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Abstract—When processing 3D point cloud data, features must
be extracted from a small set of points, usually called keypoints
or points of interest. This is done to avoid the computational
complexity required to extract features from all points in a point
cloud. There are many keypoint detectors, and this suggests the
need for a comparative evaluation. In this paper we propose
to make a description and evaluation of the keypoint detectors
most often cited in the literature and available in a public point
cloud library. We make a comparative assessment to verify the
invariance of the 3D keypoint detectors according to different
rotations, scales changes and translations. To do this evaluation,
we use absolute and relative repeatability rates. These measures
assess the geometric stability of the methods under various
transformations. Using these criteria, we evaluate the robustness
of the keypoint detectors with respect to changes in point-of-view.
The method that presents the best repeatability rate is the ISS3D.

Index Terms—3D Keypoints, 3D Interest Points, 3D Object
Recognition, Performance Evaluation

I. INTRODUCTION

The computational cost of descriptors is generally high, so

it does not make sense to extract descriptors in all points of a

cloud. Thus, keypoint detectors are used to select interesting

points in the cloud on which descriptors are then found.

The purpose of the keypoint detectors is to determine the

points that are different in order to allow an efficient object

description and correspondence with respect to point-of-view

variations [1].

This work is motivated by the need to quantitatively com-

pare different keypoint detector approaches, in a common and

well established experimentally framework, given the large

number of available keypoints detectors. Inspired by the work

on 2D features [2], [3] and 3D [4], and by a similar work on

descriptor evaluation [5], a comparison of several 3D keypoint

detectors is made in this work.

To evaluate the invariance of keypoints detection methods,

we extract the keypoints directly from the original cloud.

Moreover, we apply a transformation to the original 3D point

cloud before extracting another set of keypoints. Once we

get these keypoints from the transformed cloud, we apply

an inverse transformation, so that we can compare these

with the keypoints extracted from the original cloud. If a

particular method is invariant to the applied transformation,

the keypoints extracted directly from the original cloud should

correspond to the keypoints extracted from the cloud where the

transformation was applied.

The correspondence between the keypoints extracted di-

rectly from the original cloud and the ones extracted from

transformed cloud is done using the 3D point-line distance

[6]. A line in three dimensions can be specified by two points

x1 = (x1, y1, z1) and x2 = (x2, y2, z2) lying on it, then a

vector line is produced. The squared distance between a point

on the line with parameter t and a point x0 = (x0, y0, z0) is

therefore

d2 = [(x1 − x0) + (x2 − x1)t]
2 + [(y1 − y0)+

(y2 − y1)t]
2 + [(z1 − z0) + (z2 − z1)t]

2
. (1)

To minimize the distance, set ∂(d2)/∂t = 0 and solve for t to

obtain

t = − (x1 − x0) · (x2 − x1)

|x2 − x1|2
, (2)

where · denotes the dot product. The minimum distance can

then be found by plugging t back into 1. Using the vector

quadruple product ((A×B)2 = A
2
B

2− (A ·B)2) and taking

the square root results, we can obtain:

d =
|(x0 − x1)× (x0 − x2)|

|x2 − x1|
, (3)

where × denotes the cross product. Here, the numerator is

simply twice the area of the triangle formed by points x0, x1,

and x2, and the denominator is the length of one of the bases

of the triangle.

The low price of 3D cameras has increased exponentially

the interest in using depth information for solving vision tasks.

A useful resource for users of this type of sensors is the

Point Cloud Library (PCL) library [7] which contains many

algorithms that deal with point cloud data, from segmentation

to recognition, from search to input/output. This library is

used to deal with real 3D data and we used it to evaluate

the robustness of the detectors with variations of the point-of-

view in real 3D data.

The organization of this paper is as follows: the next section

presents a detailed description of the methods that we evaluate;

the results and the discussion appear in section III; and finally,

we end the paper in section IV with the conclusions.
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II. EVALUATED 3D KEYPOINT DETECTORS

A. Harris3D

The Harris method [8] is a corner and edge based method

and these types of methods are characterized by their high-

intensity changes in the horizontal and vertical directions.

These features can be used in shape and motion analysis,

they can be detected directly from the grayscale images. For

the 3D case, the adjustment made in PCL for the Harris3D

detector replaces the image gradients in the covariance matrix

by surface normals and uses the same responses. To find the

keypoints, they use a Hessian matrix of the intensity C around

each point. This matrix is smoothed by an isotropic Gaussian

filter wG(σ). That is CHarris = wG(σ) ∗ C, where σ is the

standard deviation of the filter and the operation ∗ denotes

convolution. A measure of the keypoints response at each pixel

coordinates (x, y, z) is then defined by

r(x, y) = det(CHarris(x, y, z))−k (trace(CHarris(x, y, z)))
2
,

(4)

where k is a positive real valued parameter. This parameter

serves roughly as a lower bound for the ratio between the

magnitude of the weaker edge and that of the stronger edge.

