
Improving SeNA-CNN by Automating Task
Recognition?

Abel Zacarias1[0000−0002−0226−9682] and Lúıs A. Alexandre1[0000−0002−5133−5025]

Instituto de Telecomunicações,
Universidade da Beira Interior, Rua
Marquês d’Ávila e Bolama, 6201-001

Covilhã, Portugal
{abel.zacarias, luis.alexandre}@ubi.pt

Abstract. Catastrophic forgetting arises when a neural network is not
capable of preserving the past learned task when learning a new task.
There are already some methods proposed to mitigate this problem in
artificial neural networks. In this paper we propose to improve upon
our previous state-of-the-art method, SeNA-CNN, such as to enable the
automatic recognition in test time of the task to be solved and we ex-
perimentally show that it has excellent results. The experiments show
the learning of up to 4 different tasks with a single network, without
forgetting how to solve previous learned tasks.

Keywords: Supervised Learning, Lifelong learning, Catastrophic For-
getting, Convolutional Neural Networks.

1 Introduction

Deep learning has emerged as one of the most important tools to deal with
the large amount of data available today. One of more widely used methods
to process image data are Convolutional Neural Networks (CNNs), that have
demonstrated human level ability in many computer vision tasks.

Many practical applications, for instance, in robotics, require the agent to
learn new capabilities without forgetting the previous learned ones. To be able to
do this using neural networks, one is confronted with the problem of catastrophic
forgetting, where the network forgets previous tasks as it learns new ones. So
to build lifelong learning systems, there are several proposals (a short review is
provided in section 2). In this paper we improve a proposal we made recently [15]
where we add layers to an existing CNN such that it can cope with new tasks,
without requiring the network to train again on old tasks. This is achieved by
selectively adding new layers to an existing model trained on isolated learning.

The improvement we present focus on the automatic selection of the branch
of the network that should deal with a new test pattern. This is accomplished

? This work was supported by National Founding from the FCT- Fundação para a
Ciência e a Tecnologia, through the UID/EEA/50008/2013 Project. The GTX Titan
X used in this research was donated by the NVIDIA Corporation.



A. Zacarias and L. Alexandre

using a gate neural network. This an interesting solution given that there is
biological support for an identical approach: in [8] they showed that this gate
mechanism is possible in a pre-frontal cortex of a primate where there are neural
representations to select the relevant inputs.

The gate network learns to distinguish between the different learned tasks
and therefore, makes the SeNA-CNN a completely automatic solution to the
problem of lifelong learning in CNNs. The results presented in the experiments
section show that our method is able to deal with the catastrophic forgetting
problem and presents better results than a state-of-the-art method [6].

2 Related Work

The problem of catastrophic forgetting is a big issue in machine learning and
artificial intelligence if the goal is to build a system that learns through time,
and is able to deal with more than a single problem. According to [7], without
this capability we will not be able to build truly intelligent systems, we can only
create models that solve isolated problems in a specific domain. There are some
recent works that tried to overcome this problem, e.g., the Learning without
Forgetting (LwF) algorithm proposed in [6] adds nodes to an existing network
for a new task only in the fully connected layers and this approach demonstrated
to preserve the performance on old tasks without re-training the old tasks after
a new one is learned. We compare SeNA-CNN with LwF algorithm. The first
main difference is that, instead of adding nodes in fully connected layers, we
add convolutional and fully connected layers for the new tasks to an existing
model, creating branches for each task; the second one, is that we use a gate
to enable automatic recognition in test time. The improved method has a bet-
ter capability of learning new problems than LwF because we train a series of
convolutional and fully connected layers while LwF only trains the added nodes
in the fully connected layer and hence, depends on the original task’s learned
feature extractors to represent the data from all problems to be learned. Apart
from that, LwF is not able to automatically recognize the problem to be solved,
as the SeNA-CNN improvement we propose in this paper.

A mixture of experts for large-scale image categorization was proposed in
[3] which consists of a tree-structured network architecture. The generalist is
a CNN optimized on jointly train over all classes and is used to select which
expert to process the input data. We also use a CNN as our gate, also with joint
train, to help choosing which branch to predict a test image. Differently from
our approach, this approach was used for image categorizations only (not applied
to lifelong learning), showing that using a tree-structured network architecture
can yield a substantial improvement in accuracy over the base CNN trained for
example on CIFAR100 and ImageNet.

