
A Genetic Algorithm-Evolved 3D Point Cloud
Descriptor ?

Dominik Wȩgrzyn and Luı́s A. Alexandre

IT - Instituto de Telecomunicações
Dept. of Computer Science, Univ. Beira Interior, 6200-001 Covilhã, Portugal

Abstract. In this paper we propose a new descriptor for 3D point clouds that is
fast when compared to others with similar performance and its parameters are set
using a genetic algorithm. The idea is to obtain a descriptor that can be used in
simple computational devices, that have no GPUs or high computational capa-
bilities and also avoid the usual time-consuming task of determining the optimal
parameters for the descriptor. Our proposal is compared with other similar algo-
rithms in a public available point cloud library (PCL [1]). We perform a compara-
tive evaluation on 3D point clouds using both the object and category recognition
performance. Our proposal presents a comparable performance with other similar
algorithms but is much faster and requires less disk space.

1 Introduction

The current cheap depth+RGB cameras like the Kinect and the Xtion have increased
the interest in 3D point cloud acquisition and processing. One of the key steps when
processing this type of data are the descriptors, that enable a compact representation of
a region of a point cloud. Although there are already several available descriptors [1,
2], the motivation for this work was two-fold: first, many of the available descriptors
are computationally demanding, and make it difficult to use them in computationally
restricted devices; second, all the descriptors require the adjustment of one or more
parameters, which is usually done using a grid search or other similar process, which
can be a lengthy process.

The aim of this work is to design a descriptor that is computationally simple and
hence fast and that has its parameters obtained using a genetic algorithm (GA), so as to
address the two points raised above.

Section 2 presents the pipeline used in this work, from the input clouds to the match-
ing stage. Section 3 explains the ideas behind the proposed descriptor. The following
section describes the use of the GA with our descriptor. Section 5 illustrates the results
of the new descriptor and compares it to similar available descriptors. The final section
contains the conclusion and possible future work.

2 3D Object Recognition Pipeline

In this work the proposed descriptor uses both shape and color information. In order to
represent this information histograms were used.
? We acknowledge the financial support of project PEst-OE/EEI/LA0008/2013.

2

First keypoints are extracted from the input clouds in order to reduce the cost of
computing the histograms. The keypoint cloud represents the input cloud by contain-
ing only a subset of the original cloud such that an increased processing speed can be
achieved.

After computing the keypoints we find the normals of both, the input and the key-
point clouds. The normals are used in the calculation of the shape histograms that will
be part of the final descriptor, as described below. The keypoint cloud is obtained from
the input cloud using a VoxelGrid [1] with leaf size of 2 cm.

The second part of the descriptor consists in adding color information. For this
purpose the RGB colors are transformed into HSV. This model is used because with
the HSV color space we can use only the H and S channels and obtain illumination
invariance in terms of color representation. We create another histogram for the color
component using the hue and saturation channels. For the matching process the input
cloud descriptor is compared against the stored descriptors of known objects, using a
set distance function. The object recognition pipeline used is presented in figure 1.

Keypoint Extraction

Input Cloud

Object Database

Normals Extraction Color Extraction

Descriptor Extraction

Matching

Fig. 1. Object recognition pipeline

3

3 Descriptor

3.1 Regions around the keypoints

The descriptor contains two parts: one to represent the shape and another to represent
the color. The data used are collected from two regions around the keypoints, the first is
a disk with radius R1 and the second is a ring obtained by removing the first disk from
the one obtained using radius R2. This approach was proposed in [3]. These regions are
illustrated in figure 2.

2

R1

R

Keypoint

Region 1

Region 2

Fig. 2. The two concentric regions used to collect data around a keypoint: a disk (region 1) and a
ring (region 2).

The advantage of using this disk and ring regions is that it makes it possible to
analyze two areas around the keypoint to create the histograms. They separate the in-
formation between points that are very close to the keypoint and the points that further
away from it, yielding a better representation of the region around the keypoints.

3.2 Shape information

After computing the keypoint clouds and all normals, for each keypoint we search all
of its neighbors inside region 1. This search is done in the original input cloud and for
this task the PCL utility KdTreeFLANN [1] is used.
The next step consists in finding the angle between the normal of this neighbor and the
normal of the keypoint. This will give us information regarding the object’s shape in
the keypoint’s neighborhood. Equation 1 shows how to calculate the angle.

angle = arccos

(
Normalkeypoint ·Normalneighbor

||Normalkeypoint|| · ||Normalneighbor||

)
(1)

The angle is used in degrees.

4

We use an histogram to count the occurrences of the angles in the keypoint’s neigh-
borhood. The incremented bin is found using equation 2, where shapebins is the total
number of histogram bins.

bin =
angle · (shapebins − 1)

360
(2)

After we have found all angle for the points in a keypoint’s neighborhood, the
histogram is normalized to sum 1.

