
Real-Time 3D Door Detection and Classification on
a Low-Power Device

João Gaspar Ramôa
NOVA LINCS

Universidade da Beira Interior
Covilhã, Portugal

Email: gaspar.gomes{at}ubi.pt

Luı́s A. Alexandre
NOVA LINCS

Universidade da Beira Interior
Covilhã, Portugal

Email: luis.alexandre{at}ubi.pt

S. Mogo
Universidade da Beira Interior

Covilhã, Portugal
Email: sipmogo{at}gmail.com

Abstract—In this paper, we propose two methods for door
classification with the goal to help and improve robot navigation
in indoor spaces and to be used in other areas and applications
since it is not limited to door detection as other related works.
Our methods work offline, in low-powered computers as the
Jetson Nano, in real-time with the ability to differentiate between
open, closed and semi-open doors. We use the 3D object classifi-
cation, PointNet and real-time semantic segmentation algorithms
FastFCN and FC-HarDNet. We built a 3D and RGB dataset using
a 3D Realsense camera D435 with door images in several indoor
environments that we make freely available. Both methods are
analysed taking into account their accuracy and the speed of
the algorithm in a low powered computer. We conclude that it
is possible to have a door classification algorithm running in
real-time on a low-power device.

I. INTRODUCTION

Every day new mobile robots with better components and
software are built for several purposes, from smart vacuum
cleaners to intelligent housekeepers that help people with
difficulties in their daily tasks.

Door detection and classification are crucial for this type of
intelligent systems to safely navigate in indoor spaces. Usually,
the task of these systems implies moving between rooms and
dealing with doors. It is required to provide the robot with the
necessary information about the door so it can safely navigate
between rooms without any problem.

Door classification is not restricted to mobile robots and
robotics, it can be applied to other problems and areas like
helping visually impaired people to safely move between
rooms by providing information about the existing doors and
their status.

In this paper, we propose one method for door classification
that uses only 3D information and another that uses 3D and
RGB information. We focus on an approach that works in
low-power systems such as the single board computers Nvidia
Jetson Nano or the Raspberry Pi. Our methods work in real-
time despite running in low-power systems with weak GPU
and are based in the 3D Point cloud classification method
PointNet [1]. We built a dataset with 3D and RGB images
with 3 different classes, open doors, closed doors and semi-
open doors, using a 3D Realsense Camera. This dataset was
used to train the PointNet and to test our developed methods.
The methods were also compared in terms of accuracy and

speed. We used a single board computer equipped with a 3D
Camera and powered by a power-bank. This mobile system
was used for testing the speed of our methods. The focus of
this work was in the door classification algorithm, without
concerning about the rest of the robot hardware.

In short, the contributions of the paper are:
• Two methods, one uses 3D and RGB data and the other

uses only 3D data, for door classification, both working
in real-time in low-power systems.

• A labelled dataset with RGB and depth images of closed,
open and semi-open doors.

• A dataset for semantic segmentation algorithms with
annotated doors and door frames.

The remainder of this paper is structured as follows: Section
II does an overview of the state-of-the-art. Section III de-
scribes the door classification and detection problem. Section
IV describes the proposed methods for door classification.
Section V describes the dataset built. Section VI describes the
experiments and results of our methods. Section VII presents
the conclusions and future work.

II. RELATED WORK

There are already a vast number of studies that used
door detection and classification for robot navigation tasks as
moving between rooms, robotic handle grasping and others.
Some have used sonar sensors with visual information, [2],
others used only colour and shape information, [3], some
have used simple feature extractors, [4], [5] and others have
used more modern methods like CNN (Convolutional neural
networks), [6] and the use of 3D information, [7], [8], [9] and
[10].

Using visual information and ultrasonic sensors to traverse
doors was an approach used in [2]. The goal was to traverse
an open door with a certain opening angle using a B21
mobile robot equipped with a CCD camera sensor and 24
sonar sensors. The door traverse was divided into two sub-
tasks, the door identification and the door crossing. The door
identification which was the sub-task of interest for this work,
used a vertical Sobel filter applied to the grey-scaled image. If
there was a column wider than 35 pixels in the filtered image it
would mean that the door was in the image. The sonar sensors



were used when the robot approached the door at a distance
of 1 meter to confirm if it was a door or not.

In [4], an integrated solution to recognize a door and its
knob in an office environment using a humanoid platform is
proposed. The goal is for the humanoid to recognize a closed-
door and its knob, open the same door and pass through it. To
recognize a door they match the features of the input image
with the features of a reference image using the STAR Detector
[11] as the feature extractor and an on-line randomised tree
classifier to match the feature points. If the door is in the
scene, the matched feature 3D points are computed and used
so that the robot walks towards the door.