Our approach, when training the gate, is to make it able to distinguish be-
tween the data that is to be processed by each different branch of the SeNA-CNN.
To that end, similar to what is done in [3], we cast the definition of the gate as
the problem of learning a label mapping ` : I 7→ Z, where I is the input image,



Improving SeNA-CNN

Z = {0, 1, 2, ..n− 1} and n is the number of branches, which is the same as the
number of tasks. The gate then indicates which branch is to used for making the
classification of a given pattern.

Another difference between the work in [3] and our proposal is that the tree-
structured network consists of single trunk feeding all branches, one branch for
each expert and the trunk is initialized with convolutional layers of the generalist.
We do not follow this approach, we simply use the output of the gate to choose
which model to predict at a given time.

3 Proposed Method to Overcome Catastrophic
Forgetting

Our proposal is a method that is able to preserve the performance on old tasks
while learning new tasks, using only training data from the old tasks for adjusting
the gate. Note that other approaches, as [6], are not able to detect automatically
to which of the learned tasks the input image belongs to.

A model that is capable of learning two or more tasks has several advantages
against that which only learns one task. First advantage is that the previous
learned task can help better and faster learning the new task. Second, the model
that learns multiple tasks may result in more universal knowledge and it can be
used as a key to learn new task domains [13].

The gate network is trained to separate the images from the different tasks
automatically. After training the gate, a CNN is created with random initializa-
tion of its weights. The network is then trained until convergence for the first
task. Figure 1(a) presents the model for the first task trained on isolated learning
and Figure 1(b) is our proposed model with the gate model used to choose auto-
matically a task to deploy at test time. In Figure 1(b) the blue colour represents
the old task network and the orange corresponds to the new added nodes for the
new tasks.

When a new tasks is going to be learned instead of adding nodes in fully
connected layers as is done in [6], we add convolutional, pooling, dropout and
fully connected layers for the new task. Typically the added layers contain a
structure similar to the network that we trained on isolated learning. We consider
the option of not adding the first two layers, because the neurons in those layers
find several simple structures, such as oriented edges as demonstrated in [11].
The remaining layers seem to be devoted to more complex objects, and hence,
are more specific to each problem, and that is why we choose to create these
new layers instead of re-using the original ones. It also resembles the idea of
mini-columns in the brain [9]. We add those layers and train them initialized
with weights of an old task, keeping the other task layers frozen.

When switching to a third task and fourth task, we freeze the previous learned
tasks and only train the new added layers. This process can be generalized to
any number of tasks that we wish to learn.



A. Zacarias and L. Alexandre

3.1 Using a Gate to Select the Correct Branch

The goal at this stage is to learn a gate neural network with a superclass of the
branches that process each task. Our main goal is that the gate represent all tasks
to be used at test time to choose automatically which branch to deploy. The gate
is trained by joint optimization of images from all tasks. In our approach the gate
network has the same architecture as each branch. The only difference is the size
of the output that changed each time new task was added to our method. The
gate network is initialized randomly and each task is labelled {0, 1, ..., n − 1},
where n represents the total number of tasks to be deployed. This way, there is
no need for all branches to process the input and produce an output and hence,
only one branch is chosen to make the final decision.

Figure 1 shows this process when a new image is received by the proposed
model.

Old	task	
Images	

Conv4	

Model	response	
on	old	task	

	FC1	 	FC2	

New	task	
Images	

Conv4	

Model	response	
on	old	task	

	FC1	 	FC2	

	FC1	 	FC2	

	
	
	
	
	
	
	
	
	
0	 1	 0	 1	
1	 1	 0	 1	
0	 1	 0	 1	
1	 1	 1	 1	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
0	 1	 0	 1	
1	 1	 0	 1	
0	 1	 0	 1	
1	 1	 1	 1	
	
	
	
	
	
	
	
	
	
	
	
	

Conv1	 Conv2	 Conv3	

Conv1	 Conv2	 Conv3	

Model	response	
on	new	task	

New	Task1	 New	Task1	

(a) Original model for old task trained on isolated learning.

Model	response	
on	new	task	1	

n-1	new		
tasks		

	
	
	
	
	
	
	
	
	
	
	
	
	
					

The	Gate	

Model	response	
on	old	task	

Model	response	
on	new	task	n	

Conv1	 Conv2	

Conv3	 Conv4	

Conv3	 Conv4	

Conv3	 Conv4	

FC1	 FC2	

FC1	

FC1	 FC2	

FC2	

.	

.	

.	