The process just described is done also for the region 2 and a second shape his-
togram is obtained, at the same keypoint.

3.3 Color information

The color histogram contains the saturation and hue information.
Again we look at the neighbors of a keypoint for their hue, H , and saturation, S,

values and select a binh and a bins, using the equations (3 and 4), where the total
number of bins is m2.

binh =
H ·m
360

(3)

bins =
S ·m
100

(4)

Now to find the correct colorbin to be incremented in the color histogram, we use
the coordinates (binh, bins) in the equation 5.

colorbin = m · binh + bins (5)

The color histogram is normalized to sum 1.
As we did in the case of the shape information, the process is repeated for region 2,

yielding a second normalized color histogram.
The two histograms for regions 1 and 2 are concatenated yielding a single color

histogram with a total number of bins equal to 2m2.

3.4 Cloud distance

To find the matching objects we need to compute the distances between two clouds.
In order to get the distances between shape histograms from two clouds first we

compute the centroid of the shape histograms of each cloud (c1 and c2), then using the
chi-squared distance [4] (equation 6) we get the distance between the two centroids.

dcent =
∑
i

(c1[i]− c2[i])
2

2(c1[i] + c2[i])
(6)

Then we do a similar step but instead of using the centroids we use the standard
deviation of the histograms of each cloud. Equation 7, shows how to find this value for
cloud 1, and a similar calculation should be done for the second cloud to be compared.

5

h1 is the shape histogram, while c1 is the centroid and N1 is the number of keypoints in
this cloud. We use the same process (equation 6) to get the distance, dstd, between these
standard deviations histograms (std1 and std2) as we used for the centroid histograms
(c1 and c2).

std1 =

√∑
i(h1[i]− c1[i])2

N1 − 1
(7)

Finally we sum the centroid distance, dcent, with the standard deviation distance
dstd, [2] for the final shape distance: dsh = dcent + dstd. The same process is used to
compute the color histogram distance, dcl.

Equation 8 shows how we compute the final distance (dfinal) between two clouds,
where dsh is the shape distance between two histograms and dcl is the color distance
between the same histograms. We use the weight w to represent the relative importance
of the shape and color information regarding the final distance.

dfinal = dsh · w + dcl · (1− w) (8)

The next step is to find which test cloud fits best to each training cloud, this means
the one with the smallest distance. The results of the matching of all test point clouds
are used to produce the final result of the dataset.

4 Genetic Algorithm

In this work a genetic algorithm [5], tries to find the optimal parameters for the 3D cloud
descriptor. The chromosomes encode the following 5 descriptor parameters: Shapebins,
m, R1, R2 and w (which is in fact used in the distance between the descriptors, and not
in the descriptors themselves).

The role of each of these parameters in the creation of the descriptor was explained
in the previous section.

The GA has some restrictions, which are the intervals in which the parameters lie.
The parameter Shapebins is set between 8 and 64. The parameter m is set between 3
and 8. The parameter R1 is set between 0.5 and 2.0 cm and R2 is set between 2.1 and
5.0 cm. The R2 has the maximal value possible set to 5.0 cm as the other descriptors
used to compare with our descriptor also use this value. The last parameter optimized
by the GA is the weight w, that is allowed to vary between 0 and 1.

The chromosomes are binary encoded. The initial population is set randomly. The
population used consisted of 10 chromosomes. This small value was chosen in order to
avoid the generations taking too much time to compute. The object error represents the
percentage of correctly matched point clouds from the training set 1 among the point
clouds from training set 2 and is used as the fitness of the chromosome (training set 1
and training set 2 that are explained in the experiments section). The elitism selection
[6] and the roulette-wheel selection [6] were used in order to make the selection. The
used crossover technique is the uniform crossover [6]. Mutation makes it possible to
search a wide area of solutions in order to find the optimal solution. The mutation used

6

is the in-order mutation [6]. The mutation probability is set to 40% in the first generation
and decreases exponentially after each successive generation.

The GA needs to be able to stop the evolution when the goal is achieved. The stop-
ping criterion is set to either the number of generations reaching 200 generations, or if
no better solution in 40 consecutive generations is found, or if a solution with 100% of
correct object matches is found.

After each generation we measure the validation error of the best chromosome.
This way we avoid the overfitting of the descriptor that could lead to the loss of the
ability that the descriptor has to recognize point clouds. For this purpose we check in
a validation subset of point clouds (apart from the clouds used by GA to determine
the best parameters for the descriptor) for the validation error of the best chromosome.
When this error begins to rise, we stop the AG and consider that we have found the best
descriptor.

