ⇓ 4.40±0.13 ⇓ 4.36±0.12 ⇓ 26.27±15.47 ⇓
L1+L2 5.60±0.19 ⇓ 5.68±0.10 ⇓ 6.88±1.89 ⇑ 4.22±0.13 ⇓ 4.15±0.14 ⇓ 22.69±15.43 ◦
L3 4.81±0.30 ◦ 5.17±0.15 ⇓ 10.34±0.9 ⇓ 3.86±0.11 ⇓ 3.82±0.17 ⇓ 26.89±13.53 ⇓
L2 4.88±0.17 ◦ 4.95±0.13 ◦ 11.14±1.5 ⇓ 3.78±0.13 ⇓ 3.76±0.14 ⇓ 29.71±13.79 ⇓
L1 4.72±0.18 ⇑ 4.72±0.17 ⇑ 7.29±1.42 ◦ 3.59±0.14 ⇓ 3.59±0.19 ⇓ 23.96±15.45 ◦
Baseline 5.01±0.27 4.95±0.16 7.88±0.93 2.92±0.10 2.92±0.10 15.51±6.31

⇑, ⇓, ◦ statistically significant improvement or degradation or no change than baseline. The best ε obtained for a target dataset are marked in bold.

a triangle, a ellipse or a rectangle. This task has higher clas-
sification error than the Shape1 dataset which is made up of
canonical shapes like equilateral triangles, circles or squares.
Intuitively, one can consider canonical shapes as a simple
case of geometrical shapes. The classification performance
of USDA approach for Shape1 by reusing Shape2 features
is ε = 7.88±0.93% is lower than the baseline 7.96±0.93%
approach where there is not sufficient evidence to reject the
null hypothesis. The results are listed in Table III.

B. Synthetic digits as a subset of handwritten digits: HT

The performance of recognizing synthetic digits by reusing
unsupervised features trained with either Latin-2, Latin and
Arabic handwritten digits is listed in Table III. We observe
that the average error rate of recognizing synthetic digits by
reusing Latin-2 digits is 1.79±0.12% which is lower than the
baseline 1.88±0.14% approach. This result is supported by a
similar result by reusing Latin or Arabic digits. However, the
differences are not statistically significant.

C. Handwritten digits as a superset of synthetic digits: RT

Recognizing Latin-2, Latin and Arabic digits reusing un-
supervised features U(w) trained with synthetic digits, a RT
problem. We observe that the average error rate of recognizing
latin-2 digits is 3.27±0.16% which is higher than the baseline
2.92±0.10% approach. This result is supported by a similar re-
sult by reusing Latin or Arabic digits. In addition, we observe
degrading performance in the case of recognizing geometrical
shapes by reusing unsupervised features of canonical shapes.
The degradation is statistically significant in all cases.

VII. SSDA

In this section we discuss the performance of SSDA ap-
proach both for hard transfer and reverse transfer problems.
Eight different layerwise transfer settings were studied as
listed in the first column of Table IV (see also Table I).
For example in “L1” method, we start by fully training the
classifier on the source problem. After training stops, we keep
the classifier with the smallest error on the validation dataset.
Only the transferred first layer weights i.e., S(w1

S)⇒ w1
T are

kept unchanged, while at the same time the weights of the
remaining layers are randomly initialized. We fine-tune the
entire model except the first layer with the target problem.

In the case of the “FT” method we fully pre-train and then
fine-tune the classifier the on source problem. All the hidden
layers are kept unchanged S(w1

S , w
2
S , w

3
S) ⇒ w1

T , w
2
T , w

3
T

and the new logistic regression layer weights are randomly
initialized. We fine-tune the entire classifier with the target
problem.

The average error rates are listed in Table IV for the SSDA
approach and marked bold when they performed significantly
better than the baseline.

A. Reuse supervised features for HT: Different Label sets

Let us consider a HT problem of unequal label sets,
YS 6= YT drawn from different distributions. For example,
classifying images of lowercase letters from a-to-z by reusing
supervised features S(w) of handwritten digits.

