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Abstract. One of the key steps in 3D object recognition is the match-
ing between an input cloud and a cloud in a database of known objects.
This is usually done using a distance function between sets of descrip-
tors. In this paper we propose to study how several distance functions
(some already available and other new proposals) behave experimentally
using a large freely available household object database containing 1421
point clouds from 48 objects and 10 categories. We present experiments
illustrating the accuracy of the distances both for object and category
recognition and find that simple distances give competitive results both
in terms of accuracy and speed.

1 Introduction

There is a growing interest in the use of 3D point cloud images for many tasks,
since the recent introduction of cheap sensors that produce RGB plus depth
images, such as the Microsoft Kinect or the Asus Xtion.

One of the most challenging tasks to be achieved with such data is to rec-
ognize objects in a scene. An important part of the process of recognition is to
be able to compare the representations of the input (test or probe) data against
stored (train or gallery) data. The objects are usually represented by sets of de-
scriptors. Several distances exist that are able to work with sets of descriptors,
notably the Pyramid Match Kernel [1], for object recognition from images.

It is important to obtain a quantitative notion of the performance of such
distance functions. In this paper we present a comparison between 8 distance
functions for 3D object recognition from point clouds. Two types of descriptors
are used and the relative distance performance is similar in both cases. We
show both the object and category accuracies that can be obtained from these
distances and also the computational cost in terms of the time it takes to process
the test set used. From the experiments we conclude that good performance can
be obtained using quite simple distance functions, both in terms of accuracy and
speed.

The rest of the paper is organized as follows: the next section presents an
overview of the 3D object recognition pipeline used in this paper, the follow-
ing section explains the descriptors used; section 4 presents the distances that
are evaluated; section 5 contains the experiments and the paper ends with the
conclusions in section 6.
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2 The 3D Object Recognition Pipeline

The input cloud goes through a keypoint extraction algorithm, the Harris3D
keypoint detector implemented in PCL [2]. The covariance matrix of the surface
normals on a point neighborhood is used to find the point’s response to the
detector. Then descriptors are obtained on the extracted keypoints and these
form a set that is used to represent the input cloud. This set is matched against
sets already present in the object database and the one with largest similarity
(smallest distance) is considered the match for the input cloud.

3 Descriptors

In this paper we use the two descriptors that produced the best results in the
comparative evaluation performed in [3]. They both use color information.

The first one is the Point Feature Histograms (PFH) [4]. This descriptor’s
goal is to generalize both the surface normals and the curvature estimates.

Given two points, p and q, a fixed reference frame, consisting of the three
unit vectors (u, v, w), is built centered on p using the following procedure: 1) the
vector u is the surface normal at p; 2) v = u×p−qd 3) w = u×v; where d = ‖p−q‖2.
Using this reference frame, the difference between the normals at p (np) and q
(nq), can be represented by : 1) α = arccos(v · nq); 2) φ = arccos(u · (p− q)/d);
3) θ = arctan(w · np, u · np).

The angles α, φ, θ and the distance d are computed for all pairs in the k-
neighborhood of point p. In fact, usually the distance d is dropped as it changes
with the viewpoint, keeping only the 3 angles. These are binned into an 125-bin
histogram by considering that each of them can fall into 5 distinct bins, and the
final histogram encodes in each bin a unique combination of the distinct values
for each of the angles. One of these 125-bin histograms is produced for each input
point.

The version of PFH used in this paper includes color information and is called
PFHRGB. This variant includes three additional histograms, one for the ratio
between each color channel of p and the same channel of q. These histograms
are binned as the 3 angles of PFH and hence produce another 125 float values,
giving the total size of 250 values for the PFHRGB descriptor.

The second descriptor used is the SHOTCOLOR [5]. This descriptor is based
on the SHOT descriptor [6], that obtains a repeatable local reference frame
using the eigenvalue decomposition around an input point. Given this reference
frame, a spherical grid centered on the point divides the neighborhood so that
in each grid bin a weighted histogram of normals is obtained. The descriptor
concatenates all such histograms into the final signature. It uses 9 values to
encode the reference frame and the authors propose the use of 11 shape bins
and 32 divisions of the spherical grid, which gives an additional 352 values. The
descriptor is normalized to sum 1. The SHOTCOLOR adds color information
(based on the CIELab color space) to the SHOT descriptor. It uses 31 bins each
with 32 divisions yielding 992 values, plus the 352 from the SHOT which gives



the total of 1344 values (plus 9 values to describe the local reference frame).
The histograms in this case store the L1 distance between the CIELab color of
a point and the color of its neighbors.

4 Set Distances

The focus of this paper is on the distance function that should be used when
comparing two point clouds that are represented by sets of descriptors. Note that
the word “distance” should be interpreted loosely since some of the functions
presented below do not verify all the conditions of a norm (for instance, D4 and
D5 can produce a value of zero even if the two input clouds are not the same).

