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Abstract—One important application of machine learning is
the analysis of electroencephalographic recordings (EEG). Such
oscillatory signals are noisy, non-stationary, full of artifacts,
contain transients, and chaotic transitions between meta-stable
states. EEG data rarely consists of recordings obtained for more
than 100 patients with some brain disorder. This makes objective,
reliable clinical diagnosis of many mental disorders, such as
schizophrenia, very difficult. The standard approach splits the
frequency of EEG oscillations focusing on five classical bands:
delta, theta, alpha, beta, and gamma. In this paper, we investigate
three main questions: (i) Are there certain frequencies that will
allow for a reliable diagnosis of schizophrenia, and (ii) if they
are, is there a connection to what is known about their neural
basis? (iii) How long segments of EEG recordings are sufficient
for reliable classification? We filter EEG signals, obtaining a set
of 64 very narrow 1Hz frequency bands. A genetic algorithm,
with a simple k-NN classifier, finds an optimal combination of
these bands. The method is sufficiently simple to be used in
clinical settings. A public schizophrenia EEG data set, containing
60 seconds of EEG recordings in the resting state, with only 16
electrodes, for 45 adolescent patients and 39 healthy controls, was
used for testing. Signal duration of about 30 seconds enables to
reach an accuracy of over 96% in 5-fold cross-validation tests.
We compare our results to much more sophisticated state-of-the-
art methods and discuss insights gained by our analysis into the
brain basis of schizophrenia.

Index Terms—Genetic Algorithm, EEG, Schizophrenia, Nar-
row frequency bands.

I. INTRODUCTION

Objective diagnosis of psychiatric disorders is very dif-
ficult. Symptoms of mental disorders are subjective, very
diverse, and may be misleading. Non-invasive neuroimaging
and neurophysiological methods allow for observations of
neurodynamics. Interesting results have been achieved using
functional magnetic resonance (fMRI) methods [1] for many
diseases, such as autism spectrum disorders, major depression,
obsessive-compulsive disorder, and schizophrenia. Abnormal
connections between brain regions have been identified, and
biomarkers based on their strength are used for diagnosis.
Other effects, such as insufficient concentration of neurotrans-
mitters, dysfunctional ion channels due to genetic mutations
that affect protein shapes, or other cellular mechanisms, also
lead to brain states that are responsible for deviant behavior.
fMRI, based on oxygen transport, is too slow to show oscilla-
tions that may be observed only at high temporal resolution.

Biomarkers based on the analysis of EEG are better suited for
large-scale use in clinical practice.

Schizophrenia (SZ) has very heterogeneous symptoms, usu-
ally involving time periods with hallucinations, delusions, dis-
organized thinking, perceptual misinterpretation, and sensori-
motor disintegration. Diagnosis is based on observed behavior
and rarely is done before 17 years of age. Results of treatment
are very hard to predict, as there is no specific relation between
biological basis and symptoms. About half a percent of the
general population suffers from schizophrenia. It is thus very
important to search for objective diagnostic methods that can
be applied at a young age. Moreover, the diversity of SZ
symptoms may require a battery of different tests for correct
diagnosis. It would be ideal to discover useful biomarkers in
the EEG recordings during the resting state.

The main contributions of this work are:
• An empirical study of the impact of using different

narrow (1Hz) frequency bands for classifying SZ EEG
signals;

• An optimization approach to select the best combination
of bands to attain the highest classification performance;

• Identification of the specific frequencies that distinguish
SZ patients from control subjects more precisely than can
be done with the 5 classical EEG bands;

• An analysis of the impact of the signal duration on the
classification accuracy;

• Comparison with the state-of-the-art results on a real EEG
data set of children diagnosed with schizophrenia;

• A discussion linking the insights gained by our analysis
with the neural basis of schizophrenia.

In the next section, we review recent work on the detection
of SZ using EEG recordings. Next, our approach is described,
followed by a section containing the experimental results.
Section 5 contains the final discussion and conclusions.

