
Auto-Classifier: A Robust Defect Detector
Based on an AutoML Head⋆

Vasco Lopes � and Luís A. Alexandre

NOVA LINCS, Universidade da Beira Interior
Rua Marquês d’ Ávila e Bolama, 6201-001 Covilhã, Portugal

{vasco.lopes,luis.alexandre}@ubi.pt

Abstract. The dominant approach for surface defect detection is the
use of hand-crafted feature-based methods. However, this falls short
when conditions vary that affect extracted images. So, in this paper,
we sought to determine how well several state-of-the-art Convolutional
Neural Networks perform in the task of surface defect detection. More-
over, we propose two methods: CNN-Fusion, that fuses the prediction of
all the networks into a final one, and Auto-Classifier, which is a novel
proposal that improves a Convolutional Neural Network by modifying
its classification component using AutoML. We carried out experiments
to evaluate the proposed methods in the task of surface defect detec-
tion using different datasets from DAGM2007. We show that the use of
Convolutional Neural Networks achieves better results than traditional
methods, and also, that Auto-Classifier out-performs all other methods,
by achieving 100% accuracy and 100% AUC results throughout all the
datasets.

Keywords: Defect Detection · CNNs · Deep Learning · AutoML

1 Introduction
Visual inspection of products is crucial to ensure customer requirements and
a longer product life, by removing imperfections or defects that can lead to
problems like rust, sharp edges or visually deficient products. Industrial quality
control and visual inspection require extreme attention to detail and are usually
performed by humans, meaning that it is prone to error, requires training, and
its a time-consuming task that needs to be repeated countless times in modern
factories [18]. Systems capable of providing a way to automate such processes,
either by completely removing the need for human labour or by complementing
the work conducted by humans, are essential to reduce costs and improve prod-
uct quality [16]. Thus, the goal of inspection systems is to rapidly and precisely
⋆ This work was supported by NOVA LINCS (UIDB/04516/2020) with the financial

support of FCT-Fundação para a Ciência e a Tecnologia, through national funds, and
partially supported by project 026653 (POCI-01-0247-FEDER-026653) INDTECH
4.0 – New technologies for smart manufacturing, cofinanced by the Portugal 2020
Program (PT 2020), Compete 2020 Program and the European Union through the
European Regional Development Fund (ERDF).



2 V. Lopes and L. A. Alexandre

detect, classify or segment defective areas in images. However, such systems are
scarce due to difficulties in acquiring real data to train Artificial Intelligence
(AI) algorithms, and because industry floors require continuous changes, mean-
ing that having controlled and unchanged environments is challenging. Tradi-
tional methods often rely on extracting hand-craft features from images, in order
to represent defects and anomalies [23,24] and can be categorized into: statis-
tical, structural or filter based. These methods are capable of detecting and or
segmenting defects in images if they are acquired in a controlled environment
[31]. However, these are not capable of solving the same kind of problems when
applied to images with complex textures, or if the acquire data suffers slight
changes or contains noise.

To mitigate the aforementioned problems, some approaches evaluate the use
of deep learning to tackle the problem of detecting defects [29], more specifically,
Convolutional Neural Networks (CNNs), due to the excellent results that they
achieve in a multitude of tasks related to image analysis [13,21]. The use of CNNs
is particularly good in the task of defect detection, because they can learn to be
robust to the presence of noise and different conditions, such as light and rotation
[26,2], meaning that a robust CNN that can correctly classify or detect defects,
and can be invariant to the problems that undermine traditional approaches.

In this paper, we evaluate how several state-of-the-art CNNs perform in the
task of surface defect detection, and propose two different approaches: 1) a CNN-
fusion method, that averages the classification of all individual CNNs into a final
classification, and 2) a Auto-Classifier detector, which is a novel method that
integrates the use of an AutoML head to complement a CNN, by using the
feature extractor of the CNN and creating a new classifier upon it. We validate
our proposals in the task of surface defect detection using DAGM2007 datasets
[30], and show that the propose methods can improve upon the state-of-the-art.
The code for all proposed methods, as well as the used data set partitions is
freely available allowing for free use and fair comparisons1.