A descriptor can be seen as a point in X ⊂ Rn. We investigate the perfor-
mance of functions that receive two sets of descriptors, A ⊆ X and B ⊆ X, with
a possible different number of elements, |A| 6= |B|, and return a (distance) value
in R.

We will use below the following distances between descriptors (not sets) x, y ∈
X:

Lp(x, y) =

(
n∑
i=1

| x(i)− y(i) |p
)1/p

, p = 1, 2

dχ2(x, y) =
1
2

n∑
i=1

(x(i)− y(i))2

x(i) + y(i)
.

We will assign a code to each set distance in the form Dz, where z is an
integer to make it easier to refer to the several distances throughout the paper.

4.1 Hausdorff distance

Consider S(X) to be the set of subsets of X that are closed, bounded and non-
empty. Let A,B ∈ S(X). The Hausdorff distance, D1, between sets A and B is
defined as

D1(A,B) = max{sup{d(a,B) | a ∈ A}, sup{d(b, A) | b ∈ B}}

where d(a,B) is a distance between a point a and a set B, defined by

d(a,B) = min{d(a, bi), i = 1, . . . , |B|}

and d(a, bi) is the distance between two points a and bi in Rn. In our case we
use the L1 distance between two points.

4.2 Pyramid Match Kernel

The pyramid match kernel (D2) [1] uses a hierarchical approach to matching the
sets. It finds the similarity between two sets as the weighted sum of the number
of feature matchings found at each level of a pyramid.



Consider the input space X of sets of n-dimensional vectors bounded by a
sphere of diameter D. The feature extraction function is

Ψ(x) = [H−1(x), H0(x), . . . ,HL(x)]

where L = dlog2De+ 1, x ∈ X, Hi(x) is a histogram vector formed over data x
using n-dimensional bins of side length 2i. Then, the pyramid referred above is
given by:

K∆(Ψ(y), Ψ(z)) =
L∑
i=0

Ni/2i

where Ni is the number of newly matched pairs at level i. A new match at level
i is defined as a pair of features that were not in correspondence at an finer level
(j < i) became in correspondence at level i. To become in correspondence means
that both fall in the same histogram bin.

4.3 Other set distances

We propose to evaluate also the following set distances, that are all variations
around the same theme: use statistical measures like the mean, standard varia-
tion, maximum and minimum of the points in each set to develop simple repre-
sentations for the set.The goal is to search for a simple set distance that produces
accurate results and at the same time is fast, such that, other things permitting
(the time the keypoints take to be detected plus the time the descriptor takes
to extract) would allow for real time cloud processing.

Below we use aj(i) to refer to the coordinate i of the descriptor j.
The distance D3 is obtained by finding the minimum and maximum values

for each coordinate in each set and sum the L1 distances between them

D3 = L1(minA,minB) + L1(maxA,maxB)

where
minA(i) = min

j=1,...,|A|
{aj(i)}, i = 1, . . . , n

and
maxA(i) = max

j=1,...,|A|
{aj(i)}, i = 1, . . . , n

and likewise for minB(i) and maxB(i).
The next two distances are simply the distance between the centroids of each

set, cA and cB respectively, using the descriptor distances L1 and L2:

D4 = L1(cA, cB) and D5 = L2(cA, cB) .

Distance D6 is the sum of D4 with the L1 distance between the standard
deviation for each dimension (coordinate) of each set:

D6 = D4 + L1(stdA, stdB)



where

stdA(i) =

√√√√ 1
|A| − 1

|A|∑
j=1

(aj(i)− cA(i))2, i = 1, . . . , n

and likewise for stdB .
Distance D7 is similar to D6 but instead of using the L1 distance uses the

dχ2 distance between two vectors:

D7 = dχ2(cA, cB) + dχ2(stdA, stdB) .

The final distance to be evaluated consists on the average L1 distance between
all points in one set to all the points in the other (the normalized average linkage
set distance):

D8 =
1

|A||B|

|A|∑
i=1

|B|∑
j=1

L1(ai, bj) .

5 Experiments

5.1 Dataset

We used a subset of the large dataset of 3D point clouds from [7]. The original
dataset contains 300 objects from 51 different categories captured on a turntable
from 3 different camera poses. We used 48 objects representing 10 categories. The
training data contain clouds captured from two different camera views, and the
test data contains clouds captured using a third different view. The training set
has a total of 946 clouds while the test set contains 475 clouds. Since for each
test cloud we do an exhaustive search through the complete training set to find
the best match, this amounts to a total of 449.350 cloud comparisons for each
of the evaluated descriptors and each of the distance functions used.

5.2 Setup

The code used in the experiments was developed in C++ using the PCL library
[2] on a linux machine. The code used for D2 was from [8]. We used the Uni-
formPyramidMaker with the following parameters obtained from experiments
with a 10% subset of the one used in the final evaluation: finest_side_length
= (1/250, 10−4), discretize_order=(3, 3) and side_length_factor=(2, 2)
for (PFHRGB, SHOTCOLOR), respectively. To make a fair comparison between
the distances, all steps in the pipeline are equal.