Outpuput=0	

Outpuput=n	
Outpuput=1	

New	image	

(b) Proposed model: the gate and the added new layers for the n− 1 new tasks.

Fig. 1: Original and our proposal used in the experiment process to avoid the
catastrophic forgetting by selective network augmentation. The blue coloured
boxes correspond to the old task and the orange coloured correspond to the
added layers. Adapted from [15].



Improving SeNA-CNN

3.2 Training Methodology

The network is going to learn how to solve several tasks. First the gate is trained
by using images from each task, with labels that represent those tasks (and not
the original task classes). Second, we train a first network branch, starting with
randomly initialized weights. Then, for each new task, a new branch is added to
the network, where the first two convolutional layers are reused from the first
branch.

Figure 1 (a) shows the model trained on the first task. After all parameters
have been optimized we use the first two convolutional layers of this network
to help learn the new tasks as they come. Figure 1 (b) illustrates the overall
architecture of the proposed method.

During training, we followed the same practice as [6]. The main difference
is that when adding a new task we freeze all layers of the original model and
only train the added nodes, freezing the first two layers that are common to
all branches. During train we use back-propagation with SGD algorithm with
dropout enabled. All branches had the same architecture, and the learning rate
was set to 0.01, weight decay of 1e − 6 and momentum 0.9. Table 2 shows
the performance of each task trained isolated after 12 training epochs. We run
each experiment ten times and present results corresponding to the mean and
standard deviation of these 10 repetitions. We run our experiments using a
GeForce GTX TITAN X with 12 GiB.

4 Experiments

Our experiments evaluate if the proposed method can effectively avoid the catas-
trophic forgetting problem and if the gate can be used to automatically choose
which task to deploy at test time. The experimental results presented in the fol-
lowing tables, contain the accuracy values of our proposed method. Is important
to refer that we begin by training the gate to learn all features that are necessary
to distinguish which branch to use for each input image. In all tables we present
the accuracy of the gate, which is very important because the final accuracy of
our method is calculate taking in count the errors that the gate made during
the train and the error that each branch make when the branch is choose to
predict the new task. This process was done because during the experiment the
gate did not classified correctly all images and if we discards those images, the
comparison would not be fair.

We conducted our experiments using four known datasets namely CIFAR10
[2], Caltech101 [5], SVHN2 [10] and Caltech-UCSD Birds-200-2011 [14]. Table 1
shows information on each dataset, and the number of images on training and
test sets. CIFAR10 has 10 classes, SVHN2 corresponds to street house numbers
and has 11 classes, Caltech101 has 102 classes while Birds has 200 classes. The
last one has a substantially lower accuracy than the others, as shown in table 2.
The first two datasets were obtained from kerosene that provides six datasets
namely binarized-mnist, CIFAR10, CIFAR100, IRIS, MNIST and SVHN2 for



A. Zacarias and L. Alexandre

machine learning projects in hdf5 formats. Kerosene datasets depend on the
fuel library [12] which is a framework based on Python to train neural networks
on large datasets.

Table 1: Number of images for train and test sets. In all tables we represent the
different datasets using the following scheme: A = CIFAR10, B = Birds, C =
Caltech101 and D = SVHN2.

Data set A D C B

Train 50000 73257 8229 10609
Test 10000 26032 915 1179

4.1 Network Architecture

We used a standard network architecture with an input layer followed by a
convolution layer, a ReLU activation function, a convolution layer also followed
by a ReLU, maxpooling and a dropout layer. As Figure 1 shows each new task
added to the model has two convolution layers, two ReLU activation function
layers and the last layer is the activation that corresponds to the softmax function
with categorical cross-entropy loss, two dropout layers, a flatten layer and two
dense layers one with 512 units and the other one corresponding to the number
of classes for each task.

Input images have 32×32 pixels in all cases. The first convolution layer has
filters with 32×32 while the other two convolution layers have filters with 64×64.
We used the keras API [4] running on tensorflow [1].

Table 2: Network performance on isolated learning.

Train Test Baseline [%] Exec.time[s]

A A 74.80±0.70 144
D D 93.13±0.69 204
C C 64.04±1.00 36
B B 14.54±1.40 48

4.2 Adding New Tasks to the Model

Table 3 presents the performance of the proposed method when adding new
tasks and compares it with the baseline [6].