The rest of this paper is organized as follows: the next section discusses
the state-of-the-art and related work regarding defect detection and AutoML;
section 3 presents the proposed methods; section 4 contains the experiments and
discussion, while the final sections contain the conclusions.

2 Related Work
AutoML: The field of AutoML is a domain of expertize whose aim is to develop
methods and tools to provide efficient mechanisms that can be used by virtually
anyone to design tailor-made machine learning algorithms to their problems
[10]. Designing ML algorithms for specific problems can be a difficult task, as it
can have many design choices that are both dependent and independent from
one another. Designing efficient ML algorithms takes years of expertize and
trial and error, as many optimization problems usually rely on the user, which
makes it very difficult for non-expert users to do. So, AutoML is an important
approach to bring machine learning algorithms closer to non-experts, but also to
1 www.github.com/VascoLopes/AutoClassifier



Auto-Classifier: A Robust Defect Detector Based on an AutoML Head 3

integrate it with other technologies, to create new and more efficient approaches
for several problems. The difference between AutoML and traditional machine
learning workflows, is that AutoML intends to remove all the steps between
the data acquisition and getting the final model, which usually involve data
processing, feature extraction and model selection, from the user.

Over the years, many AutoML methods have been proposed [12,3,17,7]. How-
ever, our proposals are not related to AutoML algorithms, but with the com-
bination of the power that AutoML provides to create optimal, tailor-made al-
gorithms to solve the tasks at hand. Closer to our Auto-Classifier, [11] uses
AutoML to fully design a method to detect railway track defects, while our
Auto-Classifier, uses AutoML to complement the feature extraction power of a
CNN, by coupling a new classifier with a modified CNN.

Our work relates with Neural Architecture Search (NAS), which is a subset
of AutoML that focus on automatically design deep neural architectures. NAS
was initially formulated as a reinforcement learning problem, where a controller
is trained over-time to sample more efficient architectures [35], requiring over
60 years of computation. A follow-up work, improved upon the base work by
performing a cell-based search, where cells, which conduct some operations, are
replicated to form a complete CNN [36]. In [1], the authors use Q-learning to
train the sampler agent. Using a similar approach, the authors of [34], perform
NAS by sampling blocks of operations instead of cells/architectures, which can
then be replicated to form networks. More recently, ENAS [19], used a controller
to discover architectures by searching for an optimal subgraph within a large
computational graph, requiring only a few computational days to build a final
architecture. DARTS, a gradient-based method, showed that by performing a
continuous relaxation of the parameters, they could be optimized using a bi-
level gradient optimization [15]. DARTS was then improved using regularization
mechanisms [32].

The main difference between NAS and our work is that while NAS focus on
designing an entire network, our focus with Auto-Classifier, is to improve upon
a CNN that yields good results by leveraging the power of AutoML to design a
new classifier component. This search extends the use of CNNs with other types
of classifiers, and is faster than designing entire machine learning algorithms
from scratch using NAS. This can be seen in the experiments section, where the
search for a new classifier was extremely fast, by having AutoML to search for
only two hours.

Surface Defects: Different types of surface defects include cracks, which can
happen in a panoply of surfaces. In [22], the authors focus on detecting cracks
in power plants in a private dataset, using a CNN for semantic segmentation.
Similarly, in [14], a bridge cracks detection algorithm is proposed. This method
uses active contours and Canny Edge detector to find the defects, and an SVM for
classification. In [33], the authors trained a CNN to solve the problem of detecting
road cracks, using a dataset of 500 images acquired using a smartphone.

In the task of producing gravure cylinders, it is common to have defects like
holes, so, the authors of [28] proposed a method that uses a CNN to classify



4 V. Lopes and L. A. Alexandre

images acquired by a high-resolution camera. The method achieved an accuracy
rate of 98.4% on a private dataset. Differently, the authors of [4], proposed a
method to conduct surface quality control, by using cutting force, vibration,
and acoustic emission signals information of a CNC machine. By decomposing
the signals into time series, a predictor was capable of predicting the surface
finish.