B. SIFT3D

The Scale Invariant Feature Transform (SIFT) keypoint

detector was proposed by Lowe [9]. The SIFT features are rep-

resented by vectors that represent local cloud measurements.

The main steps used by the SIFT detector when locating

keypoints are presented below.

The original algorithm for 3D data was presented by Flint et

al. [11], which uses a 3D version of the Hessian to select such

interest points. A density function f(x, y, z) is approximated

by sampling the data regularly in space. A scale space is

built over the density function, and a search is made for local

maxima of the Hessian determinant.

The input cloud, I(x, y, z) is convolved with a number of

Gaussian filters whose standard deviations {σ1, σ2, . . . } differ

by a fixed scale factor. That is, σj+1 = kσj where k is a

constant scalar that should be set to
√

2. The convolutions

yield smoothed images, denoted by

G(x, y, z, σj), i = 1, . . . , n. (5)

The adjacent smoothed images are then subtracted to yield

a small number (3 or 4) of Difference-of-Gaussian (DoG)

clouds, by

D(x, y, z, σj) = G(x, y, z, σj+1)−G(x, y, z, σj). (6)

C. SUSAN

The Smallest Univalue Segment Assimilating Nucleus

(SUSAN) corner detector has been introduced by Smith and

Brady [12] and relies on a different technique. Rather than

evaluating local gradients, which might be noise-sensitive and

computationally expensive, a morphological approach is used.

SUSAN is a generic low-level image processing technique,

which apart from corner detection has also been used for

edge detection and noise suppression. For each pixel in the

image, we consider a circular neighborhood of fixed radius

around it. The center pixel is referred to as the nucleus,

and its intensity value is used as reference. Then, all other

pixels within this circular neighborhood are partitioned into

two categories: similarity or differentiation, depending on

whether they have “similar” intensity values as the nucleus

or “different” intensity values. This way, each cloud point has

associated with it a local area of similar brightness, whose

relative size contains important information about the structure

of the cloud at that point. In more or less homogeneous parts of

the cloud, the local area of similar brightness covers almost the

entire circular neighborhood. Hence, corners can be detected

as locations in the cloud where the number of points with

similar intensity value in a local neighborhood reaches a local

minimum and is below a predefined threshold.

D. ISS3D

Intrinsic Shape Signatures (ISS) [13] is a method relying

on region-wise quality measurements. This method uses the

magnitude of the smallest eigenvalue (to include only points

with large variations along each principal direction) and the

ratio between two successive eigenvalues (to exclude points

having similar spread along principal directions).

The ISS Si = {Fi, fi} at a point pi consists of: the

intrinsic reference frame Fi = {pi, {ex
i , ey

i , ez
i }} where pi is

the origin, and {ex
i , ey

i , ez
i } is the set of basis vectors. The

intrinsic frame is a characteristic of the local object shape and

independent of viewpoint. Therefore, the view independent

shape features can be computed using the frame as a reference.

However, its basis {ex
i , ey

i , ez
i }, which specifies the vectors of

its axes in the sensor coordinate system, are view dependent

and directly encode the pose transform between the sensor

coordinate system and the local object-oriented intrinsic frame,

thus enabling fast pose calculation and view registration.

III. EXPERIMENTAL EVALUATION AND DISCUSSION

A. Repeatability measure

The most important feature of a keypoint detector is its

repeatability. This feature takes into account the capacity of

the detector to find the same set of keypoints in different

instances of a particular model. The differences may be due

to noise, view-point change, occlusion or by a combination of

the above.

The repeatability measure used in this paper is based on

the measure used in [2] for 2D keypoints and in [4] for

3D Keypoints. A keypoint extracted from the model Mh, ki
h

transformed according to the rotation, translation and scale,

(Rhl, thl), is said to be repeatable if the distance from its

nearest neighbor, kj
l , in the set of keypoints extracted from the

scene Sl is less than a threshold ε, ||Rhlk
i
h + thl − kj

l || < ε.

We evaluate the overall repeatability of a detector both in

relative and absolute terms. Given the set RKhl of repeatable

keypoints for an experiment involving the model-scene pair
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(Mh,Sl), the absolute repeatability is defined as rabs = |RKhl|
and the relative repeatability is given by r = |RKhl|

|Khl|
. The

set Khl is the set of all the keypoints extracted on the

model Mh that are not occluded in the scene Sl. This set is

estimated by aligning the keypoints extracted on Mh according

to the rotation, translation and scale and then checking for

the presence of vertices in Sl in a small neighborhood of the

transformed keypoints. If at least a vertex is present in the

scene in such a neighborhood, the keypoint is added to Khl.

B. Results and Discussion

To perform the evaluation of keypoint detectors, we use a

subset of the large dataset of 3D point clouds from [14]. This

dataset is a hierarchical multi-view object dataset collected

using an RGB-D camera. The RGB-D Object Dataset1 [14]

contains clouds of 300 physically distinct objects taken from

multiple views, organized into 51 categories, containing a

total of 207621 segmented clouds. The chosen objects are

commonly found in home and office environments, where

personal robots are expected to operate.