In the presented results, our method clearly outperforms LwF on all tasks
showing that adding layers is a good approach to maintain for learning new tasks



Improving SeNA-CNN

while preserving the performance on previous learned tasks. It is interesting to
verify that when we use a model trained on CIFAR10 to train a model on Cal-
tech101 the performance for Caltech101 increases compared to isolated learning
with a difference of 3.24% and once again it suggest that using one model in a
task can help learn even better the other one.

Results show that by applying our method it is possible to overcome the
problem of catastrophic forgetting when new tasks are added and the choice of
the branch to use when predicting a specific task is done by the gate model.

Table 3: Gate and two tasks accuracy (and standard deviation) on new tasks for
SeNA-CNN and LwF.Execution time for train and test.

Old New LwF Gate SeNA-CNN Time[s]

A D 84.69(0.84) 99.56(0.06) 88.52(1.50) 798
A C 63.84(0.34) 99.83(0.12) 67.28(1.19) 228
A B 7.92(1.22) 99.99(0.04) 10.48(1.36) 408
C A 66.57(2.31) 99.73(0.11) 69.29(1.52) 306
C D 84.78(2.31) 99.81(0.12) 90.67(0.78) 480
C B 7.73(0.66) 99.56(0.10) 8.54(1.57) 120
B A 56.28(1.24) 98.61(2.04) 57.18(3.94) 396
B C 57.04(1.15) 97.94(0.55) 56.81(1.39) 132
B D 78.61(0.54) 95.72(0.08) 82.76(1.68) 552
D A 64.12(0.97) 99.98(0.01) 70.44(0.78) 804
D C 53.46(1.97) 99.85(0.02) 57.30(0.55) 588
D B 7.94(0.54) 99.91(0.04) 11.36(1.15) 580

After learning the new task is important to test if there was no catastrophic
forgetting for the task previously learned. This is the main goal of our method:
guarantee that the network doesn’t forget what was previously learned. To
demonstrate that our gate model did not forget what was previously learned
we tested again on old tasks. Results are shown on table 4 In this subsection we
present results when we add the fourth task. In this experiment we use one task
as old and then add sequentially the other three tasks and when learning the
new tasks we consider the previous learned tasks as old. Results are shown in the
tableIn this subsection we present results when we add the fourth task.In this
subsection we present results when we add the fourth task. In this experiment
we use one task as old and then add sequentially the other three tasks and when
learning the new tasks we consider the previous learned tasks as old. Results are
shown in the tableIn this subsection we present results when we add the fourth
task. other three tasks and when learning the new tasks we consider the previous
learned tasks as old. Results are shown in the tableIn this subsection we present
results when we add the fourth task.



A. Zacarias and L. Alexandre

Table 4: Gate and two tasks test accuracy (and standard deviation) on old tasks
for SeNA-CNN and LwF. Execution time for train and test.

New Old LwF Gate SeNA-CNN Time[s]

A D 85.41(0.12) 99.56(0.06) 90.08(1.63) 798
A C 59.84(1.16) 99.83(0.12) 61.12(0.34) 228
A B 11.48(0.63) 99.99(0.04) 13.91(0.97) 408
C A 69.45(1.67) 99.73(0.11) 70.75(0.11) 306
C D 89.62(0.93) 99.81(0.12) 90.27(0.54) 480
C B 12.00(0.64) 99.56(0.10) 13.14(1.81) 120
B A 68.22(0.51) 99.61(2.04) 70.70(1.60) 396
B C 57.71(0.72) 97.94(0.55) 59.45(1.03) 132
B D 91.51(1.04) 98.93(0.08) 89.12(0.38) 552
D A 69.36(1.16) 99.98(0.01) 70.50(0.62) 804
D C 60.80(0.92) 99.85(0.02) 60.15(0.39) 588
D B 11.91(0.41) 99.91(0.04) 13.38(1.03) 580

4.3 Three Tasks Scenario

To demonstrate that our method is able to deal with different problems, we
experiment by learning three different tasks. In this case we used the three
datasets previously presented and we combine them two by two for train and
one for test. Table 5 presents the results from this scenario and clearly our
method is able to maintain the performance and once again it shows that adding
new task nodes to an existing neural network is a good option to overcome the
catastrophic forgetting problem.

Analysing results in table 5 its clear that our model is effective in learning
new tasks by adding the correspondent branches. In this experiment only in two
cases LwF outperformed our proposed model with a slight difference of 1.32%
in Birds7→SVHN2 and SVHN27→Caltech101 with 0.50% of difference. In the
remaining cases our method outperformed LwF.

Overall this situation also occurs in the other experiments when we compare
the performance for two and three tasks scenarios.