The use of colour and shape information can be suffi-
cient for identifying features to efficiently detect doors. The
approach in [3] used two neural networks classifiers for
recognizing specific components of the door. One was trained
for detecting the top, left and the right bar of the door and
the other was trained for detecting the corners of the door. A
door is detected if at least 3 of these components are detected
and have the proper geometric configuration.

In [6], a method is implemented for detecting doors/cabinets
and its knobs for robotic grasping using a 3D Kinect camera.
It uses a CNN to recognize, detect and segment the region of
interest in the image. The CNN used was the YOLO Detection
System trained with 510 images of doors and 420 of cabinets
from the ImageNet dataset. After obtaining the ROI, the depth
information from the 3D camera is used to obtain handle point
clouds for robot grasping.

Like the previous approach, in [7], a Kinect sensor is
used for door detecting but, this method uses only Depth
information. The camera sometimes produces missing points
in the depth image, and the algorithm is based in the largest
cluster of missing pixels in the depth image. The total number
of holes indicates the status of the door, (open or semi-open).
The main advantage of this method is that it works with low-
resolution depth images.

There are methods developed under a 6D-space framework,
like [8], that use both colour (RGB) and geometric information
(XYZ) for door detection. For detecting open doors they detect
rectangular point cloud data gaps in the wall planes. The
detection of closed doors is based in the discontinuities in the
colour domain and in the depth dimension. It also does door
classification between open and closed doors. The improved
version of this algorithm, [10], can even distinguish semi-open
doors using the set of points next to the door to calculate
the opening angle. Another improvement in [10] was in the
dataset, which is larger in size, complexity and variety.

In [9], a method is proposed that uses 3D information for
door detection without using a dependent training-set detection
algorithm. Initially, the point cloud containing all the scene,
including the door, is prepossessed using a voxel-grid filter
to reduce its density and its normal vectors are calculated. A
region growing algorithm based on the pre-calculated normals
is used to separate the door plane from the rest of the point
cloud and after that, feature extraction is used to get the edges
of the door and the doorknob.

TABLE I
RELATED WORK COMPARISON (DOOR DETECTION).

Method 3D
Closed Open Semi-open

Real-time
doors doors doors

Monasterio [2] × × X × -
Cicirelli [3] × X × X ×
Kwak [4], Chen, [5] × X × × X
Llopart [6] X X X X X
Yuan [7] X × X X -
Quintana [8] X X X × -
Borgsen [9] X X × × ×
Quintana [10] X X X X -
Ours X X X X X

To detect doors 3D cameras or sonar sensors are not
required, a simple RGB camera can do the job as in [5],
focusing on real-time, low-cost and low-power systems. This
work used the Adaboost algorithm to combine multiple weak
classifiers into a strong classifier. The weak classifiers were
based in features such as detecting pairs of vertical lines,
detecting the concavity between the wall and the doorframe,
texture and colour and others. They built a dataset with 309
door RGB images, 100 for training their algorithm and the
rest for testing.

Table I summarises the previous approaches and related
work to detect and classify doors in indoor spaces, categorising
each method studied. Although most of the approaches just
do door detection and not classification, as we did in this
work, they have the same goal, to provide the robot with the
necessary information to move between rooms, and that is the
reason why we included them in this paper. The first column
states whether the method uses 3D information or not. The
following 3 columns states the applicability of the method
(closed, open or semi-open doors). The last column focus on
whether the method works in real-time or not, based on the
experimental results of each method. Four of the methods do
not present information regarding their speed and are marked
with a ”-”.

III. PROBLEM DEFINITION

Mobile robots nowadays are used for multiple tasks and
purposes in several indoor environments as security guard
robots, tour guide robots, vacuum cleaners and others. Usually,
in these environments, the robot has to navigate safely between
rooms and the biggest obstacles are the doors. The mobile
system normally must be able to detect the door in the
scene to move to another room. In more complex situations,
the robot has not only to detect the door but also has to
classify it to decide its next move. Door detection is used
in situations where the door is always closed or always open.
Door classification is useful in hard situations where the door
can be open, closed or semi-open. We decide to work with
door classification because it can be used by the robot to solve
more complex tasks.

