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Abstract—There are multiple approaches for SLAM, but we
found the the ones implemented in ROS had problems when a
robot drove over small obstacles. This paper presents a proposal
to make a more robust SLAM by running three SLAM methods
in parallel and using their information to produce a better
estimate of the robot’s surroundings. The proposed method
defines its output by making the three methods vote for the
value of each pixel in the map. To deal with the increased
computational complexity, the method is implemented in the
GPU. The performed experiments show that our method shows
smaller error than any of the three fused methods alone both
when there are ground obstacles that induce map errors and
also when no obstacles are present, thus presenting in fact an
increase in robustness.

I. INTRODUCTION

In the area of mobile robotics, one of the first and most
fundamental steps is the SLAM (Simultaneous Localization
and Mapping), but it is also one of the most problematic areas.
A small error in the map may mean the robot can’t return to
its dock or home or it can’t accomplish its mission correctly.
There are multiple SLAM methods, but we found that several
of the methods implemented in ROS [11] had problems when
the robot we used (a Turtlebot 2) drove over cables or other
ground objects.

So in this paper we present a new SLAM method to increase
the robustness of SLAM by using different maps created from
different methods at the same time, fusing the resultant maps
into a single one, in an attempt to create a robust map that has
less errors than the original maps. Since the computational cost
of running three SLAM maps simultaneously is higher than
running a single one, we implemented our method in the GPU
to take advantage of the parallel computation available in the
graphical card.

The paper is organized as follows: the next section discusses
some related work, section III presents the proposed method,
section IV contains the experiments, the following section
contains a discussion of the obtained results and the final
section contains the conclusions.

II. RELATED WORK

Several work has been done to improve the robustness of
SLAM, such has Ratter[7] presenting 2D information fused
with 3D, by combining the information of a rangefinder and
an RGB-D camera, using the 3D camera for mapping and

localization and the rangefinder as a larger overview to aid
the 3D system in localization (rangefinders have a very large
field of view compared to the RGBD-Camera). This additional
information aids in the loop closure of the created maps. The
method runs on a robot rather than on a workstation.

Eudes et al [10] proposes to fuse the odometer information
to monocular visual information in order to improve the
camera position at each input image, with also the 3D point
cloud being rebuilt to allow iterative positioning.

Ableles [9] contributed with methods to aid in uneven floors
using new stable geometric estimation equations, ideas that aid
a robot in localizing itself on a unknown location, only with a
map created from blueprints or previous exploration, that may
not be extremely accurate since different sensors and different
robot sizes may provide different maps. The blueprint will not
have ground depressions, bumps or other kind of defects, or
even other problems like different furniture placement.

Graham et al [8] provides an incremental SLAM. Instead
of focusing in the incorrect loop closures, it focuses in
the problem of mapping incorrect landmark information and
instead of working in an offline way, it works in real time
preventing the problems, rather than fixing them later.

In ROS there are two methods that would do some kind of
map merging: MapStitch[6] and MapMerger[5].

MapStitch is meant to align a map from a running /world
node to a previous made 2D saved map, combining them to
a single image. The problem with it was a lack of references
to work with ROS Indigo, a poor documentation and the ROS
component does not allow the use of several SLAM methods
to create a single map or even to use two running SLAM
methods to create the map, allowing only a previous map and
the actual one, which would not help in preventing errors or
improving the real-time creation of a robust map.

On the other hand, MapMerger had references to work
with ROS Indigo, although this method relied on various
robots connected via Ad-Hoc communication, and merged
the different maps that the different robots did, into a single
global one. Due to the difficulties related with the need to
use different masters for a single SLAM method instead of
running everything under the same master, we decided to
create the SLAMfusion method, that we believed could not
only solve these usability issues but also improve the overall
system robustness.
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Fig. 1. The workflow of SLAMfusion.

III. FUSING MULTIPLE SLAM METHODS

A. Methods Used

Our proposed method is based on running three SLAM
methods in parallel and fusing their decisions. The three
SLAM methods that we run are Gmapping, Karto and RTAB-
Map.

Gmapping [3] is an OpenSlam ROS wrapper. It is a Rao-
Blackwellized particle filter used to create grid maps from
laser scanner data. Each particle of the filter carries an indi-
vidual map of the environment. Normally it requires a high
number of particles to get a good map. On our experiments we
used 80 particles, since we were running the SLAM method
on the workstation instead of the computer controlling the
the turtlebot, thus having more room to obtain more accuracy
without sacrificing performance.