Table 6 shows performance after evaluating our method for old tasks when
adding two new tasks. Results show that the model did not forget what it learned
before.

In this subsection we present results when we add the fourth task. In this
experiment we use one task as old and then add sequentially the other three
tasks and when learning the new tasks we consider the previous learned tasks
as old. Results are shown in the tableIn this subsection we present results when
we add the fourth task. In this experiment we use one task as old and then add
sequentially the other three tasks and when learning the new tasks we consider
the previous learned tasks as old. Results are shown in the tableIn this subsection
we present results when we add the fourth task. In this experiment we use one
task as old and then add sequentially the other three tasks and when



Improving SeNA-CNN

Table 5: Gate and three tasks test accuracy (and standard deviation) on new
tasks for SeNA-CNN and LwF. Execution time for train and test.

Old New LwF Gate SeNA-CNN Time[s]

A, D C 62.90(0.38) 99.14(0.12) 65.88(0.78) 696
A, C B 6.84(0.68) 98.07(1.20) 5.53(0.63) 672
A, C D 84.48(1.16) 99.69(0.19) 90.76(0.34) 663
C, D A 67.72(0.30) 99.52(0.01) 67.24(0.65) 660
C, A D 82.26(0.97) 99.67(0.11) 89.55(0.70) 668
C, D B 5.16(0.63) 98.99(0.19) 6.45(1.25) 556
B, C D 75.86(1.00) 99.37(0.07) 86.21(1.10) 648
B, A C 56.24(0.37) 99.62(0.05) 60.50(0.79) 612
B, D C 57.12(1.17) 98.38(0.01) 57.43(0.96) 698
D, A C 52.86(0.24 99.71(0.07) 62.34(0.40) 876
D, C B 7.47(0.60) 99.63(0.05) 8.80(1.28) 828
D, B A 63.83(0.63) 99.48(0.07) 71.55(0.48) 873

Table 6: Gate and three tasks test accuracy (and standard deviation) on old
tasks for SeNA-CNN and LwF. Execution time for train and test.

New Old LwF Gate SeNA-CNN Time[s]

A C, D 52.28(0.79), 87.68(0.47) 99.14(0.12) 56.48(0.27), 88.30(0.86) 696
A B, C 9.93(1.55), 56.29(0.14) 98.07(1.20) 10.72(0.94), 58.88(1.01) 672
A D, B 87.31(1.14), 5.73(0.84) 99.69(0.19) 91.38(0.87), 9.50(0.64) 663
C A, D 70.81(0.19), 86.38(0.67) 99.52(0.01) 70.61(1.41), 90.33(0.72) 660
C B, A 11.73(1.11), 67.89(0.23) 99.67(0.11) 12.36(0.84), 68.85(1.46) 668
C D, A 86.60(0.93), 68.96(0.57) 98.99(0.19) 88.00(0.58), 70.14(0.83) 556
B A, C 66.71(1.32), 55.12(1.06) 99.37(0.07) 71.98(1.24), 58.78(1.03) 648
B C, D 54.72(1.01), 87.54(1.02) 99.62(0.05) 59.47(0.96), 91.66(0.59) 612
B D, C 85.96(0.89), 56.07(0.69) 98.38(0.01) 88.47(0.67), 59.24(1.02) 698
D A, C 64.13(0.76), 56.63(0.95) 99.71(0.07) 70.38(1.59), 59.73(0.68) 876
D C, A 58.03(0.80), 64.99(1.67) 99.63(0.05) 61.60(1.46), 70.41(0.98) 828
D B, C 7.06(0.70), 56.19(0.87) 99.48(0.07) 9.13(0.48), 61.24(0.83) 873

4.4 Four Tasks Scenario

In this subsection we present results when we add the fourth task. In this ex-
periment we use one task as old and then add sequentially the other three tasks
and when learning the new tasks we consider the previous learned tasks as old.
Results are shown in the table 7.

Table 8 presents the accuracy of LwF on old. Results in this table are com-
pared with results on table 9 where we present the performance accuracy on old
task of our model. Similarly to the others experiments, here results also show
that our model outperformed LwF in combination of all tasks.



A. Zacarias and L. Alexandre

Table 7: Gate and four tasks test accuracy (and standard deviation) on new
tasks for SeNA-CNN and LwF. Execution time for train and test.