Using DAGM2007 set of problems, the author of [29] propose to evaluate
the performance of 3 CNNs, with different network specifications, which achieve
results between 96% and 99% accuracy. Traditional methods that rely on exten-
sive feature extraction were also studied. However, their results fall short when
compared to deep learning techniques. In [23], a method based on LBP achieved
95.9% accuracy, and [24], that achieved a 98.2% accuracy by using EANT2,
a neuroevolution method to develop artificial neural networks for classification
purposes.

Contributions of this work include the evaluation of different state-of-the-art
CNNs and the proposal of two novel methods of performing surface defect detec-
tion. Moreover, the major contribution of this work, Auto-Classifier, proposes a
new way of classifying images by improving the CNNs classification mechanism
by using automated search to generate a new classifier that is then coupled to
the CNN. To the best of our knowledge, the Auto-Classifier method proposed in
this paper is the first method that combines and improves CNNs using AutoML.

3 Proposed Method
In this section, we present our proposed methods, which aim at classifying the
presence of defects in 2D images by CNNs. We evaluate the performance of
multiple state-of-the-art architectures, that yield the best results for multiple
problems in the task of image and objects classification, in the task of detect-
ing defects, which are: VGG11, VGG16 and VGG19 [25], Resnet18, Resnet34,
Resnet50 and Resnet101 [8], and Densenet121 [9] (Section 3.1). Based on the
evaluation of these CNN architectures, we propose two methods: i) CNN-fusion,
which combines all the CNN architectures and outputs final one prediction (Sec-
tion 3.1); ii) Auto-Classifier, which uses as basis, the architecture that yields the
best results in the performance evaluation, and then uses Automated Machine
Learning (AutoML) to automatically search a new classifier (Section 3.2), that
is then stacked with the CNN feature extraction mechanism.

3.1 Convolutional Neural Architectures

CNNs are one of the most popular and prominent deep learning architectures
for a variety of image processing [13,21,6]. CNNs are a variant of Multilayer Per-
ceptron Networks and are biologically inspired models, created to emulate how
the human visual cortex processes visual information, making these networks
particularly suitable for image processing. Usually, CNNs perform a series of op-
erations, such as convolutions and pooling, and are followed by a number of fully
connected layers. The idea is: CNNs start by extracting representations of the
input as features maps, which gradually increase in complexity at deeper layers



Auto-Classifier: A Robust Defect Detector Based on an AutoML Head 5

of the network, then, these feature maps are fed into fully connected layers that
provide the output of the network (activation patterns), normally in the form of
a classification map.

Provided that CNNs can extract meaningful feature maps and thus, activa-
tion patterns, the results in a multitude of tasks are usually excellent, outper-
forming methods based on hand-crafted features [21]. Thus, CNNs need to be
trained in a set of data so that they can extract meaningful information from the
input, hence, correctly solving a given problem. The most common method to
train CNNs is by using gradient-descent with Back-propagation [20], where an
input image is propagated forward throughout the network, and upon reaching
the final layer, the loss is calculated, and retro-propagated through the network,
thus adjusting the weights of the network to more accurately solve the input
problem.

In this paper, the first approach sought to evaluate the performance of several
state-of-the-art CNN architectures that are known to do well in a variety of
classification problems, VGG11, VGG16 and VGG19 [25], Resnet18, Resnet34,
Resnet50 and Resnet101 [8], and Densenet121 [9] and combine their approach.

By evaluating a set of CNNs (Section 4), we created a pool of networks
that were specifically trained to solve the problem of defect detection, yielding
excellent results individually. To harness the classification correctness of all the
individual networks, we propose CNN-Fusion. This approach intends to perform
a combination of all the predictions of the individually trained CNNs, into a
final, unique classification.

Denoting that all the individual CNNs were trained using a training set and
validated using a unique, validation set, all networks can be categorized by their
Area Under The Roc Curve (AUC) obtained in the validation set, as metric for
their correctness in solving the given problem. So, the proposed CNN-Fusion
works by fusing all the individual predictions into a final, weighted, prediction
by making a weighted sum of each class, where each network votes using a
normalized weight based on the AUC obtained in the validation set. The weights
are obtained with the following expression:

wi =
Vi∑n
j=1 Vj

, i ∈ 1, ..., n (1)

where n is the number of CNNs, and V the array that contains the AUC values
(between 0 and 1) for all the CNNs.