Karto is SRI International’s commercial Graph-based
SLAM algorithm available open-source [12] on ROS reposito-
ries. There is not much information or documentation available
about it on ROS or Karto’s website. From [4] we found
that each node of the graph keeps pose information along
with sensor measurements. Normally, with a large number of
landmarks, more memory is required. But since it is a graph-
based SLAM that only keeps the pose information per node,
it is very Memory-efficient.

RTAB-Map (Real Time Appearance-Based Mapping) is a
Graph-Based RGBD-SLAM, used due to its visual SLAM
rather than the depth-to-laserscan approach of the two other
SLAM methods, functioning as a tie breaker. It can easily
detect other obstacles under and above the fake laser scanner,
since it is a 3D-SLAM that projects itself as a 2D map. As
referred by Labbe [2], it works as a multi-level memory, as
it has several memory levels to keep it working in real-time,
unloading nodes from working memory to long term memory
and moving them back to working memory when they are
required for loop closure. It is also a multi-session SLAM
Method: it keeps a database with the graph information provid-
ing the multi-slam solution, although in our experiments, we
deleted the said database file so it wouldn’t affect the various
results from the several conducted experiments, giving less of
a advantage against the other methods that do not have multi-
session memory.

These methods were chosen due to various aspects. Gmap-
ping was chosen due to fact that it was already implemented
and the tutorials available for our robot use it. Karto was
chosen because it had the best accuracy in an evaluation
presented in Santos et al [4]. RTAB-Map was chosen due to
the fact that it was different from the other two SLAM methods
already chosen, since it is real time appearance based, meaning
that it uses the entire depth cloud to do the map, instead of
using only filtered information from depth image to laserscan
to create the map.

The methods referred were running simultaneously, publish-
ing information to different ROS nodes instead of the default
/map node.

B. Fusion

The proposed method is based on the fusion by majority
vote among the three existing methods presented in the previ-
ous section. Figure 5 presents the several steps of the method.
It schematizes in a simple way how our setup works, from
the robot sensors, to the different SLAM methods we used.
The SLAM methods’ output nodes are remapped from /map
to /theirname/map, like /Gmapping/map. These nodes
contain a OccupancyGrid data structure, composed of .info,
that contains information like height and width of the map
and resolution, and .data that contains a list of values that
range from -1 (unknown), 0 (empty) and 100 (occupied). The
algorithm starts by normalizing (achieved by transforming the
values 100 to 1) and calculating the best match (translation and
rotation) between the various methods by calculating the the
error of Gmapping’s map with Karto’s map and RTAB-Map’s
map with Karto’s map. The choice of Karto as a base map is
due to the fact that it is the smaller map calculated, as it does
not have a unknown margin, situation that happens with the
other used methods. After the best match is found and smaller
crops are made of each made, removing unneeded information,
the algorithm calculates the final map by voting each point
that composes the map, this means, if at least two methods
on a certain value, the final map will have said value. In case
of disagreement between the various methods, it was decided
that the value to be used was 1. This decision was made after
various tests that shown that the most disagreements were on
extremities, meaning, zones that are between empty spaces and
unknown spaces.
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C. GPU implementation
Due to the fact that the amount of data to process in real time

was very high, we decided to implement our method using
a GPU to speed up the calculations. We used the Pyopencl
library in Python, that acts as an opencl wrapper, giving
us access to GPU Computing while maintaining high-level
code/scripting given by Python.

By developing two small pieces of code in C, the kernels,
made to be compiled and ran in the GPU (in our particular
case, but it can be ran in any compatible opencl device), we
upgraded significantly the performance of our method, from
an average of 5 minutes per map created to 25 seconds to
create the entire output used in this paper, which is: 18 error
calculations from each individual method map to the ground
truth, 6 maps from each trio of method maps and 6 errors from
the created maps to the ground truth, with a global jumping
step of 40.

Since the GPU runs the code, either Python or C will have
the same performance potential, with the advantage that the
heavy-duty part of allocating memory, controlling buffers, etc.
is managed by the machine instead of the programmer.

As referred previously, we developed two kernels, the first
receives, through buffers, the first map and the second map as
a pointer to float, a pointer to a response float array, and an
integer pointer to a two position array that has the size of the
arrays. Then, the kernel executes the formula referred in the
the following Results section, and by calculating the error for
two different maps, we are able to find the best spot where
a smaller map matches a larger map. This is accomplished
by having two for cycles going from 0 to the size of the
bigger map minus the smaller map, where the iterations match
the coordinates where the larger map splices. At the end of
each iteration, the error is saved to a tuple, X coordinate, Y
coordinate and the rotation of the map.