Old New LwF Gate SeNA-CNN Time[s]

A, C, B, D 83.76(1.07) 99.53(0.13) 90.32(1.03) 954
C, B, D A 67.39(1.06) 99.69(0.10) 70.27(1.02) 936
B, D, A C 56.48(1.09) 99.70(0.03) 58.98(1.01) 948
D, A, C B 7.96(0.98) 99.61(0.05) 10.64(0.90) 967

Table 8: Four tasks test accuracy (and standard deviation) on old tasks for LwF.
New Old LwF

A C, B, D 51.67(0.98), 7.75(1.07), 82.98(1.03)
C B, D, A 8.49(1.03), 83.76(1.07), 64.76(1.01)
B D, A, C 86.44(1.02), 64.95(1.07), 51.18(0.83)
D A, C, B 68.96(0.98), 54.81(0.97), 7.87(1.02)

Table 9: Gate and four tasks test accuracy (and standard deviation) on old tasks
for SeNA-CNN. Execution time for train and test.

New Old Gate SeNA-CNN Time[s]

A C, B, D 99.53(0.13) 58.58(1.03), 10.21(1.04), 88.00(1.03) 954
C B, D, A 99.69(0.10) 9.37(1.02), 90.01(1.04), 70.53(1.03) 936
B D, A, C 99.70(0.03) 91.08(0.97), 69.23(0.83), 60.72(0.98) 948
D A, C, B 99.61(0.05) 72.27(0.93), 59.25(1.07), 10.27(1.07) 967

5 Conclusion

In this paper we presented an improvement to our previously proposed method,
SeNA-CNN, to avoid the problem of catastrophic forgetting by selective net-
work augmentation, now with automatic task recognition. The proposed method
demonstrated to preserve the previous learned tasks without accessing the old
task’s data, except for updating the gate. It also show that it is feasible to
recognize in an automatic manner, which branch should process a given input
image, using a gate network. We demonstrated the effectiveness of our method
to avoid catastrophic forgetting on image classification tasks by running it on
four different datasets and comparing it with the baseline LwF algorithm.

As future work we consider a real application of our method in the field of
robotics, for object, location and face recognition problems.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,



Improving SeNA-CNN

Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

2. Acemoglu, D., Cao, D., Acemoglu, D., Cao, D.: Mit and cifar (2010)
3. Ahmed, K., Baig, M.H., Torresani, L.: Network of experts for large-scale image

categorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer
Vision – ECCV 2016. pp. 516–532. Springer International Publishing, Cham (2016)

4. Chollet, F., et al.: Keras (2015)
5. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few

training examples: An incremental bayesian approach tested on 101 object cate-
gories. In: 2004 Conference on Computer Vision and Pattern Recognition Work-
shop. pp. 178–178 (June 2004). https://doi.org/10.1109/CVPR.2004.109

6. Li, Z., Hoiem, D.: Learning without forgetting. CoRR abs/1606.09282 (2016),
http://arxiv.org/abs/1606.09282

7. Liu, B.: Lifelong machine learning: a paradigm for continuous learning. Frontiers
of Computer Science pp. 1–3 (9 2016). https://doi.org/10.1007/s11704-016-6903-6

8. Mante, V., Sussillo, D., Shenoy, K.V., Newsome, W.T.: Context-
dependent computation by recurrent dynamics in prefrontal cortex. Nature
503(7474), 78—84 (November 2013). https://doi.org/10.1038/nature12742,
http://europepmc.org/articles/PMC4121670

9. Mountcastle, V.B.: Modality and topographic properties of single
neurons of cat’s somatic sensory cortex. Journal of Neurophysiol-
ogy 20(4), 408–434 (1957). https://doi.org/10.1152/jn.1957.20.4.408,
https://doi.org/10.1152/jn.1957.20.4.408, pMID: 13439410

10. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

11. Rafegas, I., Vanrell, M., Alexandre, L.A.: Understanding trained
cnns by indexing neuron selectivity. CoRR abs/1702.00382 (2017),
http://arxiv.org/abs/1702.00382

12. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time ob-
ject detection with region proposal networks. CoRR abs/1506.01497 (2015),
http://arxiv.org/abs/1506.01497

13. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. CoRR abs/1705.08690 (2017), http://arxiv.org/abs/1705.08690

14. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset. Tech. rep.

15. Zacarias, A., Alexandre, L.: Sena-cnn: Overcoming catastrophic forgetting in con-
volutional neural networks by selective network augmentation. In: 8th IAPR TC3
Workshop on Artificial Neural Networks in Pattern Recognition. Springer (2018)