In case of the “L1”, the average error rate of uppercase
letters, 4.72±0.18% was significantly lower than the baseline,
5.01±0.27%. Similar results are obtained for the lowercase
letters. In both cases the significance level allows rejecting the
null hypothesis of equal error rates. We observe a reduction
in computation time with large standard deviation. That may
be due to the fine-tuning stopping criteria.

When reusing a single layer L1, L2 or L3, we observe that
the features of the lower layer lead to lower classification
error. When reusing multiple layers L1+L2, L2+L3, L1+L3,
we observe that reusing L1+L3 performs better than the reuse
of L1+L2 for both uppercase and lowercase datasets. Reusing
all three layers L1+L2+L3 has degraded performance as the
supervised features are well tuned for the source problem
and fine-tuning only the logistic regression layer does not
compensate for good features for the target problem. Thus
reusing higher layer supervised features is not as good as
reusing lower layer supervised features.

In the case of “FT”, the average error rate of uppercase
letters is 4.58±0.19% and is significantly lower than the
baseline 5.01±0.27%, with 54% speed up w.r.t the baseline.
significant reduction in average computation time. Similar
results are obtained for the lowercase letters. In both cases

7

0 1 2 3 4 5 6
Test Error rate (%)

Baseline

Arabic
 digits

Latin
 digits

Latin-2
 digits

(P
re

-t
ra

in
ed

 w
it

h)

1.88

1.75

1.78

1.79

4.95

4.43

4.37

4.67

5.01

4.41

4.31

4.65

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

Baseline

Arabic
 digits

Latin
 digits

Latin-2
 digits

(P
re

-t
ra

in
ed

 w
it

h)

1011

282

171

225

2997

1753

844

1148

2567

2019

1279

1498

Synthetic digits
Lowercase letters
Uppercase letters

Figure 4. Comparison between USDA and baseline (dotted vertical line) for
hard transfer problems. Top: Average test error rate (%) (ε) on Synthetic digits,
Lowercase and Uppercase letters datasets by reusing unsupervised features
either from Arabic or Latin or Latin-2 dataset. Bottom: Computational time
for the same experiments, in seconds. Box whiskers are standard deviations.

the significance level allows rejecting the null hypothesis of
equal error rates.

B. Reuse supervised features for HT: Equal label sets

In the same way, let us consider a HT problem of equal label
sets YS = YT drawn from different distributions. For exam-
ple, a problem of recognizing geometrical shapes by reusing
supervised features S(w) trained with canonical shapes. We
observe performance improvement, in case of the “L1+L3”,
ε= 5.23±1.45% was significantly lower than the baseline
ε=7.88±0.93%, thus the significance level allows rejecting the
null hypothesis of equal error rates.

C. Reuse supervised features for RT

Let us now consider two problems: 1) Classifying digits by
reusing S(w) a machine trained with letters (YS 6= YT), and
2) Classifying geometrical shapes reusing S(w) a machine
trained with canonical shapes (YS = YT). In both cases, we
observe degrading performance because of negative feature
transference (degrading performance with respect to the base-
line), as shown in Table IV.

VIII. SUMMARY

Analyzing the results of the USDA approach, we conclude
that the unsupervised feature transference improves perfor-
mance in the case of hard transfer problems. Analyzing the
results of SSDA approach, we conclude that the SSDA ap-
proach performs better for hard transfer problems, when either
using “L1” or “FT” approach. The “FT” approach has the least
classification error among all approaches. To summarize, let
us consider the problem of classifying images of either from

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Test Error rate (%)

Baseline

 Uppercase
 letters

Lowercase
letters

Synthetic
 digits

(P
re

-t
ra

in
ed

 w
it

h)

2.92

3.34

3.28

3.27

1.61

1.81

1.79

1.84

1.37

1.47

1.49

1.52

0 2000 4000 6000 8000 10000
Time(sec)