In this work, we focus only in the door classification using
computer vision algorithms and methods without concerning



Fig. 1. Opening angles thresholds for closed, semi-open and open doors.

the after processes and the action that the robot will take
according to the opening of the door. We propose that if the
door is classified as closed, the robot must call a human for
help. If it is open the robot can simply go through it and if it
is semi-open, the robot can either get around it or try to open
it simply by gently pushing it.

The door can be classified as open, closed and semi-open
depending on the door opening angle (angle between the
door and the wall where the door is inserted). Doors with
opening angles between 0 and 10 degrees are closed, with
opening angles between 10 and 70 degrees are considered
semi-open and with opening angles higher than 70 degrees are
considered open. We also take into account the case of doors
with negative angles. This classification is done in the same
way as the previous one but with the corresponding negative
angles. Figure 1 treats the door opening angles thresholds from
a perspective seen from above.

Although the door opening angle is the most important
classification factor it is not the only one. We also have in
consideration the position of the viewer in relation to the door
as a classification factor. For example, the door has an opening
angle of 75 degrees but the position of the robot does not allow
it to walk forward and go through the door without the need
to get around it. In this case, we considered the door as semi-
open, because the robot must get around it to go through it. We
decide to do this approach of the problem with the objective
of applying this work to other areas.

IV. PROPOSED METHOD

We propose two different methods for door classification.
The first, discussed below in section IV-A, uses the combina-
tion of semantic segmentation algorithms with the 3D object
classification method. The second, presented in section IV-B,
uses only the 3D object classification method.

A. Method A - 2D Semantic Segmentation and 3D Object
Classification

For this method, we use both RGB and depth information
for door classification, using both of our datasets.

After receiving both RGB and depth frames from the
Realsense 3D camera we use a semantic segmentation method
and draw a bounding box around the biggest area of pixels

Fig. 2. Algorithm of Method A (2D semantic segmentation and 3D object
classification).

of the ”door” class resulting from the semantic segmentation.
The depth channel is aligned with the RGB channel. The depth
image is cropped according to the bounding box of the RGB
image, resulting in a depth image with only the door. Using the
Open3D library [12], we converted the cropped depth image
to a grey-scale point cloud. The point cloud goes to the 3D
object classification PointNet, [1], trained with our dataset for
PointNet, with 3 classes. The PointNet does the inference with
the point cloud and returns the result of the classification.

Figure 2 represents the described method.
Regarding the semantic segmentation algorithms we use

the FastFCN Rethinking Dilated Convolution in the Backbone
for Semantic Segmentation, [13] and the Fully Convolutional
HarDNet which was based in the HarDNet: A Low Memory
Traffic Network, [14]. The FastFCN was used because its test
score was in the first three best global ranks for semantic seg-
mentation in the ADE20K dataset. We also tried to implement
the EncNet, [15] which is the network that the FastFCN is
based on, but the implementation provided could only work in
multi-GPU machines. The ADE20K dataset is very important
for door semantic segmentation since the ”door” class is
labelled and it has indoor images with doors. If a semantic
segmentation method performs well in this dataset it will also
perform well in ours. We also used the FC-HarDNet because
it had the best global rank metric value for real-time semantic
segmentation in the Cityscapes dataset. We used it because it
was faster than the previous method and we were pursuing a
real-time door classification method.

As the 3D object classification method, we used the Point-
Net. This method accepts unordered point sets and classifies
them according to their 3D shape. We used the provided
repository in [1] and changed the default dataset which was
the ShapeNet to our dataset adjusting the data loader and the
number of classes acordingly.

The difference between the methods of this family is in
the 2D semantic segmentation algorithm used (FastFCN and
FC-HarDNet). These methods are compared later in section
VI.

B. Method B - 3D Object Classification

For this method, we only used the 3D object classification
method PointNet. Instead of receiving both RGB and depth



Fig. 3. Algorithm of Method B (only 3D object classification).

data, we use only the depth data. The depth data is converted
to a point cloud using the Open3D library and then converted
to a point set. These point sets are the input of the PointNet.
Unlike the previous methods, A, this method uses the entire
point cloud without cutting it because we do not have the
bounding box of the door. Although the point cloud is bigger,
because it is not cropped, the number of points that enter the
PointNet is the same. This happens because the PointNet has
a parameter, ”number of points”, which we will denote by K,
that defines the number of points of the input point set that will
be randomly selected and classified. This method’s algorithm
is visually represented in Figure 3.

This method is faster than the previous one in terms of
frames per second because it does not use semantic segmen-
tation algorithms and uses the same 3D object classification
algorithm.

