
DropAll: Generalization of Two Convolutional
Neural Network Regularization Methods

Xavier Frazão and Lúıs A. Alexandre

Dept. of Informatics, Univ. Beira Interior
and Instituto de Telecomunicações ?

Covilhã, Portugal
xavierfrazao@gmail.com

lfbaa@ubi.pt

http://www.ubi.pt

Abstract. We introduce DropAll, a generalization of DropOut [1] and
DropConnect [2], for regularization of fully-connected layers within con-
volutional neural networks. Applying these methods amounts to sub-
sampling a neural network by dropping units. Training with DropOut, a
randomly selected subset of activations are dropped, when training with
DropConnect we drop a randomly subsets of weights. With DropAll we
can perform both methods. We show the validity of our proposal by im-
proving the classification error of networks trained with DropOut and
DropConnect, on a common image classification dataset. To improve the
classification, we also used a new method for combining networks, which
was proposed in [3].

1 Introduction

Convolutional neural networks (CNNs) are hierarchical neural networks whose
convolutional layers alternate with subsampling layers, reminiscent of simple
and complex cells in the primary visual cortex [4]. Although these networks
are efficient when performing classification, they have the disadvantage of being
computationally heavy, which makes their training slow and cumbersome.

With the emergence of parallel programming and taking advantage of the
processing power of Graphics Processing Units (GPUs), training these networks
takes significantly less time, making it possible to train large networks [5, 6]
and also making it possible to train multiple networks for the same problem
and combine their results [2, 1], an approach that can significantly increase the
classification accuracy.

Besides the training time, the major problem of these networks is the overfit-
ting. Overfitting still remains a challenge to overcome when it comes to training
extremely large neural networks or working in domains which offer very small
amounts of data. Many regularization methods have been proposed to prevent

? We acknowledge the support given by Instituto de Telecomunicações through project
PEst-OE/EEI/LA0008/2013



2 Xavier Frazão and Lúıs A. Alexandre

this problem. These methods combined with large datasets have made it pos-
sible to apply large neural networks for solving machine learning problems in
several domains. Two new approachs have been recently proposed: DropOut [1]
and DropConnect [2], which is a generalization of the previous. When training
with DropOut, a randomly selected subset of activations is droped. With Drop-
Connect, we randomly drop the weights. Both techniques are only possible for
fully connected layers.

In this paper, we propose a generalization of both methods named DropAll.
With this approach we were able to train a network with DropOut, DropConnect
or both and taking advantage of each method.

2 Convolutional Neural Networks

A classical convolutional network is composed of alternating layers of convolution
and pooling. The purpose of the first convolutional layer is to extract patterns
found within local regions of the input images. This is done by convolving filters
over the input image, computing the inner product of the filter at every location
in the image and outputting the result as feature maps c. A non-linear function
f() is then applied to each feature map c : a = f(c). The resulting activations a
are passed to the pooling/subsampling layers. These layers aggregate the infor-
mation within a set of small local regions, {Rj}nj=1, producing a pooled feature
map s of smaller size as output.

Representing the aggregation function as pool(), then for each feature map
c, we have: sj = pool(f(ci)) ∀i ∈ Rj .

The two common choices to perform pool() are average and max-pooling.
The first takes the arithmetic mean of the elements in each pooling region, while
max-pooling selects the largest element of the pooling region.

A range of functions f() can be used as a non-linearity – tanh, logistic,
softmax and relu are the most common choices.

In a convolutional network model, the convolutional layers, which take the
pooled maps as input, can thus extract features that are increasingly invariant
to local transformations of the input image.

The last layer is always a fully connected layer with one output unit per class
in the recognition task. The activation function softmax, is the most common
choice for the last layer such that each neuron output can be interpreted as the
probability of a particular input image belonging to that class.

3 Related Work

3.1 Ensembles of CNNs

Model combination improves the performance of machine learning models. Av-
eraging the predictions of several models is most helpful when the individual
models are different from each other, in other words, to make them different
they must have different hyperparameters or be trained on different data.



DropAll: Generalization of Two Regularization Methods 3

Fig. 1. The output probabilities are averaged to make the final prediction.

The standard model architecture to combine networks can be seen in figure
1. Given some input pattern, the output probabilities from all CNN are averaged
before making a prediction. For output i, the average output Si is given by:

Si =
1

n

n∑
j=1

rj(i) (1)

where rj(i) is the output i of network j for a given input patern.
We recently proposed a new approach to combining neural networks called

Weighted Convolutional Neural Network Ensemble (WCNNE)[3] that presented
better results than doing just the simple average of the predictions. This method
consists in applying a different weight for each network. Networks that had a
lower classification error in the validation set, will have a larger weight when
combining the results. The model architecture can be seen in figure 2. Given
some input pattern, the output probabilities from all CNNs are multiplied by a
weight before the prediction:

Si =

n∑
j=1

Wjrj(i) (2)

The weights Wk is choosen by rank and are based on the order of accuracy
in the validation set. This means that the weights are fixed, independently on
the value of the error:

Wk =
R(Ak)∑n
i=1 R(Ai)

(3)

where R() is a function that gives the position of the network based on the
validation accuracy sorted in increasing order. For example, the network with



4 Xavier Frazão and Lúıs A. Alexandre

Fig. 2. The output probabilities are weighted based on the accuracy of the network
evalueted on the validation set.

largest accuracy will have an R() value of n, the network with the second largest
accuracy an R() value of n− 1 and so on until the network with lowest accuracy
gets an R() = 1.

