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Abstract. Reservoir computing is a recent paradigm that has proved to be quite
effective given the classical difficulty in training recurrent neural networks. An
approach to using reservoir recurrent neural networks has been recently proposed
for static problems and in this paper we look at the influence of the reservoir size,
spectral radius and connectivity on the classification error in these problems. The
main conclusion derived from the performed experiments is that only the size
of the reservoir is relevant with the spectral radius and the connectivity of the
reservoir not affecting the classification performance.

1 Introduction

Recently a new paradigm for Recurrent Neural Networks (RNNs) has been proposed
with the Echo State Networks (ESN) [1] and the Liquid State Machines (LSM) [2].It is
called reservoir computation [3].

These types of networks have been used traditionally for time domain tasks. But a
proposal for its use in static classification problems has been done in [4,5]. These papers
showed how the reservoir approach could be used in static classification problems and
made a benchmark study showing that this approach is quite competitive. One of the
key issues is the specification of the reservoir: its size, connectivity and spectral radius.
These values depend, of course, on the influence they have on the performance of the
learning machine. A study on how they influence the performance is needed.

In this paper we perform such study: we made controlled experiments where only
one of these parameters is varied at a time such that its effect on the performance can
be observed. This is not straightforward since changing either the size, connectivity or
the random initialization of the reservoir weights changes the spectral radius in a way
that is not analytically foreseeable.

The presented experiments showed the following results: first, the size of the reser-
voir in terms of the number of neurons it possesses is directly related to the classification
performance: as the size increases so does the error. Second, the spectral radius does
not seem to have any influence on the performance, as long as it is under 1.0 (otherwise
the stabilization process would not converge). This is in contrast to what seems to be
the case of time dependent problems [6]. The third conclusion is that the connectivity
does not seem to affect the performance either.
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Fig. 1. Representation of a reservoir network. Large circles are the neurons and the small ones
represent the input data. The middle (blue) layer is the reservoir. Dashed connections are optional
(and not used in this paper). Only a small subset of all possible connections is represented.

The remaining of the paper is organized as follows: the next section presents a brief
introduction to reservoir computing; section 3 explains how reservoir computing can be
adapted to static classification problems. In section 4 we present the experiments and
the last section contains the conclusions.

2 Reservoir Computing

The idea of reservoir computing revolves around using a large recurrent hidden layer
(called the reservoir) with fixed weights and only adjusting the output layer weights
(see figure 1). Since the output layer neurons use linear activation functions (usually
the identity function), learning can be done with a linear system solver. This solves a
big problem in traditional RNNs training which had to deal with the minimization of a
usually complex function.

For the most simple case (the only recurrent connections are in the reservoir), we can
write the state x(t+1) of a N neurons reservoir at time t+1, of an ESN with K inputs
and L outputs, as:

x(t + 1) = f(Wx(t) + W inu(t + 1)) (1)

where f(·) is the reservoir nonlinear activation function, W is the N × N reservoir
weight matrix, W in is the N × K input weight matrix and u(t + 1) is the input data.

The L-dimensional network output is given by

y(t) = g(W outx(t)) (2)
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where g(·) is the output linear activation function and W out is a L × N output weight
matrix. We consider the activation function g(·) to be the identity function.

Regarding the solution of the linear problem that yields the output layer weights, any
linear solver can be used. Consider m to be the number of training patterns. The states
are collected in a m × N matrix, S, and the desired values go into a m × L matrix, D.
The system to be solved is

S(W out)′ = D (3)

The problem with this formulation is that S is not squared and depends on m. With
a simple operation it is possible to deal with both these issues: just multiply both sides
by S′

(S′S)(W out)′ = (S′D) (4)

This transformation does not change the solution of the system but makes it independent
of m and with the new matrix R = S′S, square.

Moreover, more evolved ways than the simple solver can be used, such as, ridge
regression or partial least squares [7]. The problem with these approaches is that an-
other parameter must be found: in the first case, the regularization parameter and in the
second, the number of latent variables. In this paper we used the LAPACK’s [8] linear
solver to solve directly the system in (4) thus requiring no further parameters but not
benefiting from regularization.