II. RELATED WORK

Attempts to use EEG for the diagnosis of schizophrenia
are quite frequent. An overview of 42 papers on this subject
was recently published by Khare, Bajaj, and Acharya [2].
The number of patients in the EEG datasets was between 5
and 62, with a similar number of control healthy subjects.
33 papers used resting state data, and 9 papers were based



on experiments with auditory, visual, and motor activities.
Accuracies on small datasets with just 14 SZ cases and the
same number of health controls (HC) [3] were quite high,
between 89% and 100%. Classification methods were based
on k-NN, SVM, convolutional neural networks, ResNet-SVM,
AdaBoost, random forest, probabilistic neural networks, and
LSTM. Methods used to analyze signals included mean spec-
tral amplitude, spectral power, Hjorth parameters, multivariate
empirical mode decomposition, Short-Term Fourier Trans-
form, variance-based features, continuous wavelet transform
(CWT), partial least squares (PLS), expectation-maximization-
based, principal component analysis (EM-PCA), nonlinear
regression, entropy, isometric mapping (Isomap), nonlinear
features, L1 norm features obtained with optimal wavelet,
dynamic functional connectivity (DFC), complexity measures,
Higuchi Fractal Dimension (HFD), Lyapunov exponents, and
cyclic group of prime order patterns. In [4], the authors
studied microstate features to see if they were suitable for
SZ classification. They concluded that microstate features
outperformed the 31 types of features tested. However, the
data with 14 SZ cases is definitely too small to draw any
definite conclusions. A larger data [5] (45 SZ, 39 HC) has
been used in 10 papers [2], with reported accuracies between
84% to 100%.

We have found several additional papers that have not
been covered in this comparison. In addition to the meth-
ods mentioned above, other sophisticated methods have been
used: vector-autoregression model-based directed connectiv-
ity, graph-theoretical complex network, ϵ-complexity of con-
tinuous vector functions of original EEG signals and their
finite differences. Recurrence quantification analysis (RQA)
combined with the Short-Term Fourier Transform (STFT) to
generate power spectra time series from sliding, overlapping
windows was used [6]. Feature selection and linear SVM
classification allowed for the discovery of fewer than 10
electrodes/bands, giving a 95.9% accuracy. In a recent paper
on the same data [7], parameters of up to 20 microstates
were used, achieving 86–100% accuracy with linear SVM.
Dimitriadis [8] presented an approach based on the dynamic
functional connectivity graph estimated using the imaginary
part of phase lag value and correlation of the signal envelope.
Data was cleaned using wavelet transform and ICA, but no
details on this process were given. Multi-kernel SVM classifier
gave 75-100% accuracy on this data set, depending on the
features extracted. This is an interesting but quite complex
method.

The authors of [9] used an auditory oddball task for de-
tecting SZ in a data set with 68 subjects, 34 healthy control
(HC), and 34 SZ. They evaluated both sensor-level (124)
and source-level (314) features and concluded that the best
results of 88.2% accuracy were obtained when using both
types of features. Phang et al. [10] used both hand-crafted and
learned features focused on connectivity and other network
measures, together with a fusion of three convolutional neural
networks (CNNs). They achieved 91.7% accuracy on the data
set presented in [5] (more details on this data set will be given

below since it is the one we will be using in this work). Using
the same data, [11] achieved 95% accuracy using pairwise
distance learning and a Siamese neural network to produce
features that are then classified by an XGBoost classifier.
In [12], the authors used a random forest and focused their
work on Event-Related Potentials (ERP). They used the data
set produced by the National Institute of Mental Health (49
SZ and 32 HC) and obtained a 96.4% balanced accuracy
using a random forest classifier and 10-fold cross-validation.
In [13], a hybrid deep neural network to detect SZ in EEG
is proposed. The authors evaluated fuzzy entropy and the
fast Fourier transform as features, and concluded that fuzzy
entropy is a better approach for feature extraction, achieving
99.22% accuracy in a data set that contained 109 patients (54
SZ and 55 HC). The work in [14] focused on the detection of
SZ through a passive listening task. The data used consisted of
63 HC and 65 SZ subjects, and both CNNs and random forests
were evaluated. The results include 78% accuracy using only
five EEG channels and 80% after an ensemble of five CNNs.