Since it is computationally demanding to run this search
for every single position of the map, an approach that we
took was to jump positions, this means, instead of the for
cycles processing each possible position in the map, they jump
by a given step horizontally and vertically. Then, we re-run
said function, with a narrower search area, and a smaller step,
improving speed w.r.t. the method that would search every
possible position in a single loop.

The second kernel receives the three maps and their sizes,
and returns an array composed by the vote for the value of each
pixel in the map from each SLAM method. When in doubt, we
decide to assign the value corresponding to a obstacle, since
in our experiments when the methods cannot agree it usually
happens in the border from unknown to empty space, where
normally there is an obstacle.

Regarding pre-GPU and pos-GPU processing, there are the
array and buffer creation, tuple sorting to calculate where there
is a better match (smaller intermap error), and rotation calcula-
tion. This is necessary since the SLAM Methods don’t always
output aligned maps. The rotation is achieved with OpenCV-
Python wrapper, that rotates 2D matrices, after getting the
closest position between the three maps, rotating the maps and

saving the error value, and the rotation values. At the end, we
chose the lowest error, recalculate the rotation and provide the
three matrices to the second kernel.

IV. EXPERIMENTS

We run several experiments to evaluate the performance
of the SLAMfusion method. The experiments were run, first
without obstacles in the robot’s path, to obtain baseline values
for the errors of the individual SLAM methods and afterwards,
using obstacles to evaluate the variations in robustness of the
SLAM methods.

A. Our Setup

The workstation used has the following features:

• CPU: Intel(R) Core(TM) i7 @ 3.20Ghz
• GPU: GeForce GTX TITAN X.
• Ram: 24 GB
• OS : Ubuntu 14.04.03 LTS with ROS Indigo

The robot is a Turtlebot2:

• Max speed: 700 mm/sec and 180 deg/sec
• Odometry: Built-in 3-axis gyro-meter, High resolution

wheel encoder (11.7 ticks/mm)
• Microsoft XBox 360 Kinect RGBD-Camera/sensor.

The robot is controlled by:

• Portátil Magalhães 1 (Based on the second version of
Intel’s Classmate PC)

• CPU: Intel Atom @ 1.6Ghz
• RAM: 2 GB
• OS: Xubuntu 14.04 with ROS Indigo

Fig. 2. The turtlebot on its charging dock and the obstacle course. The ramp is
low enough so it won’t activate the wheel drop sensors that cause the turtlebot
to freeze, but high enough to cause slips that confuse the odometry, Also, the
entire setup is marked and affixed with duct-tape.
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Fig. 3. The obstacle used, made of cardboard with duct-tape binding it all
together.

Fig. 4. Our ground truth map, a map made with teleoperation with aid of Rviz
ROS program, displaying the map, Laser scan and Depth Cloud, to ensure
the best map to be a reference to the experiments.

B. Course setup and ground truth map

The experiment procedure was the following. At the start we
manually placed the turtlebot on the duct-tape circle, started its
nodes, Startup and 3Dsensor, then we started the three
SLAM methods and started our SLAMfusion method. When
our method receives at least one frame from each SLAM
method, it starts a script that does a 360 degree turn, at 90
deg/s, then it goes forward at 0.5 m/s, in the direction of
the duct-tape cross, passing over the obstacle, then it stops
and does another 360 degree turn. After confirming that our
method receives all broadcast information, we backup all
created data, stop the SLAM-methods and our method, delete
the RTAB-map database file to ensure a clean state experiment,
then relocate the robot to the duct-tape circle and repeat the
experiment.

The calculations and consequently the SLAMfusion maps
are calculated offline since it is not yet fully able to process
all frames in real-time.

BlackBox
Aproach

Sensors

Odometry Vision

depthimage
to laserscan

RtabmapKartoGmapping

/Gmapping/map /Slamkarto/map /Rtabmap/map

.Info .data .Info .data .Info .data

SLAMfusion

Fig. 5. The overall idea of the proposed method: fusing three SLAM methods
using voting (see text for details).

C. Results

The error was found by the square root of the sum of the
squared errors between each pixel of the map and the ground
truth. If T (x, y) is the ground truth map and M(x, y) is a
given map, then the error is obtained using:

Error(M(x, y)) =

 ∑
∀(x,y)

(T (x, y)−M(x, y))2

1/2

The results presented in table I show the average errors and
standard deviations for three repetitions of the experiment. The
average errors are also shown in figure V.