Hence, to perform classification, using the normalized contribution of the
individual for a given input, we use the following expression:

argmaxi(Pij · wj),
i ∈ 1, ..., c,
j ∈ 1, ..., n

(2)

where c is the number of classes, n the number of CNNs, Pij represents the
output classification of network j for class i.

The idea behind CNN-Fusion is that, by balancing the importance of each
network through the process of normalization, where networks that have higher



6 V. Lopes and L. A. Alexandre

(a) Individual CNN (b) Auto-Classifier

Fig. 1: Visual representation of the difference between a CNN and the Auto-
Classifier method. CNN is composed by two components: Feature Extraction
and Classification. In the Auto-Classifier, the classification component has been
replaced by another one, represented by a XGBM.

AUC scores in the validation set have higher confidence, we can perform a
weighted voting that will improve upon the result of classifying the existence
of defects using individual networks.

3.2 Auto-Classifier
The second proposed method in this paper, Auto-Classifier, focuses on improving
the best individual CNN, by replacing its classification component by a new
one. As mentioned before, CNNs are usually comprised of two parts: i) feature
extraction component, which is the initial part of the CNN, and is comprised of
a set of layers, normally convolutions followed by batch-normalization, pooling
layers or others, and ii) classification component, which is the last part of a CNN
and consists of a Multi-Layer Perceptron, with possible addition of regularization
layers.

We hypothesize that by training a CNN from scratch and then removing its
classification component partially or entirely and replacing it by other types of
classification methods or even by other methods that will perform both feature
extraction and classification, it might be able to outperform the initial individual
CNN. This is due to the fact that other types of classifiers, such as random
forests, have shown to be very good in different classification problems. The
problem with many classifiers is that, to be able to process and classify images
correctly, they require extensive processing power, translating into huge models.
By processing the image with the feature extraction of a CNN, complex feature
maps are created, which can then be used by a classifier, without need to perform
any more feature extraction or feature processing. So, the proposed method,
Auto-Classifier, works by initially using an individual CNN, from which the
classification component is partially removed. Then, we use AutoML to generate
a new classifier, based on the output features of the modified CNN. With this,
we use the feature extraction capabilities of a CNN, and also allow the first layer
of the CNN’s classification component to stay, ensuring that the input to the
new classifier has a smaller dimensionality, which ultimately enables more types
of classifiers to work with that data.

The Auto-Classifier is composed of two parts: 1) the best individual CNN
without the classification component, leaving a trained CNN that outputs a rep-



Auto-Classifier: A Robust Defect Detector Based on an AutoML Head 7

resentation map of the input; 2) conduct an automated search, for a new method
to perform classification based on the representations generated in the previous
step. Then, the final model is composed by the partial CNN, sequentially fol-
lowed by the new classifier found by AutoML. In Fig 1, we visually present the
difference between a CNN and the Auto-Classifier method. In this, the Auto-
Classifier method, based on the CNN presented in (a), has a new classification
component, represented by a XGBM.

To perform the AutoML search, we used H2O AutoML [7], which is intended
to automate the machine learning workflow, by initially performing a Random
Search of different models, and then performing a post-processing step by stack-
ing the best solutions found [5]. The models in which the AutoML performs a hy-
perparameter search and tuning are: 3 pre-specified XGBoost Gradient Boosting
Machine (XGBM) models, a fixed grid of Generalized Linear Models, a default
Random Forest, five pre-specified H2O GBMs, a near-default Deep Neural Net,
an Extremely Randomized Forest, a random grid of XGBoost GBMs, a random
grid of H2O GBMs, and a random grid of Deep Neural Networks.

4 Experiments
To evaluate our proposed methods, the performance of different CNNs, and
compare them with baselines and competitive approaches, we conduct experi-
ments on a popular set of datasets that contain surface defects, the DAGM2007
datasets. All the experiments were conducted using a computer with an NVidia
GeForceGTX 1080 Ti, 16Gb of ram, 500GB SSD disk and an AMD Ryzen 7
2700 processor.