5 Experiments

5.1 Dataset

A subset of the large dataset1 of 3D point clouds [7] was used to perform experiments.
The clouds were divided into four subsets, constituted by two training subsets, one
validation subset and one test set. The testclouds subset is composed by 475 different
views of 10 objects and is used to calculate the final performance of the descriptor using
943 training clouds as possible match. The validationclouds subset has 239 clouds and
is used to avoid the overfitting of the descriptor. We calculate the validation error of the
best chromosome of each generation when making use of the GA. For this purpose we
check how many clouds from the validationclouds are correctly matched, using 704
training clouds as the matching clouds. On the other hand these 704 training clouds are
divided into training1 and training2 subsets. Those two training subsets were used
by the GA to get the object error of the chromosomes (both training1 and training2
subsets contain 352 clouds).

5.2 Results

The code used to implement our descriptor can be downloaded online2.
The best chromosome optimized by the GA has 60 shape bins, m = 8, R1 = 1.3

cm, R2 = 3.6 cm and w = 0.67. After the matches are done, we check how many of the
475 test clouds were correctly matched to the 943 training clouds. The best descriptor
uses 248 bins to represent the point cloud. This descriptor has an accuracy of 72.47%
in matching the cloud to the correct object (from the 474 test clouds 344 were correctly
matched – one of the test clouds was not used since it had less than 10 points) and
89.66% in matching the cloud to the correct category.

In the paper [2] some available descriptors were tested to get their performance and
computational time. Table 1 shows the performance of those descriptors, that were ex-
tracted using the same point clouds as the ones used to evaluate the descriptor proposed

1 http://www.cs.washington.edu/node/4229/
2 http://www.di.ubi.pt/˜lfbaa

7

in this paper. The column time refers to the necessary time to match the 475 test clouds
using 943 point clouds as the training set. The column size refers to the number of real
values required to store one descriptor.

Table 1. Descriptors performance: test errors for the object and category recognition tasks along
with time and size requirements.

Descriptor Object (%) Category (%) Time (s) Size
PFHRGB 20.25 5.27 2992 250

SHOTCOLOR 26.58 9.28 178 1353
Our 27.43 10.34 72 248

As we can see the SHOTCOLOR takes 178 s to compute, while our descriptor takes
only 72 s using the same machine. Although we have a slightly lower accuracy, the
temporal advantage can be important in real time applications. The PFHRGB has the
best accuracy, however it takes 2992 s to compute. In terms of size, we can see that our
descriptor uses only 248 real values that is significantly less than the SHOTCOLOR’s
1353 and still less than the 250 values per descriptor that PFHRGB uses. Figure 3
contains the recall × (1-precision) curves for the object recognition experiments.

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
c
a
ll

1-Precision

PFHRGB

SHOTCOLOR

OUR

Fig. 3. Recall × (1-precision) curves for the object recognition experiments.

8

Although the PFHRGB curve is better than ours, we can see that our curve is close
to the SHOTCOLOR curve and when we have a recall larger than 0.35 our curve is
better than the SHOTCOLOR’s.

6 Conclusion

In this paper we presented a new descriptor for 3D point clouds that takes advantage of
a genetic algorithm to find good parameters. It presents a performance similar to other
existing descriptors, but is faster to compute and uses less space to store the extracted
descriptors.

Our descriptor when compared to the SHOTCOLOR presents a slightly higher error
(27.43% versus 26.58% object recognition error) but it is much faster (uses 40% of the
time needed by the SHOTCOLOR) and occupies less space. When compared to the
PFHRGB, it is substantially faster (uses only 2.5% of the time needed by PFHRGB),
uses the same space but has higher error (27.43% error versus 20.25%). So our proposal
can be used to replace these descriptors, when extraction speed is important.

A possible way to improve the quality of the descriptor is to let the GA optimize not
only the values of the parameters, but also the entire structure of the descriptor (types
of angles used, their number, types of regions to consider and their shapes).

References

1. Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (pcl). In: IEEE International Confer-
ence on Robotics and Automation (ICRA). (2011)

2. Alexandre, L.A.: 3D descriptors for object and category recognition: a comparative evalua-
tion. In: Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal (October 2012)

3. Torsten Fiolka, Jorg Stuckler, D.A.D.S., Behnke, S.: Place recognition using surface entropy
features. In: in Proc. of IEEE ICRA Workshop on Semantic Perception, Mapping, and Explo-
ration, Saint Paul, MN, USA. (2012)

4. Puzicha, J., Hofmann, T., Buhmann, J.M.: Non-parametric similarity measures for unsuper-
vised texture segmentation and image retrieval. 2012 IEEE Conference on Computer Vision
and Pattern Recognition 0 (1997) 267–272

5. Holland, J.H.: Adaptation in Natural and Artificial Systems. A Bradford Book (1975)
6. Engelbrecht, A.P.: Computational Intelligence, An Introduction. John Wiley & Sons (2002)
7. K. Lai, L. Bo, X.R., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In:

Proc. of the IEEE International Conference on Robotics and Automation (ICRA). (2011)