One parameter we can adjust in the method, is if the
point cloud undergoes uniform downsampling or not. The K
parameter makes PointNet randomly select that number of
points and if we have a big point set we might get a set
that does not represent uniformly the depth data. We use
the uniform downsampling algorithm from Open3D in the
original point cloud, with approximately 300000 points, to
get a downsampled version of the same 10 times smaller. The
default value of K was 2500 which was too small for our
point sets (300000 or 30000). This number was increased to
10000 and could not be further increased because of the small
GPU memory of the mobile system.

V. DATASETS

We built two different datasets, one for the 3D object clas-
sification algorithm PointNet,[1], and other for the semantics
segmentation algorithms, [13] and [14].

For building the datasets, we used a portable system con-
stituted by a Raspberry Pi 3B+ powered by a power-bank
with a 3D Realsense Camera, model D435. This camera has a
horizontal viewing angle (86 degrees) higher than the vertical
viewing angle (57 degrees). We rotated the camera 90 degrees
to switch the angles with the purpose of including all the door

TABLE II
DATASET COMPARISON WITH RELATED WORK.

DataSet 3D RGB Number of samples
Chen [5] × X 309
Llopart [6] × X 510
Quintana [10] X × 35
Ours X X 1206

area in the image. The camera was placed 135cm above the
floor.

We captured several images of doors and its surroundings
with different textures and sizes. Some images have obstacles
that obstruct and hide part of the door such as, chairs, tables,
furniture and even persons. The goal was to create a more
generic and realistic real-world dataset. We also changed the
pose to get different perspectives of the same door. The images
captured are from our university, public places and people’s
houses.

A. Dataset for PointNet
The dataset for PointNet is constituted by RGB images and

corresponding depth images both with the size 480 x 640
pixels. The depth images are in grey-scale with pixels values
between 0 and 255 and we used a depth scale equal to 1/16.
The depth in meters is equal to depth scale * pixel value, for
example, if the pixel value is equal to 32 it means that that
pixel is 2 meters away from the viewer (1/16 * 32 = 2). In total
this dataset has 1206 door images, 468 of those are images
of closed doors, 588 open doors and 150 semi-open doors.
We divided, the set in train, validation and test. For the test
and validation set, we used 20 samples of each class giving a
total of 60 samples for test and 60 for validation. We used the
remaining samples of each class to built the training set with
a total of 1086 images.

Table II compares our dataset for PointNet with the datasets
built in related works. From table II we can conclude that our
dataset has more samples than the other datasets and has RGB
and Depth images which none of the related work databases
has. Figure 4, represents a few images from our dataset. This
dataset is freely available in the following link: 1

B. Dataset for Semantic Segmentation
We also built a dataset for training the semantic segmen-

tation algorithms which were used for door classification.
This dataset used part of the RGB images from the PointNet
Dataset(V-A). To built this dataset we used the Computer
Vision Annotation Tool (CVAT), [16]. This tool allows us to
draw polygons in the RGB images that represent one class.
Using this mode we drew rectangles around the doors and
door frames in each image.

This dataset has 240 grey-scaled images with the size 480
x 640. These images were randomly chosen before annotated.
As we are just concerned with the doors and door frames, we
only used two classes in this dataset. The pixel value is 1 if it
corresponds to a door or door frame, and is 2 if it does not.

1https://github.com/gasparramoa/DoorDetect-Class-Dataset



Fig. 4. Sample images from our RGB dataset.

VI. EXPERIMENTS AND DISCUSSION

We compared our methods against each other in real-time
scenarios. We did not compare with the methods of the related
work because their focus was in door detection while ours is
in door classification.

Both the semantic segmentation algorithms as the PointNet
were trained in a machine with 16GB of RAM memory, a
256GB SDD disk, an AMD Ryzen 7 2700 processor with 16
Threads and a GeForce GTX 1080 ti graphic with 12 GB. The
mobile system where the speed tests were made is composed
by a Jetson Nano in 10 Watt mode with a Realsense 3D camera
D435 without fan.

It is important to mention that we did not change any of
the algorithms used in our methods as the PointNet, FastFCN
and FC-HarDNet. We only changed the data loaders and did
the necessary configurations to work with our data sets.

A. Method A

We compared the two aforementioned semantic segmen-
tation algorithms for method A. We split our semantic seg-
mentation dataset presented in section V-B, in train and test
sets with 200 and 40 samples respectively. We used the
pixel accuracy and the intersection over union (IoU) as the
evaluation metrics. The intersection over union is the area
of superposition between the predicted segmentation and the
ground truth divided by the area of union of these last two.
The pixel accuracy is the percent of pixels in the input image
that are classified correctly. We also compared the training and
inference time in the aforementioned desktop computer.

