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Abstract—Lifelong learning aims to develop machine learning
systems that can learn new tasks while preserving the perfor-
mance on previously learned tasks. Learning new tasks in most
proposals, implies to keeping examples of previously learned tasks
to retrain the model when learning new tasks, which has an
impact in terms of storage capacity. In this paper, we present
a method that adds new capabilities, in an incrementally way,
to an existing model keeping examples from previously learned
classes but avoiding the problem of running out of storage by
using distilled images to condensate sets of images into a single
image. The experimental results on four data sets confirmed the
effectiveness of CILDI to learn new classes incrementally across
different tasks and obtaining a performance close to the state-of-
the-art algorithms for class incremental learning using only one
distilled image per learned class and beating the state-of-the-art
on the four data sets when using 10 distilled images per learned
class, while using a smaller memory footprint than the competing
approaches.

Index Terms—Lifelong Learning, Incremental Learning, Data
set distillation

I. INTRODUCTION

In the last decade, Deep Learning models such as Convo-
lutional Neural Networks (CNN), have become increasingly
popular and gained great success for tasks where it is necessary
to acquire a certain knowledge based on training data. Even
with this great success, the problem of catastrophic forgetting
remains unsolved. The catastrophic forgetting problem appears
when one tries to train a model on a new task after it has
been trained on an original task: when training for the new
task, the model forgets the original task. Humans are immune
to catastrophic forgetting by preserving the capabilities of re-
membering the previously acquired knowledge when learning
new categories of objects, for example.

Lifelong Learning (LL) aims to create algorithms with the
ability to learn new tasks in general without forgetting the
previously learned tasks.

One strategy used in the LL algorithms is called Rehearsal,
in which it is necessary to use a buffer memory with examples
and labels from previously learned classes. This strategy has
been used since the 90s [1], [2], and its idea is to retrain a
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neural network with some of the previously learned classes
as the new classes are added to the model. This requires
large memory availability to store data from previously learned
classes.

Using the rehearsal approach, most of the methods faced
the problem of memory overfitting because of the number of
images that are necessary to store in the buffer storage. [3]
for example, used a buffer with 1000 images per task and this
begins to be impractical when the number of tasks increases.
Other approaches use a generative model, that generates few
samples to use them later as fake task examples. With the
increasing number of classes, it is necessary to find methods
that do not need to store a lot of data in the buffer.

In this paper we propose a training schema also following
the idea of Experience Replay (ER), where we only need to
save in a buffer one image belonging to each of the previously
learned classes representing all the images of that class. We
can achieve this by using the Data set Distillation approach
[4] which can squeeze images belonging to one class into a
single image. We then use this image to update the model
when learning new classes. This approach is similar to what
happens in biological systems because humans also need to
review a few examples of the previously learned category to
consolidate knowledge. The main contribution of this paper
is a new method called CLIDI (Class Incremental to make
lifelongtilled Imag Learning with Dislearning through ER that
requires a single (distilled) image to represent each of the
previously learned classes when learning a new class, although
we also show that using more distilled images improves the
method’s performance. The method is able to keep a very
small memory footprint even as the number of known classes
reaches the thousands, something that is not possible with
other approaches.

This paper is structured as follows: section II presents an
overview of the related work, in section III we present the
proposed method, section IV presents the experimental results,
and section V presents the conclusions and future work.

II. RELATED WORK

In [3], the authors proposed a method to overcome the catas-
trophic forgetting problem by rethinking ER, which consists
of interleaving old classes in one exemplar buffer with the



new classes training batches. To do so, they proposed five
training tricks to mitigate catastrophic forgetting and some
issues related to the rehearsal approach, among which is
the Independent Buffer Augmentation (IBA): in the rehearsal
approaches, replayed exemplars constitute a significant portion
of the overall training input, and following this approach it
could cause a serious risk of overfitting the memory buffer,
which they addressed through IBA. In their approach, to
overcome this issue they stored examples not augmented in
the memory buffer and augmented them independently when
drawn for later replay. Following this approach, they minimize
overfitting on the memory and introduce additional variety in
the rehearsal examples. In CILDI, taking advantage of data
set distillation, we do not need to store images in an extra
exemplar set, because with data set distillation we only need
to rehearsal one image belonging to each old class, and the
memory overfitting problem is resolved.