4.1 DAGM2007
The DAGM2007 consists of 6 different datasets, each with 1150 images, from
which, 1000 images are of background textures without defects, and 150 images
of one labelled defect each on the background texture. On each of these problems,
we performed a stratified split into 3 sets: 70% for the train set, 15% for the
validation set and 15% for the test set. The train and validation set were used
to train the algorithms, and the test set to evaluate the final performance of the
methods. The test set was never used for training purposes, and for the proposed
methods, the best individual CNN was selected based on its validation AUC.

4.2 Results and Discussion
To validate the proposed methods, we conducted 3 experiments: 1) evaluate
the performance of multiple state-of-the-art CNN architectures, 2) evaluate the
performance of the CNN-fusion method, by fusing all individual CNNs, and 3)
evaluate the performance of the Auto-Classifier method.

To evaluate the performance of state-of-the-art CNNs, we used the same
settings for each one: Stochastic Gradient Descent algorithm, batch size of 10,
learning rate of 1e − 3, momentum of 0.9, and 100 epochs of training. To ad-
just the network’s weights, we used back-propagation with gradient descent and
Cross-Entropy loss. Subsequently to the training step, the model used for test-
ing purposes is the one that yields the highest validation AUC while training.



8 V. Lopes and L. A. Alexandre

Table 1: Results of different state-of-the-art CNNs architectures and the two
proposed methods in the task of defect detection, using the DAGM2007 dataset
with test splits. Accuracy and AUC values are shown in percentages.
Problem VGG11 VGG16 VGG19 Resnet18 Resnet34 Resnet50 Resnet101 Densenet121 CNN-Fusion Auto-Classifier

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

1 100 100 100 100 85.0 50.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100
2 85.0 50.00 100 100 100 100 100 100 100 100 100 100 99.4 98.1 100 100 100 100 100 100
3 100 100 100 100 100 100 86.1 53.9 97.1 90.4 99.4 98.1 100 100 99.4 98.1 100 100 100 100
4 100 100 99.4 98.1 99.4 98.1 98.8 97.7 100 100 99.4 98.1 99.4 98.1 100 100 100 100 100 100
5 98.8 96.2 100 100 100 100 98.8 96.2 98.8 96.2 99.4 98.1 99.4 98.1 99.4 98.1 99.4 98.1 100 100
6 100 100 100 100 100 100 100 100 100 100 98.8 96.2 99.4 100 98.3 94.2 100 100 100 100

µ 97.3 91.0 99.9 99.7 97.4 91.4 97.3 91.3 99.3 97.8 99.5 98.4 99.6 99.1 99.5 98.4 99.9 99.7 100 100

Denote that this testing step is only used to compare the different individual
CNNs under the same conditions and is not used in any situation nor to select
the best CNNs to be used in the proposed methods. The results, shown in the
first 9 columns of Table 1, determined that amongst all the individual CNNs
tested, VGG16 was the one with the best results - 99.9% mean accuracy and
99.7% mean AUC. The use of AUC as a metric for evaluating performance is
extremely important because the accuracy metric is not, by its own, a good rep-
resentative of a good classifier, since the dataset is not balanced and the accuracy
shown does not consider that, whilst AUC-ROC is sensitive to class imbalance.

We believe that the reason behind VGG16 having better results in almost all
the six datasets and the best overall mean performances is due to the fact that,
even if Resnet networks and Densenet are more powerful, their larger number
of layers is a drawback when using small datasets, which is our case, since we
are dealing with only 1150 images per dataset. Even though residual connects
and short circuits in the mentioned networks can mitigate problems such as the
vanishing gradient, their bigger complexity is a factor that will undermine their
performance in problems were datasets are small and costly to acquire, e.g.,
defects in car painting.