This method has the particularity of not looking only at the value of the val-
idation error, but also for the network positions in terms of the ranked error list.
Even though the difference in error between the two networks might be minimal,
the weight value remains fixed, attributing a significantly greater importance to
the network that achieved better results in the validation set.

3.2 Regularization

Two approachs for regularizing CNNs have been recently proposed, DropOut
[1] and DropConnect [2]. Applying DropOut and DropConnect amounts to sub-
sampling a neural network by dropping units. Since each of these processes acts
differently as a way to control overfitting, the combination of several of these
networks can bring gains, as will be shown below.

DropOut is applied to the outputs of a fully connected layer where each
element of an output layer is kept with probability p, otherwise being set to 0
with probability (1− p). If we further assume a neural activation function with
a(0) = 0, such as tanh and relu, the output of a layer can be written as:

r = m ∗ a(Wv) (4)

where m is a binary mask vector of size d with each element j coming inde-
pendently from a Bernoulli distribution mj ∼ Bernoulli(p), W is a matrix with
weights of a fully-connected layer and v are the fully-connected layer inputs [2].



DropAll: Generalization of Two Regularization Methods 5

Fig. 3. The left figure is an example of DropOut. Right figure is an example of Drop-
Connect.

Fig. 4. Example of DropAll model.

DropConnect is similar to DropOut, but applied to the weights W . The
connections are choosen randomly during the training. For a DropConnect layer,
the output is given as:

r = a((M ∗W )v) (5)

where M is weight binary mask, and Mij ∼ Bernoulli(p). Each element of
the mask M is drawn independently for each example during training [2]. Figure
3 illustrates the differences between the two methods.

4 DropAll

DropAll is a generalization of DropOut [1] and DropConnect [2], for regularizing
fully-connected layers within neural deep networks. In the previous section we
saw that DropOut is described by equation 4 and DropConnect is described by
equation 5. For a DropAll layer, the output is given as:

r = m ∗ a((M ∗W )v) (6)

The DropAll model is presented graphically in figure 4. This approach has
the particularity of being easily adaptable to one of the previous methods. In
these two methods, we had only one variable where we choose the percentage of
drops, with DropAll we have 2 variables. One variable controls the drop rate of
the activation while the other variable controls the drop rate of the weight. If we



6 Xavier Frazão and Lúıs A. Alexandre

Table 1. CIFAR-10 average classification error in percentage and standard deviation
using 4 types of networks and 2 types of combiners, using 64 feature maps.

Model DropAll DropConnect DropOut NoDrop

5 networks 11.20 ±0.10 11.18 ±0.15 11.28 ±0.17 10.92 ±0.15

WCNNE 10.01 9.81 10.31 10.03

Simple Average 10.03 9.84 10.48 10.06

set one of these variables to one, the drop rate value will be zero and we obtain
either DropOut or DropConnect.

In both methods the value of the drop rate used is usually 0.5, however if we
train with DropAll with 0.5 in both rates, network discards a lot of information,
which is reflected in the results. To solve this problem, the drop rate must be
smaller for both variables. When testing the network with different drop rates,
we concluded that 0.25 is a good compromise.

In the following section we compare DropAll with DropConnect, DropAll and
NoDrop (trained network without dropping units). All of these methods used
in conjunction, provide a greater randomness when tested and combining the
results from different networks trained by these techniques significantly improves
the classification rates.

5 Experiments

Our experiments use a fast GPU based convolutional network library called
Cuda-convnet [7] in conjunction with Li’s code [1] that allows training networks
with DropOut, Dropconnet and DropAll. We use a NVIDIA TESLA C2075 GPU
to run the experiments. For each dataset we train five networks with DropAll,
DropConnect, DropOut and NoDrop (five of each).

Once the networks are trained we save the mean and standard deviation of the
classification errors produced individually by each network and the classification
error produced by these networks when combined with our proposed method [3]
and simple average. These results are shown in Tables 1-3. We used the CIFAR-
10 dataset [8] to evaluate our approach.

5.1 CIFAR-10

The CIFAR-10 dataset [8] consists of 32 x 32 color images drawn from 10 classes
split into 50 000 train and 10 000 test images.

Before feeding these images to our network, we subtract the per-pixel mean
computed over the training set from each image as was done in [1]. The images
are cropped to 24x24 with horizontal flips.