iCarL [5] is a class incremental learning approach that also
tries to solve the catastrophic forgetting problem based on
experience replay from a sequential data stream in which new
classes occur. It also uses rehearsal by storing in a buffer
memory a set of images that will be used for rehearsal when
learning new classes, and is used as a baseline in different
strategies based on ER. We chose this approach as a baseline
to compare with CILDI because of the similarity in which
the incremental learning occurs. The main difference with
CILDI approach is the number of images to kept in the buffer
memory, where they keep up to K=2000 images per class, and
we only use 1 or 10 images per class, and in CILDI case these
images are obtained through distillation.

III. CILDI

To avoid catastrophic forgetting, CILDI has three modules,
namely, the starting point where we train a model from
scratch, secondly the distillation process and the last module
is incremental learning where new classes are learned.

A. Isolated Learning

Isolated Learning corresponds to the starting point, where
we learn new classes from scratch assuming that the model has
no previous knowledge. This is the beginning of our method
since from this point onwards we can add new classes to the
existing model.

Suppose that we have a sequence of N classes to be learned
Y ={y1, y2, ... yn}. In isolated learning, the idea is to build
a model that is capable of learning from scratch this set of
classes, which are then considered as an old task when learning
the new classes. All the classes in isolated learning are learned
in a supervised way using SGD, the cross-entropy loss function
and the neural network architecture with a classification layer
with softmax outputs nodes corresponding to the number of
classes. The neural network architecture has a single head.
The isolated learning step is very important because this is
the starting point to learn new classes.The data that was used
to learn these classes, are then used with Data set Distillation
to obtain synthetic data.

New classes

Distilled Images (old classes)

Fig. 1: Overall architecture of the proposed method, CILDI.
The orange dots correspond to the images of new classes
coming incrementally, while the black dots correspond to
distilled images of old classes representing all the images from
each class.

B. Data set Distillation

As previously stated, we use the Data set Distillation [6]
approach to distill the knowledge from a large training data
set into a small one. Most class incremental algorithms use
an exemplar memory to work as a buffer with some samples,
and this exemplar memory is used to remember the previously
learned classes when learning the new one incrementally. The
number of samples in the exemplar set varies according to each
approach. [5] for example stores up to 2000 samples per class
in the exemplar set, which can be costly in terms of memory.
The idea of using Data set Distillation is to reduce significantly
the number of images in the exemplar set, by obtaining a new
much-reduced synthetic data set which performs as well as the
original data set. By using the Data set distillation approach
we can use a single sample of each previously learned class
and store it in the exemplar set and then use these samples
when learning the new classes by updating the existing model
to classify the old and the new classes. As demonstrated in
[6], by using pre-trained weights the model performed well to
distill the data set. We also followed this practical choice and
we use the weights of the model learned in isolated learning,
and it also helps to quickly adapt the model to the data to be
distilled.

Learning in isolated way usually is necessary to apply mini
batch SGD or its variants. At each step #, a mini-batch from
training data x; = {x; ;}" =1, is sampled to update the current
parameters 6,1 as,

Or41 = 0y — nApl(z4, 0p) (1)

where 7 is the learning rate and ¢() is the loss. According to
the authors, such training process often takes tens of thousands
or even millions of update steps to converge. Instead, with
data set distillation the idea is to learn a tiny set of synthetic
distilled training data ¥ = {z}}, with M < N and a
corresponding learning rate 7 so that a single gradient descend
step such as:

61 = 6o — 10 (i,0y) )

using these learned synthetic data x can greatly boost the
performance on the real test set [6].