3 Reservoir Approach to Static Pattern Classification

The way to use a reservoir network for static pattern classification was introduced, to
our best knowledge, in [4].

The issue was that the reservoir had a dependency of its state, x(t + 1), on the
previous network state, x(t), as can be seen in equation (1).

To break this dependency, that is meaningless in static classification tasks, a stabi-
lization phase was proposed in [4]: keep each input signal present in the network input
until the outputs of the reservoir neurons have almost no change. During stabilization
the output layer is ignored. This way the reservoir can now process data that is not
ordered in time.

The index t in the equations is only used to distinguish between different patterns
and does not represent time.

The state equation is iterated (upper index) until x(t + 1) does not change signifi-
cantly. Notice that we do not use the activation function here.

x(t + 1)(i) = Wx(t + 1)(i−1) + W inu(t + 1) (5)

where x(t + 1)(0) = 0. Equation (5) replaces equation (1) in the case of static classifi-
cation tasks.

4 Experiments

In this section we present experiments to evaluate the importance of the reservoir size,
its spectral radius and connectivity.
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4.1 Datasets

We chose 5 datasets freely available to perform the tests.
All datasets are from the UCI repository [9] with the exception of Olive which is

from [10]. Table 1 contains their main features.

Table 1. Dataset list with its properties

Dataset N. classes N. features N. points
Diabetes 2 8 768
Iris 3 4 150
Olive 9 8 572
Sonar 2 60 208
Wine 3 13 178

4.2 Parameters

Consider N to be the number of neurons in the reservoir, s the connectivity of the
neurons in the reservoir (e.g., s = 0.1 means that only 10% of the possible connections
are not null) and ρ to be the spectral radius (the size of the largest eigenvector) of the
reservoir weight matrix.

The issue in these experiments was: how to vary only one of the parameters without
varying the remaining ? It is not possible to change the spectral radius, ρ, directly. It
depends on N , s, the distribution of the random weights in the reservoir and also on the
range of possible values for these weights: [−init, init]. Changes in either N , s or init
will all change ρ in a way that is not possible to analytically predict since the matrices
are randomly generated.

To be able to vary only one of the parameters we generated 10 random reservoirs for
each triplet (N, s, init) and ploted the average ρ. This was done keeping the value of
N fixed. The left plot in figure 2 shows the results when N was kept at 200. The right
plot presents the contours of left plot: this information was used to follow a contour and
find the values of init that made ρ constant for different values of s, for this particular
value of N . The whole process was repeated for all values of N listed above.

A similar analysis was done for the case where s was fixed and N and init varied.
Using the information gathered on the contours lines, we produced 10 reservoirs with

the desired ρ up to an error of 0.005, by trial and error, for each combination on N , s
and ρ used in the experiments: each reservoir was used in one of the repetitions of a
2-fold cross validation.

In the graphics below, the values of the parameters varied according to:

N = {20, 35, 50, 65, 80, 100, 150, 200, 250, 300, 350},
s = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35} and
ρ = {0.20, 0.40, 0.60, 0.80, 0.99}.

4.3 Results

Consider figures 3 to 7. Regarding the left plot, each color ball represents the average
error of 10 repetitions of a 2-fold cross validation, on the respective dataset. The color
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Fig. 2. The left plot shows the spectral radius as a function of connectivity and the half-size of the
random reservoir weights init. The right figure contains the contour plot of left one. The values
of the pairs (s,init) for the first 5 contours from the left were used to keep the spectral radius
fixed for varying s.
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Fig. 3. Results for the Diabetes dataset

encodes the average error according to the scales by the main graphics. The right plots
contain the average error for each of N , s and ρ found averaging the error over all
the remaining parameters, i.e., for N = 20, the figures show the average error when
N = 20 for all the possible values of s and ρ.

4.4 Condition Number

To evaluate if the problem with increasing the size of the reservoir is due to numeric
instability in the linear system solver, we found the condition number of the matrix R
for each dataset.
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Fig. 4. Results for the Iris dataset
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Fig. 5. Results for the Olive dataset

The condition number of a matrix A is κ(A) = ||A||.||A−1||. If we choose the L2
norm we find that κ(A) = σmax/σmin where σmax is the maximum and σmin the
minimum singular values of A. The condition number should be small to ensure the
stability of the numeric calculations.