The FastFCN algorithm has better results in pixel accuracy
and IoU in the test set when compared with the FC-HarDNet
algorithm (III) but, as we mentioned, our focus is in real-
time door classification methods. The FC-HarDNet is not as
good as the FastFCN at door segmentation but it has a much

TABLE III
COMPARISON BETWEEN USING THE FastFCN AND THE FC-HarDNet

ALGORITHMS IN METHOD A.

Method A Test pixel
IoU

Training Inference
with accuracy time (sec) time (sec)

FastFCN 0.909 0.808 567 0.515
FC-HarDNet 0.701 0.418 426 0.019

TABLE IV
EVALUATION OF METHOD B WITH THE ORIGINAL SIZE POINT CLOUDS IN

PointNet AND USING DOWNSAMPLED POINT CLOUDS.

Point cloud Mean validation Jetson Nano Downsampling
size accuracy inference time(sec) time(sec)
30k 0.428 0.111 0.386

300k 0.417 0.111 -

smaller inference time (is more than 20 times faster) and more
important, it is compatible with the Jetson Nano. Taking this
into account, we opted to use the FC-HarDNet algorithm in
method A.

B. Method B

As our focus is in real-time door classification methods, we
built a downsampled version of our dataset for PointNet using
the voxel downsampling tool from the Open3D, [12] library.
As the PointNet randomly selects the K points in the point
clouds, the points selected in the downsampled point cloud
will better represent the point cloud because the downsampled
cloud has fewer points (30000 on average) compared with the
original cloud (300000 on average). The goal here was to see
if it was worth it to downsample the point clouds taking into
account the time it takes to do it and the improvement in
validation accuracy compared with the original point clouds.

We trained the PointNet during 10 epochs with batch size
equal to 20 and K=10000. For each approach, we trained 3
times and used the best validation accuracy value. We used
a voxel size, in the voxel downsampling Open3D tool, that
produced a proportion of 10 to 1 in the downsampled point
cloud.

Table IV shows the difference between using the original
size and the downsampled point clouds. The mean validation
accuracy is a little better in the downsampled point clouds
as expected. The PointNet is more likely to select points
that represent uniformly the point cloud since these have
fewer points than the original size ones. The inference time
in Jetson Nano is the same for both approaches since the
number of points selected is the same (K=10000) but with
the downsampling time, the downsampled approach is almost
5 times slower than the original one ((0.111+0.386)/0.111 =
4.47). In view of the above and taking into account that our
focus is on real-time methods, we opted to use the original
size point clouds and discard the downsampling.

C. Method A vs Method B

Method A has semantic segmentation that is not used in
method B. Certainly, method B is faster but the addiction of



TABLE V
COMPARISON OF THE METHODS ASSUMING THAT THE SEMANTIC
SEGMENTATION MODULE IS RETURNING THE CORRECT OUTPUT.

Method
Mean test Jetson Nano Segmentation
accuracy inference time(sec) time(sec)

A (after segment.) 0.494 0.111 0.131
B 0.433 0.111 -

semantic segmentation removes unnecessary information for
the object classification which could lead to better results in
terms of accuracy. We compared both methods with respect to
speed and test accuracy. We created another version of our 3D
dataset with cropped point clouds that represented the output
of the semantic segmentation module from the first method.
This dataset is exactly equal to the original in terms of sample
numbers and the distribution in the test, validation and train set
is also the same. We trained the PointNet with this new dataset
and we compared the results with the original dataset. This
way we can compare both methods assuming that the semantic
segmentation module returns the correct cropped point cloud.

Analysing the results of table V we came to the conclusion
that the addition of semantic segmentation in method A does
not pay off the time it takes because of the difference in test
accuracy. Method A takes twice as long when compared to
method B. It is the semantic segmentation time (0.131 sec)
plus the inference time of the PointNet (0.111 sec). Although
we are removing unnecessary information on the point cloud,
we are also removing information about the door surroundings
which has an important role to help classifying doors. This
is the justification for the small difference in test accuracy
between method A and method B.

D. Comparing with others

We did not compare our methods with the ones from
related works because those works focused door detection,
while we did door classification. The Llopart method, [6],
works in every class of door as it can be seen in table I, but
it does not actually do door classification since his method
cannot recognize the difference between doors, it just detects
them. Quintana method, [10], is the only method that does
door classification implicitly by differentiating closed doors
from open and semi-open doors using the opening angle to
differentiate open from semi-open doors. Their dataset (35
point clouds) is not as complete as ours (1206 point clouds)
and their method does not work in real-time, although it
presented excellent results in their dataset.