By having the validation AUC values for each individual, we can complete
the process of CNN-Fusion by combining the individual classifications into a
final one, by first normalizing the validation AUC values, and then perform-
ing a voting using the CNN’s classifications. The results for the CNN-Fusion
are shown in 10th column of Table 1, where the mean accuracy was 99.9% and
mean AUC was 99.7%. CNN-Fusion achieved the same mean values as VGG16.
However, the difference is that CNN-Fusion was capable of perfectly identify
defects in problems 1 to 4 and 6, and had miss-classifications in problem 5,
while VGG16 had some miss-classifications in problem 4 and perfectly solved all
the other problems. Moreover, CNN-Fusion was capable of achieving an overall
high performance, but in problem 5, as many individual CNNs had classification
errors, the CNN-Fusion was not capable of having 100% AUC. This can be jus-
tified because even though normalizing AUC values across all CNNs is a mean
to balance individual contributions, all the CNNs had very good performances,
meaning that the normalized values will not have large differences. A possi-



Auto-Classifier: A Robust Defect Detector Based on an AutoML Head 9

ble improvement would be to perform a non-linear normalization, where better
models have a more normalized difference from its neighbours when compared to
un-normalized values. The problem with the use of CNN-Fusion in a fast-paced
environment, e.g., quality control in industrial production lines, is that it takes
more time to have a final classification, as it requires all CNNs to perform their
classification, which if done in parallel, will be the maximum time, t, from the set
of times, T , that contain the time taken for each CNN to perform a classification
for a given input, plus the time taken, tfusion, to perform the final classification
using all individual classifications: ftime = max{T (x) : x = 1, .., n} + tfusion,
where n represents the number of individual CNNs. The problem is that in the
vast majority of the systems, conducting a forward pass in all the individual
CNNs in a parallel manner is impossible. When done sequentially, the ftime will
be increasingly higher: ftime = (

∑n
x=1 T (x)) + tfusion.

The Auto-Classifier solves the problem of having an inference time that is
dependant on all individual CNNs, by using the feature extraction capabilities of
only the overall best CNN on the validation set (VGG16 in our experiments) and
improving its classification component. We partially removed the classification
component of VGG16, by removing the last two fully connected layers, leaving
only one, which was used to reduce the feature maps dimensionality to speed
up the search for a new classifier and also to allow a larger pool of classifier
candidates. We run AutoML for 2 hours for each problem, and at the end, we
selected the best candidate on the validation set to be coupled to the modified
VGG16 to create a final model - Auto-Classifier. The best classifiers from the
AutoML step were: for problems 2 to 6, the classifier was a XGB model, and for
problem 1 was a GBM. The results of Auto-Classifier on the test sets are shown
in the last column of Table 1, and it is possible to see that it not only improved
upon the individual CNN, VGG16, but it also correctly classified all data points
in each one of the 6 datasets from DAGM2007.

An important aspect relevant for industrial systems is the time required to
train the models, allowing quick changes, and the inference time, as real-time
inference is of utmost importance. The overall mean time and standard deviation
to train each CNN, was: 50.7 ± 0.18 minutes for VGG11, 95.2 ± 0.33 minutes
for VGG16, 115.6± 0.71 minutes for VGG19, 17.0± 0.02 minutes for Resnet18,
28.8± 0.02 minutes for Resnet34, 44.8± 0.04 minutes for Resnet50, 71.1± 0.09
minutes for Resnet101, and 47.63 ± 0.02 minutes for Densenet121. From this,
we can infer that the time required to train any of the CNNs is feasible in an
environment with rapid changes, since the CNN that took more time to train in
the experimented datasets, was VGG19, requiring less than 2 hours. Regarding
CNN-Fusion, it required no further training, as it is the combination of training
all individual CNNs, and for the Auto-Classifier, the AutoML component was
allowed to search for a time limited to 2 hours. By adding it to the time required
by VGG16 to train, it required 235.6 minutes in average to create the complete
model. For inference times, all CNNs were capable of running in real-time, with
the fastest one being Resnet18 with an inference time of 0.057± 0.016 seconds,
and the slowest one being VGG19, with an inference time of 0.269±0.002 seconds.