Since the previous experiments showed that the values of the spectral radius and the
connectivity did not influence the performance, we repeated the experiments just taking
N into account (fixing the other two parameters).

Figure 8 shows the value of the condition number for each of the datasets as N varies.
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Fig. 6. Results for the Sonar dataset

Table 2. Best results and respective parameters for all datasets

Dataset Error Std. dev. N s ρ

Diabetes 22.85 1.07 20 0.05 0.99
Iris 2.47 1.04 20 0.20 0.80
Olive 4.63 0.52 65 0.25 0.80
Sonar 23.75 2.9 35 0.15 0.20
Wine 3.99 0.93 20 0.10 0.20

4.5 Discussion

Table 2 presents the best results for each dataset and the respective parameters. The
values do not point to a “best” value of s or ρ. But for N , we see that smaller values
are preferred (3 out of 5 of the values are the smallests tested, 20; another is the next in
terms of size, 35; the last one is 65 which is still much smaller than the largest tested
value of 350).

From the figures 3 to 7 and table 2 we conclude that as N increases the error increases
for all datasets, with the exception of Sonar in which case the error decreases from
N = 20 to N = 35 and then continues increasing. The error for the Olive dataset also
shows a small decrease for the first values of N but it rapidly increases as N grows. This
is surprising as one would suppose no harm would come from an oversized reservoir,
other than computational cost. What appears to be happening is a problem with the liner
system solving. As can be seen from the values of the condition number of the matrix
R in figure 8, the problems become ill-conditioned very fast with the increase in the
size N .

The spectral radius and the connectivity do not seem to influence the performance at
all. Notice the behavior of error as a function of these two parameters in the two lower
right plots of figures 3 to 7 and also the figure’s scale: parameter changes only make
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Fig. 7. Results for the Wine dataset
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Fig. 8. Logarithm of the condition number of R for each of the datasets as N varies

minor random changes in the performance. This point is made clear in table 3 where the
difference between the largest and the smallest values of the error when both the spectral
radius and the connectivity are varied, is presented for all datasets, in absolute value and
as a percentage of the mean error. The differences in the error that come from varying
both the spectral radius and the connectivity are always under 0.9% in absolute terms
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Table 3. Percentage changes in the error induced by changes in the spectral radius and the con-
nectivity both in absolute and relative terms

Spectral radius Connectivity
Absolute [%] Relative [%] Absolute [%] Relative [%]

Diabetes 0.24 0.77 0.18 0.57
Iris 0.71 2.21 0.58 1.79
Olive 0.17 0.93 0.43 2.33
Sonar 0.32 0.80 0.30 0.74
Wine 0.61 1.85 0.84 2.50

and under 2.5% in relative terms. With the exception of the change in the spectral radius
for the Diabetes dataset that decreases the error as ρ increases (see bottom right plot
in figure 3) there is no other linear relation between the changes in these parameters and
the error variations. Even in this case, we believe that this apparent inverse correlation
is casual since only 5 different values of ρ are considered.

Regarding the values of N at which the values of the error stop increasing (top right
plot in figures 3 to 7), they are the same as the ones where the condition number also
stops increasing. These values of N are the ones closer to the size of the training sets.
Remember, the evaluation is done using 2-fold cross validation. For instance, in the case
of Iris, the training set will have 75 points. The error shows its peak around this value
of N (see the right plot in figure 4) and also the condition number stops increasing after
this value (see figure 8). So one concludes that, when using a simple linear solver, the
value of N should always be smaller than the size of training set.

5 Conclusions

This paper presented a study on the influence of several parameters on the classification
performance of reservoir networks for static pattern classification.

The study showed that: 1) The spectral radius of the reservoir matrix does not in-
fluence the classification performance given that it remains in the interval (0, 1) such
that the stabilization process converges; 2) An increase in the size of the reservoir in-
creases the error apparently as a result of the ill-conditioning of the linear system solver
(improvements might be obtained using, for instance, ridge regression); 3) The con-
nectivity does not change the results; 4) The value of N should not exceed the size of
training set when using a simple linear solver.
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