C. Learning New Classes Incrementally

This is the last component of CILDI for incremental learn-
ing. Here the idea is to continually learn new classes without
forgetting the old ones. As previously said, we also use an
exemplar set containing data from new and old classes. The
main difference is that we only use one sample for each
previously learned class, meaning that if we had in isolated
learning three classes of a data set, in the exemplar set,
we only have three images of these three previous learned
classes instead of having, for example, hundreds or thousands
of samples, which would be memory and computationally
expensive. Once we combine one old image per class with the
new incoming image and then re-train the model with these
data, the catastrophic forgetting problem is mitigated because
the model is also receiving data from old classes, and by
doing so, continual learning is guaranteed. Humans sometimes
also need to review some of the previously learned skills to
consolidate them. So, the proposed framework is biologically
inspired.

We can use this approach, for instance, to teach a robot to
classify objects. Once it learns how to classify one or more
objects, when a new class of objects appears, the robot must
learn the new class and also remember the previously learned
classes.

Fig. 1 shows the overall architecture used in this approach,
in which a stream of data is presented to the model (orange
dots), and then this data is mixed with one sample of all
previously learned classes to re-train the model so that it learns
the new classes and retains the knowledge about the old ones
too. This is achieved by starting to train a CNN with the first
two classes in an isolated way, and then those classes are
distilled using data set distillation to generate images for the
exemplar set. In the last step of CILDI, when new images
arrives, we mix them with the ones in the exemplar set and
train the model with new and the distilled images, and doing
so we add new capabilities and preserve performance on old
class images.

IV. EXPERIMENTAL RESULTS

To evaluate CILDI, we use the following data sets, listed
by increasing difficulty: MNIST [7], FashionMNIST [8], CI-
FAR10 [9] and SVHN [10]. The first three data sets consists
of ten classes with 60000, 50000 images for train and 10000
for test. SVHN data set also has 10 classes with 73257 for
train and 26032 for test, all separated into several sets to be
used as old and new data.

Suppose we have one model trained to classify the first two
classes of the MNIST data set in an isolated learning way.
In the next stage, using the Data set Distillation algorithm,
two samples of the previously learned classes are distilled
as synthetic samples, one per class, and then we use these
samples while learning other classes. In this experimental
protocol, we incrementally add classes to an existing model
by re-training the existing model with old and new classes.
Mixing data from earlier sessions with the current session

being learned is called rehearsal learning, and this method
is used to mitigate catastrophic forgetting [2].

In [6], the authors used four ways to initialize the network
weights: random initialization, fixed initialization, random pre-
trained weights, and fixed pre-trained weights. The second ini-
tialization strategy, where the network is randomly initialized
with a specific distribution, achieved good performance, so
CILDI followed the same initialization strategy.

For the MNIST and FashionMNIST data sets, we use a
standard LeNet architecture, and for CIFAR10 and SVHN data
sets, we use the AlexNet architecture.

For each data set, we begin by training the models with two
classes, and then the data of these two classes are distilled
using the data set distillation algorithm. Then these distilled
images are used when learning new classes. This process is
conducted until the last class is learned.

We use the entire test set with the old and the new classes
to evaluate the generalization capability of CILDI.

A. Baseline

We compare CILDI with the method proposed in [5], where
the authors also proposed a method to mitigate catastrophic
forgetting by using ER approach. In the original paper, the
authors used the ResNetl8 architecture with a learning rate
that started at 2.0 and was divided by five after 49 and 63
epochs; the batch size they used was 128, and the weight decay
parameter of 0.00001 while we used two types of architectures,
LeNet and AlexNet, the learning rate of 0.01, batch size of 64
and weight decay factor of 0.5. For this experiment, we report
results for different buffer sizes of 200 and 500 samples of
old classes. These images are then mixed when learning new
classes.

Table I we can see the classification accuracy and standard
deviations after ten repetitions using the four data sets. After
learning the first two classes in isolated learning, we add one
new class to the model in a rehearsal manner, and we keep
adding new classes. However, the model has to remember all
previously learned classes. This process is conducted until the
last new class is learned.