10 V. Lopes and L. A. Alexandre

Table 2: Comparison of different methods in the task of defect detection in
DAGM2007 problems, using as metics the True Positive Rate (TPR), True Neg-
ative Rate (TNR), and Average Accuracy. Table adapted from [29].

Problem Auto-Classifier
(Ours)

CNN-Fusion
(Ours)

VGG16
(Ours)

Deep CNN
[29]

Statistical
features [23]

SIFT and
ANN [24]

Weibull
[27]

TPR (%)
1 100 100 100 100 99.4 98.9 87.0
2 100 100 100 100 94.3 95.7 -
3 100 100 100 95.5 99.5 98.5 99.8
4 100 100 99.3 100 92.5 - -
5 100 99.3 100 98.8 96.9 98.2 97.2
6 100 100 100 100 100 99.8 94.9
TNR (%)
1 100 100 100 100 99.7 100 98.0
2 100 100 100 97.3 80.0 91.3 -
3 100 100 100 100 100 100 100
4 100 100 100 98.7 96.1 - -
5 100 100 100 100 96.1 100 100
6 100 100 100 99.5 96.1 100 100
Average Accuracy (%)

100.0 99.9 99.9 99.2 95.9 98.2 97.1

As for VGG16, the one selected to be the feature extraction component of Auto-
Classifier, it had an inference time of 0.225±0.002, which is enough for detecting
surface defects in real-time. CNN-fusion, in a serial manner, has an ftime of
1.152 seconds, which is not suitable for real-time. As for the Auto-Classifier,
which consists of the partial VGG16 and the new classification component, we
found that it is extremely fast, requiring only 0.001 ± 0.004 seconds to classify
an image, which is justified by having an efficient new classifier that uses less,
and faster operations than the removed layers.

We also compare our two proposed methods and the best individual CNN
with other methods that achieve the best results in the DAGM2007 defect clas-
sification in Table 2. In this table, it is possible to see that each one of the 3
methods studied here had the highest average accuracy, which is calculated by
summing the true positive rate and true negative rate means, and divide it by
two: (TPR+TNR)/2. It is also worth noting that our proposed method, Auto-
Classifier, not only achieved a perfect classification on all DAGM2007 problems,
but outperformed all other methods in this set of datasets.

5 Conclusions
This paper studies how different CNNs perform in the task of detecting surface
defects and proposes two methods to solve the problem: 1) CNN-Fusion, which
fuses the different CNN classifications into a final one, and 2) Auto-Classifier,
which is a novel method that leverages the feature extraction power of a state-
of-the-art CNN and complements it by performing an automated search for a
new classifier component.



Auto-Classifier: A Robust Defect Detector Based on an AutoML Head 11

We initially conduct a study of how CNNs perform in a task that is usually
solved by extracting hand-crafted features and then applying classifiers such
as SVMs. This study showed how CNNs perform in detecting defects with low
amounts of data points. Moreover, we propose a novel method, Auto-Classifier,
that is capable of improving the performance of CNNs, and outperforming the
current state-of-the-art in the task of detecting surface defects in DAGM2007
set of problems. With this, we can conclude that even though CNNs have excep-
tional results in a variety of image problems, they can be improved by partially
replacing its classification component by other types of classifiers. Also, our ex-
periments show that deep learning approaches for detecting surface defects, out-
perform traditional ones, and require no hand-crafted feature extraction, which
removes problems that arise from environmental changes.

In short, the results of Auto-Classifier not only improve the state-of-the-art
performance of surface defect detection in all problems of DAGM2007, but also
show us that CNNs can be improved by replacing its inner classification compo-
nent. As future work, the mechanism behind Auto-Classifier can be extended to
new problems, and also study different changes in the classification component
of CNNs to achieve the best possible performances in different problems.