We use two feature extractors to perform the experiment. The first, consists
in 2 convolutional layers, with 64 feature maps in each layer, 2 maxpooling
layers, 2 locally connected layers, a fully connected layer which has 128 relu



DropAll: Generalization of Two Regularization Methods 7

Table 2. CIFAR-10 average classification error in percentage and standard deviation
using 4 types of networks and 2 types of combiners, using, using 128 feature maps.

Model DropAll DropConnect DropOut NoDrop

5 networks 10.67 ±0.11 10.53 ±0.14 10.53 ±0.13 10.53 ±0.17

WCNNE 9.57 9.68 9.55 9.61

Simple Average 9.62 9.81 9.71 9.64

Table 3. CIFAR-10 average classification error combining our 12 best networks using
2 types of combiners, using 128 feature maps. Previous state-of-the-art using the same
architecture is 9.32% [2]. Current state-of-the art of CIFAR-10 is 8.81% [9].

Model WCNNE Simple Average

12 networks 9.09 9.22

units on which NoDrop, DropOut, DropConnect or DropAll are applied and
a output layer with softmax units. We train for three stages of epochs, 500-
100-100 with an initial learning rate of 0.001, that its reduced by factor 10
between each stage. We chose this fixed number of epochs because it is when
the validation error stops improving. Training a network takes around 4 hours.
The second feature extractor is similar but with 128 feature maps in each layer
and the number of epochs is smaller, 350-100-50. Training a network with 128
maps takes around 20 hours. In these experiments we compared the results using
our approach (WCNNE) [3] for combining networks and simple average, both
described in this paper.

The first experiment used a feature extractor with 64 feature maps (sum-
marized in Table 1) and combined networks that were trained with DropAll,
DropConnect, DropOut and NoDrop. NoDrop individually obtained better re-
sults and networks with DropOut were the ones with the worst individual results.
By combining the nets, DropConnect achieved better results.

The second experiment used a feature extractor with 128 feature maps (sum-
marized in Table 2), we also combine networks that were trained with DropAll,
DropConnect, DropOut and NoDrop. DropOut individually achieved better re-
sults, and networks trained with DropAll were the ones with worst result. By
combining the nets, DropOut achieved better results.

In addition we join all models and combine our 12 best networks with low-
est validation error, and the results were significantly better (see Table 3). All
of these methods used in conjunction provide a greater randomness and sig-
nificantly improve the classification rate. If we combine our 12 best networks
without DropAll networks the error is slightly worse, 9.12%.



8 Xavier Frazão and Lúıs A. Alexandre

6 Conclusions

In this paper, we propose a new method named DropAll that is a generalization
of two well-known methods for regularization of convolutional neural networks,
used to avoid overfitting. These problem still remains a challenge to overcome
when it comes to training extremely large neural networks or working in domains
which offer very small amounts of data.

DropAll by itself, did not increase performance when we evaluate a network,
however, the flexibility of this method makes it possible to train a network using
the potential of DropOut and DropConnect. In general, networks trained with
these forms of regularization benefit from an increase randomness, which is a
plus when we wish to combine the results of multiple networks. As shown, the
combination of all methods significantly improves the classification rate of the
problem used in the experiments section to validate our proposal.

References

1. Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” CoRR, vol. abs/1207.0580, 2012.

2. Li Wan, Matthew Zeiler, Sixin Zhang, Yann L. Cun, and Rob Fergus, “Regular-
ization of neural networks using dropconnect,” in Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML-13), Sanjoy Dasgupta and David
Mcallester, Eds. May 2013, vol. 28, pp. 1058–1066, JMLR Workshop and Conference
Proceedings.

3. Xavier Frazao and Lúıs A. Alexandre, “Weighted convolutional neural network
ensemble,” in submitted, 2014.

4. Kunihiko Fukushima, “A neural network model for selective attention in visual
pattern recognition,” Biol. Cybern., vol. 55, no. 1, pp. 5–16, Oct. 1986.

5. K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-
stage architecture for object recognition?,” in Computer Vision, 2009 IEEE 12th
International Conference on, Sept 2009, pp. 2146–2153.

6. Kumar Chellapilla, Sidd Puri, and Patrice Simard, “High Performance Convolu-
tional Neural Networks for Document Processing,” in Tenth International Work-
shop on Frontiers in Handwriting Recognition, Guy Lorette, Ed., La Baule (France),
Oct. 2006, Université de Rennes 1, Suvisoft, http://www.suvisoft.com Université
de Rennes 1.

7. Alex Krizhevsky, “Cuda-convnet,” http://code.google.com/p/cuda-convnet/,
2012.

8. Alex Krizhevsky, “Learning multiple layers of features from tiny images,” Tech.
Rep., 2009.

9. Min Lin, Qiang Chen, and Shuicheng Yan, “Network in network,” CoRR, vol.
abs/1312.4400, 2013.