B. Analysis of our method performance and Baseline

Baseline [5], is an incremental learning method that gives
a reasonable classification accuracy for all the classes seen so
far. As in CILDI, the authors also used an exemplar set to store
samples of the old tasks. As stated previously, for Baseline
we consider using two different memory sizes with 200 and
500 images for each old class. We use these sample size to
get a better understanding of the influence of memory size
on this baseline. The experiment results are in table I, where
we can verify that CILDI presents a performance similar to
Baseline in all four data sets, and in some cases CILDI is
better than baseline. The performance of baseline increases
when the number of images in the exemplar set is larger or
equal to 200, and in CILDI we only use one distilled image
representing all samples belonging to one class.



TABLE I: Classification accuracy and standard deviation for ten repetitions in % on MNIST, FashionMNIST, CIFARI10, and

SVHN on the test sets when adding new classes to the model.

Classes MNIST FashionMNIST
iCaRL CILDI iCaRL CILDI
K=200 K=500 K=1 K=200 K=500 K=1
2+1 92.4342.82 | 94.34+2.14 | 96.26£1.61 | 73.12+1.29 | 74.08+1.89 | 78.84+3.81
342 91.87£2.05 | 93.62+1.96 | 94.49+1.94 | 72.58+2.13 | 76.93+2.34 | 79.13+4.12
543 91.12+1.87 | 92.89+2.08 | 91.36+2.32 | 73.43+1.64 | 75.68+1.61 | 77.37+3.41
8+2 90.47£2.40 | 93.53+2.31 | 91.30+£1.23 | 74.69+343 | 75.53+2.92 72.53+29
Classes Cifar10 SVHN
iCaRL CILDI iCaRL CILDI
K=200 K=500 K=1 K=200 K=500 K=1
2+1 48.2842.41 | 49.06+1.32 | 52.89+3.83 | 39.12+1.82 | 42.41+1.54 | 43.23+3.21
342 47.32+1.36 | 49.23+0.28 | 47.83+3.39 | 38.38+1.24 | 41.73+1.72 | 40.37+4.32
543 45.6242.64 | 47.51+1.49 | 46.54+2.49 | 38.93+2.03 | 41.56+2.21 | 41.49+3.91
8+2 43.1242.37 | 45.29+2.01 | 44.27+£3.17 | 37.23£1.98 | 40.97+2.23 | 36.43+4.18

We can also verify the classification accuracy from RGB
images, using CIFAR10 and SVHN data sets. These data sets
pose several challenges, such as complicated backgrounds,
occlusions, and illuminance variations [11]. But even with
these challenges, we can verify the ability of CILDI to learn
just from one sample and once again both baselines did not
achieved good performance.

Comparing Baseline with CILDI on RGB images it is
possible to verify that both approaches does not achieved good
performance, this is due to the nature of RGB images stated
previously.

These results suggest that even with only a few distilled
images CILDI does not incur in catastrophic forgetting by
completely forgetting the previously learned classes while
keeping a small memory footprint.

C. Experiments Results with more then one Image per class

Here we repeat the experiment but using more images per
class, meaning we consider using ten images per each class.
We are interested in evaluating the impact of keeping a more
diverse set of distilled images instead of only one. In this case,
instead of using only one image per class we use 10.

Since we begin by generating one image per class, it is
necessary to modify the proposed method to generate more
than one image. At this point, as stated in Sec. 3.2, using
different stochastic gradients steps can generate more than one
image per class, by using the gradient-based optimization of
synthetic data. Let’s consider learning a model to compress
two images, at each gradient step one distilled image per
class is generated, and with 10 steps 10 images per class are
generated. All the steps are sequentially cycled over the total
number of classes. All the distilled images that are generated
using this strategy are mixed with new incoming classes and
are learned incrementally.

When comparing the results obtain using 10 distilled images
per class (Table 2) with the ones we obtained in the experiment
where a single distilled image was kept (Table 1) we can
see a clear improvement that allowed CILDI to obtain the
best results in all experiments while keeping a much smaller
memory footprint than the competing approaches. The results

show that data set distillation is a promising strategy for
encoding information for a set of images and representing
meaningful content to train a neural network with just a few
samples. In doing so, the problem of catastrophic forgetting
and memory issues can be avoided. Also, as the results
demonstrated, storing many samples in the example set for
rehearsal when learning new tasks is not necessary.