Baseline

 Uppercase
 letters

Lowercase
letters

Synthetic
 digits

(P
re

-t
ra

in
ed

 w
it

h)

660

716

694

379

4280

7486

8294

5120

1666

2380

1648

1834

Latin-2 digits
Latin digits
Arabic digits

Figure 5. Comparison between USDA and baseline (dotted vertical line) for
reverse transfer problems. Top: Average test error rate (%) (ε) on Arabic, Latin
and Latin-2 datasets by reusing unsupervised features either from Synthetic
digits or Lowercase or Uppercase letters dataset. Bottom: Computational time
for the same experiments, in seconds. Box whiskers are standard deviations.

a-to-z or from A-to-Z (lowercase or uppercase) letters, using
unlabeled images of the latin digits from 0-to-9 of the latin-2
dataset. To have a fair comparison we use the latin-2 dataset,
which has the same number of instances as the lowercase
or uppercase letters dataset. The Table V gives the summary
average error rates for the USDA and SSDA approaches.

Analyzing the performance difference of transferring either
Arabic or Latin dataset we conclude that even though both
Arabic and Latin datasets are both handwritten digits with
equal number of instances, the average classification error rate
of Latin is higher than Arabic dataset. Thus, Latin is a harder
problem than Arabic dataset. We observe that the unsupervised
features trained with Latin dataset and reused to classify
lowercase dataset had lower ε error than reusing features
trained with Arabic dataset. Similar results were observed in
case of uppercase dataset, as listed in Table III. We studied
Supervised layer based feature transference approach between
Arabic or Latin datasets using CNN model [17]. Also, supports
our conclusion of hard transfer performs better than reverse
transfer.

On the other hand, both USDA and SSDA show negative
transference (degrading performance with respect to the base-
line) in the case of reverse transfer problems. It seems that the
features transferred from simpler problems to harder problems
(from different distributions) are not well suited for the target
problem.

A graphical illustration of the performance of USDA and
baseline approaches is shown in Fig.4 (hard transfer) and
Fig.5 (reverse transfer). To highlight the differences, the
baseline averages are plotted as a dotted vertical line for each
target problem. To summarize, the USDA approach shows
positive transference when the machine is trained on hard
transfer problems but negative transference when the machine

8

Table V
AVERAGE TEST ERROR (%) (ε) BY REUSING HARDER PROBLEM LATIN-2

FOR CLASSIFYING EITHER LOWERCASE OR UPPERCASE LETTERS.

Approaches PLC PUC

ε Time(s) ε Time(s)
BL SDA 4.95±0.16 2997 5.01±0.27 2567
TL SSDA:L1 4.72±0.17 2261 4.72±0.18 2515
TL USDA 4.67±0.38 1148 4.65±0.19 1498
TL SSDA:FT 4.57±0.08 1020 4.58±0.19 1180

is trained on reverse transfer problems.

IX. CONCLUSIONS

We studied the performance of feature transference for both
unsupervised (USDA) and supervised (SSDA) approach for
different distributions between source and target problem. The
results showed significant reduction in average error rate and
computation time from the baseline for hard transfer problems.

In the USDA approach, we achieved a 7% improvement of
with uppercase datasets with 41% reduction on computation
time, with similar results in lowercase datasets. Similarly, in
SSDA approach we achieved lower average error rates than
baseline for supervised features of the first or middle layers
of the SDA. The best result was obtained when reusing the
supervised features of the three hidden layers of the source
problem, and then again fine-tuned for the target problem
(SSDA:FT) with 54% speed up w.r.t the baseline. We observe
that transference of features trained on harder problems are
more generic, thus able to adapt better to target problem
than simpler ones. Also transferring features from geomet-
rical shapes to canonical shapes, we achieved 7.4% relative
improvement on average error rate in SSDA approach.