VII. CONCLUSION

In this paper, we proposed a new method for door classi-
fication to improve robot navigation and to provide it with
the information to move between rooms. Our method works
in real-time in low powered computers as the Jetson Nano
from Nvidia. The robot does not have to be connected to the
internet because our method works offline. We also built a big
dataset with RGB images and their respective point clouds and

a dataset for semantic segmentation derived from the previous
one.

Our work can be used in other areas and applications, as for
systems that help visually impaired people navigate in indoor
spaces to improve their lifestyle and other systems that use
the information of the door class. This work can be compared
to future methods using our online published dataset and our
accuracy results.

For future work we plan to improve our methods and
test other 3D object classification algorithms other than the
PointNet.

ACKNOWLEDGMENT

This work is supported by NOVA LINCS
(UIDB/04516/2020) with the financial support of FCT-
Fundação para a Ciência e a Tecnologia, through national
funds.

REFERENCES

[1] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” CoRR, vol.
abs/1612.00593, 2016. [Online]. Available: http://arxiv.org/abs/1612.
00593

[2] I. Monasterio, E. Lazkano, I. Rano, and B. Sierra, “Learning to tra-
verse doors using visual information,” Mathematics and Computers in
Simulation, vol. 60, pp. 347–356, 09 2002.

[3] G. Cicirelli, T. D’Orazio, and A. Distante, “Target recognition by
components for mobile robot navigation,” J. Exp. Theor. Artif. Intell.,
vol. 15, pp. 281–297, 07 2003.

[4] N. Kwak, H. Arisumi, and K. Yokoi, “Visual recognition of a door and
its knob for a humanoid robot,” in 2011 IEEE International Conference
on Robotics and Automation, May 2011, pp. 2079–2084.

[5] Zhichao Chen and S. T. Birchfield, “Visual detection of lintel-occluded
doors from a single image,” in 2008 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, June 2008, pp.
1–8.

[6] A. Llopart, O. Ravn, and N. A. Andersen, “Door and cabinet recognition
using convolutional neural nets and real-time method fusion for handle
detection and grasping,” in 2017 3rd International Conference on
Control, Automation and Robotics (ICCAR), April 2017, pp. 144–149.

[7] T. H. Yuan, F. H. Hashim, W. M. D. W. Zaki, and A. B. Huddin,
“An automated 3d scanning algorithm using depth cameras for door
detection,” in 2015 International Electronics Symposium (IES), Sep.
2015, pp. 58–61.

[8] B. Quintana, S. A. Prieto, A. Adán, and F. Bosché, “Door detection
in 3d colored laser scans for autonomous indoor navigation,” in 2016
International Conference on Indoor Positioning and Indoor Navigation
(IPIN), Oct 2016, pp. 1–8.

[9] S. Meyer Zu Borgsen, M. Schöpfer, L. Ziegler, and S. Wachsmuth, “Au-
tomated door detection with a 3d-sensor,” in 2014 Canadian Conference
on Computer and Robot Vision, May 2014, pp. 276–282.

[10] B. Quintana Galera, S. Prieto, A. Adan, and F. Bosché, “Door detection
in 3d coloured point clouds of indoor environments,” Automation in
Construction, vol. 85, p. 146–166, 01 2018.

[11] Willow Garage Star Detector. [Online]. Available: http:
//pr.willowgarage.com/wiki/Star-Detector

[12] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D
data processing,” arXiv:1801.09847, 2018.

[13] H. Wu, J. Zhang, K. Huang, K. Liang, and Y. Yizhou, “Fastfcn: Rethink-
ing dilated convolution in the backbone for semantic segmentation,” in
arXiv preprint arXiv:1903.11816, 2019.

[14] P. Chao, C.-Y. Kao, Y.-S. Ruan, C.-H. Huang, and Y.-L. Lin, “Hardnet:
A low memory traffic network,” ArXiv, vol. abs/1909.00948, 2019.

[15] H. Zhang, K. J. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and
A. Agrawal, “Context encoding for semantic segmentation,” CoRR, vol.
abs/1803.08904, 2018. [Online]. Available: http://arxiv.org/abs/1803.
08904

[16] Computer Vision Annotation Tool: A Universal Approach to Data
Annotation. [Online]. Available: https://github.com/opencv/cvat