References
1. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing Neural Network Architec-

tures using Reinforcement Learning. In: ICLR 2017 (2017)
2. Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural net-

works for object detection in vhr optical remote sensing images. IEEE Transactions
on Geoscience and Remote Sensing 54(12), 7405–7415 (2016)

3. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter,
F.: Auto-sklearn: efficient and robust automated machine learning. In: Automated
Machine Learning, pp. 113–134. Springer (2019)

4. Garcia Plaza, E., Lopez, P., Gonzalez, E.: Multi-sensor data fusion for real-time
surface quality control in automated machining systems. Sensors 18(12) (2018)

5. Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., Vanschoren, J.: An open
source automl benchmark. In: ICMLW on Automated Machine Learning (2019)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
7. H2O.ai: H2O AutoML (June 2017), http://docs.h2o.ai/h2o/latest-stable/

h2o-docs/automl.html, h2O version 3.30.0.1
8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR (2016)
9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected

convolutional networks. In: CVPR. pp. 2261–2269 (2017)
10. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning. Springer

(2019)
11. Kocbek, S., Gabrys, B.: Automated machine learning techniques in prognostics of

railway track defects. In: ICDMW. IEEE (2019)
12. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-weka

2.0: Automatic model selection and hyperparameter optimization in weka. The
Journal of Machine Learning Research 18(1), 826–830 (2017)

13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553) (2015)

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html


12 V. Lopes and L. A. Alexandre

14. Li, G., Zhao, X., Du, K., Ru, F., Zhang, Y.: Recognition and evaluation of bridge
cracks with modified active contour model and greedy search-based support vector
machine. Automation in Construction 78, 51–61 (2017)

15. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable Architecture Search. In:
ICLR (2019)

16. Malamas, E.N., Petrakis, E.G., Zervakis, M., Petit, L., Legat, J.D.: A survey on in-
dustrial vision systems, applications and tools. Image and vision computing (2003)

17. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Urban, M., Burkart, M.,
Dippel, M., Lindauer, M., Hutter, F.: Towards automatically-tuned deep neural
networks. In: AutoML: Methods, Sytems, Challenges (Dec 2018)

18. Mital, A., Govindaraju, M., Subramani, B.: A comparison between manual and
hybrid methods in parts inspection. Integrated Manufacturing Systems (1998)

19. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient Neural Architecture
Search via Parameters Sharing. In: ICML (2018)

20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. nature 323(6088), 533–536 (1986)

21. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural networks
61, 85–117 (2015)

22. Schmugge, S.J., Rice, L., Lindberg, J., Grizziy, R., Joffey, C., Shin, M.C.: Crack
segmentation by leveraging multiple frames of varying illumination. In: WACV
(March 2017)

23. Scholz-Reiter, B., Weimer, D., Thamer, H.: Automated surface inspection of cold-
formed micro-parts. CIRP annals 61(1), 531–534 (2012)

24. Siebel, N.T., Sommer, G.: Learning defect classifiers for visual inspection images
by neuro-evolution using weakly labelled training data. In: IEEE CEC (2008)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

26. Sohn, K., Lee, H.: Learning invariant representations with local transformations.
In: ICML (2012)

27. Timm, F., Barth, E.: Non-parametric texture defect detection using weibull fea-
tures. In: Image Processing: Machine Vision Applications IV (2011)

28. Villalba-Diez, J., Schmidt, D., Gevers, R., Ordieres-Meré, J., Buchwitz, M., Well-
brock, W.: Deep learning for industrial computer vision quality control in the
printing industry 4.0. Sensors 19(18), 3987 (2019)

29. Weimer, D., Scholz-Reiter, B., Shpitalni, M.: Design of deep convolutional neural
network architectures for automated feature extraction in industrial inspection.
CIRP Annals 65(1), 417–420 (2016)

30. Wieler, M., Hahn, T.: Weakly supervised learning for industrial optical inspection.
In: DAGM symposium in 2007 (2007)

31. Xie, X.: A review of recent advances in surface defect detection using texture
analysis techniques. ELCVIA 7(3), 1–22 (2008)

32. Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., Hutter, F.: Understanding
and Robustifying Differentiable Architecture Search. In: ICLR (2020)

33. Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J.: Road crack detection using deep
convolutional neural network. In: ICIP (2016)

34. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical Block-Wise Neural
Network Architecture Generation. In: CVPR (2018)

35. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
ICLR (2017)

36. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. CVPR (2018)


	Auto-Classifier: A Robust Defect Detector Based on an AutoML Head