We observed negative transfer learning for both USDA and
SSDA approaches for reverse transfer cases from different
distributions. It would be interesting, as future research, to
study how to avoid negative transference of features such that
the performance of the classifier is improved.

ACKNOWLEDGMENT

The authors would like to thank Dr Jaime S. Cardoso,
Universidade do Porto for his valuable and constructive sug-
gestions, and Dr Telmo Amaral for his critical reviews during
the development of this research work. This work was financed
by FEDER funds through the Programa Operacional Factores
de Competitividade – COMPETE and by Portuguese funds
through FCT – Fundação para a Ciência e a Tecnologia in the
framework of the project PTDC/EIA-EIA/119004/2010.

REFERENCES

[1] X. Glorot and A. Bordes and Y Bengio. "Domain adaptation for large-
scale sentiment classification: A deep learning approach". In Proceedings
of the 28th International Conference on Machine Learning (ICML-11),
pg 513–520, (2011)

[2] S. Ben-David, J Blitzer, K Crammer, A. Kulesza, F. Pereira, and J.
W. Vaughan. "A theory of learning from different domains." Machine
learning 79, no. 1-2 (2010).

[3] L. Bruzzone and M. Marconcini. "Domain adaptation problems: A
DASVM classification technique and a circular validation strategy."
Pattern Analysis and Machine Intelligence, IEEE Transactions on 32, no.
5 (2010): 770-787.

[4] Lin, Jianhua. "Divergence measures based on the Shannon entropy", In
IEEE Transactions on Information Theory, vol 37, pg 145–151, (1991)

[5] R. Raina, A. Battle,H. Lee, B. Packer, A. Ng. "Self-taught learning:
transfer learning from unlabeled data", In proceedings of the 24th
international conference on Machine learning, ACM, pg 759–766, (2007)

[6] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. "Extracting and
composing robust features with denoising autoencoders", Proceedings of
the 25th international conference on Machine learning, pg 1096–1103,
(2008)

[7] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. J. Mach. Learn. Res.,vol. 11,
pp. 3371–3408, (2010).

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.: Gradient-based learning
applied to document recognition. In: proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324 (1998)

[9] G. E. Hinton and S. Osindero and Y. Teh.: "A fast learning algorithm for
deep belief nets". The Journal of Neural computation, n.. 7, pp. 1527–
1554 (2006)

[10] Y. Bengio.: Learning deep architectures for AI. Foundations and Trends
in Machine Learning, vol. 2, no. 1, pp. 1–127. now Publishers (2009)

[11] Y. Bengio and and A. Courville and P. Vincent. "Representation learning:
A review and new perspectives". IEEE Trans. PAMI, special issue
Learning Deep Architectures, (2013)

[12] Y. Bengio. "Deep Learning of Representations for Unsupervised and
Transfer Learning", Journal of Machine Learning Research-Proceedings
Track, vol 27, pg 17–36 (2012).

[13] D. Ciresan, U. Meier, and J. Schmidhuber.: Transfer learning for Latin
and Chinese characters with deep neural networks. In: 2012 IJCNN
Conference, IEEE, (2012).

[14] T. de Campos, B. R. Babu, and M. Varma.: Character recognition in
natural images. (2009)

[15] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G.
Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.: Theano: a CPU
and GPU math expression compiler. In: Python for Scientific Computing
Conference, vol. 4, (2010)

[16] T. Amaral, L. M. Silva, L. A. Alexandre, C. Kandaswamy, J. M. Santos,
J. Marques Sa. "Using Different Cost Functions to Train Stacked Auto-
encoders", Proceedings of the 12th Mexican International Conference
on Artificial, In 12th Mexican International Conference on Artificial
Intelligence, IEEE, (2013)

[17] C. Kandaswamy, L. M. Silva, L. A. Alexandre, J. Marques Sa, J.
M. Santos. "Improving Deep Neural Network Performance by Reusing
Features Trained with Transductive Transference", Proceedings of the
24th International Conference on Artificial Neural Networks, (2014)
(accepted)