D. Execution Times and Memory Usage

Table III presents the time necessary to add new capabilities
to an existing model incrementally, and we show the time for
making the distillation and the time for training. CILDI is
the fastest if we do not take into account the distillation time
because, in this step, CILDI only uses ten distilled images from
previously learned classes, while the baseline uses 200 and
500 images of old classes requiring more gradient calculations
compared to CILDI.

Also in Table III one can see the advantage of CILDI in
terms of the memory budget compared to the baseline. This
result suggests that CILDI could be used when a robot is in an
uncontrolled environment, such as a person’s home (a service
robot), and it needs to learn continually many different classes
over time without depending on external connections to access
a cloud service.

V. CONCLUSIONS

Class incremental learning is an important. It is a problem
of incrementally learning new classes without forgetting the
previously learned classes.

In this work, we presented a contribution with an approach
based on ER. We propose a class incremental learning method,
which is the most challenging among class incremental learn-
ing scenarios.

The proposed approach is based on data set distillation,
and we conducted a benchmark of CILDI and a method from
the state-of-the-art. The experiment results demonstrated the
ability of CILDI to mitigate catastrophic forgetting and keep a
small memory footprint as the number of classes to be learned
increases. By keeping a small memory footprint, the proposed
method is suitable for a situation where we need to teach a



TABLE II: Classification accuracy and standard deviation for 10 repetitions in % on MNIST, FashionMNIST, CIFAR10 and
SVHN on the test sets when adding new classes to the model. We set k=10 corresponding the number of distilled images per

class.
Classes MNIST FashionMNIST
iCarL CILDI iCarL CILDI
K=200 K=500 K=10 K=200 K=500 K=10
2+1 92.43+2.82 | 94.34+1.63 | 97.29+0.09 | 73.12+1.89 | 74.08+1.89 | 79.86+4.38
342 91.87+2.05 | 93.62+1.96 | 95.33+0.43 | 72.58+2.16 | 79.13+4.43 | 79.15+1.63
543 91.12+1.87 | 92.89+2.08 | 95.46+0.57 | 73.43+1.64 | 75.68+1.61 | 77.46+5.85
8+2 90.47+2.40 | 93.53+3.41 | 96.12+0.53 | 74.69+3.43 | 75.39+2.29 | 83.30+0.49
Classes Cifarl0 SVHN
iCarL CILDI iCarL CILDI
K=200 K=500 K=10 K=200 K=500 K=10
2+1 48.28+2.41 | 49.06+1.32 | 64.75+0.16 | 39.89+1.86 | 42.41+1.54 | 63.55+0.17
342 47.32+1.36 | 49.23+0.28 | 55.66+1.36 | 38.38+1.24 | 41.73+1.72 | 70.90+2.01
543 45.62+2.62 | 47.51+1.49 | 49.49+4.16 | 38.93+2.03 | 41.56+2.21 | 68.32+0.06
8+2 43.12+2.37 | 4529+2.37 | 61.48+0.47 | 37.23£1.98 | 40.97+1.63 | 69.56+1.26
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Fig. 2: Comparison memory usage in MB for CILDI when using 10 distilled images per class and Baseline.
TABLE III: Comparison of time in seconds for CILDI and [4] T Wang, J. Zhu, A. Tomalba, and A. A. Efros, “Dataset

baseline.

Methods/data sets | MNIST  FMNIST  CIFAR10  SVHN
iCarL_200 14516 13972 17940 17156
iCarL_500 16111 15639 19356 19453
CILDI 4226 4314 7952 8427

robot to learn many different classes over time, while other
state-of-the-art algorithms need significant larger amounts of
memory, which becomes impractical for many classes. Future
work will focus on reducing the time necessary to train CILDI.
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