The descriptors are found on the keypoints obtained using the Harris3D key-
point detector with the following parameters: the radius for normal estimation
and non-maxima supression (Radius) was set to 0.01 and the sphere radius that
is to be used for determining the nearest neighbors used for the keypoint detec-
tion (RadiusSearch) was also set to 0.01.

The only parameter needed for the descriptor calculation is the sphere radius
that is to be used for determining the nearest neighbors used in its calculation.
It was set at 0.05 for both descriptors.



Table 1. Category and object recognition accuracy and the time used for evaluating
the test set in seconds, for the different distances and descriptors.

PFHRGB SHOTCOLOR
Accuracy[%] Accuracy[%]

Distance Category Object Time[s] Category Object Time[s]

D1 91.14 70.04 1914 67.72 44.09 175
D2 63.92 42.19 2197 26.58 17.93 1510
D3 88.82 67.93 1889 88.82 67.72 132
D4 90.93 75.95 1876 87.97 69.20 137
D5 82.70 67.72 1886 79.75 55.49 134
D6 93.88 78.06 1891 87.76 65.82 134
D7 94.73 79.96 1894 88.19 65.82 127
D8 77.64 60.13 1914 71.73 41.35 174

5.3 Results

Table 1 and figure 1 contain the results of the experiments done.
An object is considered to be recognized when an input cloud is matched

by one of the views of the same object in the database, whereas a category is
considered to be recognized when the input cloud is matched to a view of any
of the objects that are in the same category as the input object. So, category
recognition is an easier task than that of object recognition, since in the latter
case the system needs to distinguish between the (similar) objects within a given
category. That category recognition is easier than object recognition can be seen
in table 1. For all distance functions, category accuracy is always higher than
object recognition.

Regarding the accuracies obtained, these results show the importance of
choosing a good distance function. For a given descriptor there are considerable
variations in terms of accuracy: in terms of object recognition the results for the
PFHRGB vary from around 42% to almost 80% whereas for the SHOTCOLOR
descriptor the results vary from around 18% to over 69%.

The best results are obtained for the PFHRGB with distance D7 and for
the SHOTCOLOR with distance D3 for category recognition and D4 for object
recognition.

From the recall × (1-precision) curves in figure 1, we note that the results can
be grouped into three sets: the best results for both descriptors, and with similar
curves, are obtained with distances D4, D6 and D7 (for SHOTCOLOR, D3 is
also on this first group). The second group contains the distances D1, D5 and D8

(D3 is in this second group for PFHRGB) that show a decrease in performance
when compared with the first group. The difference in performance from group 1
to group 2 is larger with SHOTCOLOR than with PFHRGB. This might have to
do with the fact that SHOTCOLOR works on a much higher dimensional space
(1344) than PFHRGB (250). Distance D2 is the sole member of the third group
with a poor performance. We believe this might have to do with a poor choice of
parameters. But having to choose 3 parameters for a distance that is very heavy



0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

c
a

ll

1-Precision

D1

D2

D3

D4

D5

D6

D7

D8

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

c
a

ll

1-Precision

D1

D2

D3

D4

D5

D6

D7

D8

Fig. 1. Recall × (1-Precision) curves for the object recognition experiments using the
PFHRGB (top) and SHOTCOLOR (bottom) descriptors (best viewed in color).

from a computational point of view is not an easy task and we might needed to
spent more time searching for the optimal parameters to obtain a better result.

Distance D4 is better than D5 (these are simply the L1 and L2 distances
between cloud centroids) for both descriptors, confirming the fact that the Eu-
clidian distance is not appropriate for these high dimensional spaces.

The fifth and seventh columns of table 1 contain the time in seconds that took
to run the evaluation (test set) on a 12 thread version using a i7-3930K@3.2GHz



CPU on Fedora 17. The PFHRGB is much more demanding in terms of compu-
tational complexity than the SHOTCOLOR, hence the time it takes is around
10 times more than the time used by the SHOTCOLOR. In terms of time taken
to complete the tests, D2 is much slower than the rest. Given its time overhead,
D2 should only be used if it could provide an improved accuracy when compared
to the remaining distances, but that was not the case.

6 Conclusions

An important part of a 3D object recognition setup is the distance function
used to compare input data against stored data. Since there are many possible
distance functions that can be used in this scenario, the user is faced with a
tough decision regarding which distance to choose. The obvious way is to make
experiments comparing these functions for their particular descriptor and data,
but this can be a time consuming task.

This paper presents an evaluation of 8 distance functions on a large point
cloud dataset using two descriptors. From the results of the experiments made we
conclude that simple distances (such as D3, D4, D6 and D7) can be a good choice
since their performance both in terms of accuracy as in terms of speed surpasses
other more common used ones such as D1 and D2. The former distances also
benefit by not requiring the adjustment of parameters.
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