In this article, we intend to evaluate the invariance of the

methods presented, in relation to rotation, translation and

scale changes. For this, we vary the rotation according to

the three axes (X, Y and Z). The rotations applied ranged

from 5o to 35o, with 10o step. The translation is performed

simultaneously in the three axes and the image displacement

applied on each axis is obtained randomly. Finally, we apply

random variations (between ]1×, 5×]) to the scale.

Figure 1 shows the results of the evaluation of the different

methods with various applied transformations. The threshold

distances analyzed vary between [0, 2] cm, with small jumps

in a total of 33 distances calculated equally spaced. As we

see in section II, the methods have a relatively large set of

parameters to be adjusted: the values used were the ones set

by default in PCL.

Regarding the relative repeatability (shown in figures 1(a),

1(b), 1(c), 1(g), 1(h) and 1(i)) the methods presented have a

fairly good performance in general. In relation to the rotation

(see figures 1(a), 1(b), 1(c) and 1(g)), increasing the rotation

angle of the methods tends to worsen the results. Ideally,

the method results should not change independently of the

transformations applied. Regarding the applied rotation, the

method ISS3D is the one that provides the best results.

In this transformation (rotation), the biggest difference that

appears between the various methods is in the 5 degrees

rotation. In this case, the method ISS3D achieves almost total

correspondence keypoints with a distance between them of

0.25 cm. Whereas for example the SIFT3D only achieves this

performance for keypoints at a distance of 1 cm. In both the

scaling and translation (shown in figures 1(h) and 1(i)), the

methods exhibit very similar results to those obtained for small

rotations (5o rotation in figure 1(a)) with the exception of the

SUSAN method, that has a relatively higher invariance to scale

changes.

1The dataset is publicly available at http://www.cs.washington.edu/
rgbd-dataset.

Figures 1(d), 1(e), 1(f), 1(j), 1(k) and 1(l) show the absolute

repeatability, that present the number of keypoints obtained by

the methods. With these results we can see that the method

that has higher absolute repeatability (SUSAN) is not the

one that shows the best performance in terms of relative

repeatability. In terms of the absolute repeatability the ISS3D

and SIFT3D are dramatically more efficient than the SUSAN

method regarding the invariance transformations evaluated in

this work.

IV. CONCLUSIONS

In this paper we focused on the available keypoint detectors

on the PCL library, explaining how they work, and made

a comparative evaluation on public available data with real

3D objects. The experimental comparison proposed in this

work has outlined aspects of state-of-the-art methods for 3D

keypoint detectors. This work allowed us to evaluate the best

performance in terms of various transformations (rotation,

scaling and translation). Overall, SIFT3D and ISS3D yielded

the best scores in terms of repeatability and ISS3D demon-

strated to be the most efficient. Future work includes extension

of some methodologies proposed for the keypoint detectors

work with large rotations and occlusions, and the evaluation

of the best combination of keypoint detectors/descriptors.
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(a) Relative repeatability for 5
o rotation.
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(b) Relative repeatability for 15
o rota-

tion.
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(c) Relative repeatability for 25
o rota-

tion.
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(d) Absolute repeatability for 5
o rota-

tion.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

100

200

300

400

500

600

Neighborhood Radius

R
e

la
ti
v
e

 R
e

p
e

a
ta

b
ili

ty

 

 

Harris3D

Sift3D

ISS3D

Susan

(e) Absolute repeatability for 15
o rota-

tion.
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(f) Absolute repeatability for 25
o rota-

tion.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neighborhood Radius

R
e
la

ti
v
e
 R

e
p
e
a
ta

b
ili

ty

 

 

Harris3D

Sift3D

ISS3D

Susan

(g) Relative repeatability for 35
o rota-

tion.
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(h) Relative repeatability for scale
change.
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(i) Relative repeatability for translation
cloud.
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(j) Absolute repeatability for 35
o rota-

tion.
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(k) Absolute repeatability for scale
change.
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(l) Absolute repeatability for translation
cloud.

Fig. 1. Results for the relative and absolute repeatability measures (best viewed in color). The relative repeatability is presented in figures (a), (b), (c), (g),
(h) and (i), and the absolute repeatability in figures (d), (e), (f), (j), (k) and (l). The presented neighborhood radius is in meters.

[10] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
Nov. 2004.

[11] A. Flint, A. Dick, and A. Hengel, “Thrift: Local 3D Structure Recogni-
tion,” in 9th Biennial Conference of the Australian Pattern Recognition

Society on Digital Image Computing Techniques and Applications, Dec.
2007, pp. 182–188.

[12] S. M. Smith and J. M. Brady, “SUSAN – A new approach to low level

image processing,” International Journal of Computer Vision, vol. 23,
no. 1, pp. 45–78, 1997.

[13] Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3D object
recognition,” International Conference on Computer Vision Workshops,
pp. 689–696, Sep. 2009.

[14] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view RGB-D object dataset,” in International Conference on Robotics

and Automation, May 2011, pp. 1817–1824.

148