TABLE I
AVERAGE ERROR (AND STANDARD DEVIATION) FOR 3 REPETITIONS OF
THE EXPERIMENT FOR BOTH THE CASES WHERE NO OBSTACLES WERE

PRESENT AND FOR THE CASE WHERE THE WAS AN OBSTACLE.

Method No obstacles With Obstacles
Gmapping 148.63 (2.24) 151.28 (5.30)
Karto 128.36 (2.03) 132.58 (0.75)
RTAB-Map 106.38 (7.74) 110.03 (2.27)
SLAMfusion 97.88 (6.58) 97.45 (4.73)

Figure 6 shows one example of a map produce by each of
the four methods without any obstacle and figure 7 shows one
example of a map produce by each of the four methods when
the obstacle is present.
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Fig. 6. Examples of maps when no obstacles are used, from top left to bottom
right: Gmapping, Karto, Rtabmap and SLAMFusion.

Fig. 7. Examples of maps when the obstacle is used, from top left to bottom
right: Gmapping, Karto, Rtabmap and SLAMFusion.

TABLE II
p VALUES FOR A STATISTICAL SIGNIFICANCE TEST OF THE RESULTS

PRESENTED IN TABLE I FOR THE EXPERIMENTS WITHOUT OBSTACLE. ALL
DIFFERENCES BETWEEN PAIRS OF METHODS ARE SIGNIFICANT WITH THE

EXCEPTION OF THE DIFFERENCE BETWEEN RTAB-MAP AND
SLAMFUSION. SIGNIFICANCE LEVEL α = 5%.

Method Gmapping Karto RTAB-Map SLAMfusion
Gmapping - 3.1e-4 8.1e-4 2.3e-4
Karto 3.1e-4 - 8.9e-3 1.6e-3
RTAB-Map 8.1e-4 8.9e-3 - 2.2e-1
SLAMfusion 2.3e-4 1.6e-3 2.2e-1 -

TABLE III
p VALUES FOR A STATISTICAL SIGNIFICANCE TEST OF THE RESULTS

PRESENTED IN TABLE I FOR THE EXPERIMENTS WITH OBSTACLE. ALL
DIFFERENCES BETWEEN PAIRS OF METHODS ARE SIGNIFICANT.

SIGNIFICANCE LEVEL α = 5%.

Method Gmapping Karto RTAB-Map SLAMfusion
Gmapping - 3.8e-3 2.4e-4 1.9e-4
Karto 3.8e-3 - 8.2e-5 2.2e-4
RTAB-Map 2.4e-4 8.2e-5 - 1.4e-2
SLAMfusion 1.9e-4 2.2e-4 1.4e-2 -

V. DISCUSSION

No obstacles With obstacles
0

50

100

150

200

Average SLAM errors

gmapping

karto

rtab

fusion

From the results we can conclude that all methods had a
consistent performance without and with obstacle. Gmapping
had the worst result, followed by Karto and RTAB-map. In
all cases, SLAMfusion presented the smallest error. The dif-
ferences in performance between all pairs of methods in each
setting (without and with obstacle) are statistically significant
with the exception of the difference between RTAB-Map and
SLAMfusion for the setting without obstacle (see Tables II
and III).

As referred by Santos et al [4], Karto has better performance
than Gmapping in real world experiments. As for RTAB-Map,
the fact that it has a smaller error value than the other SLAM
methods may be due to the fact that it is in reality a 3D SLAM
method that is flatten to a 2D map.

It is interesting to see that SLAMfusion had better results
(marginally) when the conditions were worst (obstacles). This
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might just be a coincidence and the difference is not signif-
icant. More experiments are needed to better confirm these
results.

VI. CONCLUSION

In this paper we presented a proposal to improve SLAM ro-
bustness to noise. It takes advantage of three implementations
of SLAM present in ROS running in parallel and makes them
vote for the class of each map pixel.

To improve the speed of SLAMfusion it was implemented
in GPU with some heuristics for faster convergence in terms
of map registration between the different SLAM methods.

The experiments show that SLAMfusion is in fact a more
robust solution than any of the other three approaches, and
is immune to the errors caused by the obstacle tested in the
experiments.

As future work we want to run more tests and in different
locations to have a more precise idea of the robustness of
SLAMfusion and continue improving the speed of the method
in various ways, for instance, by using an autonomous search
”jump” calculation while searching for the maps’ alignment
for best accuracy/performance in order to be able to achieve
real-time processing.
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