Models developed on a small dataset may be useful if they
discover features that can serve as biomarkers. In all cases
described above, no search for an optimal combination of
frequencies that could improve the diagnosis was conducted.
Peak EEG frequencies may help to distinguish various brain
disorders. The work of [15], focusing on epilepsy detection in
EEG and not SZ, did consider 0.5Hz bands, but no optimiza-
tion process was done to choose the best band combination; the
usefulness of each band was evaluated, and all bands that were
above a certain threshold were considered in the final setup.
The same authors, in [16], looked into 0.5Hz EEG bands up
to 100Hz in a study to detect SZ in a data set with 14 SZ and
14 HC subjects, where they achieved a balanced accuracy of
96.8% using a random forest classifier. The authors used all
bands, whereas we consider this as an optimization problem
and use a genetic algorithm (GA) to find an optimal band
combination.

Therefore, it is worth checking if a combination of several
characteristic frequencies may provide robust EEG biomarker.

III. PROPOSED APPROACH

A. The Data Set and its Representation

To test our approach, we have selected one of the largest
EEG data sets that have already been analyzed in more
than 10 publications, described in [5]. It consists of 60-
second recordings of 84 adolescent boys, 39 healthy control
subjects (HC), and 45 boys with diagnosed schizophrenia (SZ),
recorded in the resting state, with closed eyes. It was acquired
with 16 electrodes placed according to the international 10-
20 system, at a 128Hz sampling rate. According to the
Nyquist–Shannon sampling theorem, with this resolution, we
can analyze frequencies up to 64Hz. This kind of data is
relatively easy to obtain in clinical settings, with inexpensive
equipment, and short measurement procedures. Methods that
can provide reliable diagnosis based on such data may have
real clinical value.
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Fig. 1. Accuracy (and std) using all 1Hz bands with different VAR lags,
obtained with 10-fold CV.

EEG time series for each case is represented by a n × m
matrix, for n = 16 channels and m = 128 × 60 = 7680
samples. We chose not to do any pre-processing other than
fitting a Vector AutoRegressive (VAR) model [17] to each
subject’s data. Consider that at each time step i, the data from
the EEG consists of a random vector yi, of size n. We then
adjust a model to estimate the vector at time t considering a
linear combination of the previous L (lag) vectors:

yt = ν + ut +

L∑
i=1

Aiyt−i (1)

where ut is a random noise vector with zero mean. Vector
ν and the n × n matrices Ai contain parameters that are
obtained through a least-mean squares approach. To determine
the value of the lag parameter, L, we tested values from 1 to
50, using all 64 one Hz bands simultaneously, and 10-fold
cross-validation. The results are in Figure 1. We noticed a
region with L between 7 and 12 with high VAR accuracy, and
selected lag 10, as it is in the middle of this region.

Since the data set was acquired using n = 16 channels
and the samples were recorded for 60 seconds at a sampling
rate of 128Hz, each recording was originally represented by
a 16 × 7680 matrix. The data representation of each subject
after the VAR model estimation is a vector with 2576 features,
that contains ten 16× 16 Ai matrices, one for each lag, along
with the 16 values of vector ν.

Note that the VAR model representation is created after
the selection of the appropriate (combination of) bands (see
below).

B. Single Band Classification

We wish to study three main questions: (i) are there pre-
ferred frequencies that facilitate the detection of schizophrenia,
and (ii) if they exist, what is their relation to the known
physiological characteristics of this disease; finally, (iii) what
is the impact of the signal duration on the detection accuracy.
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Fig. 2. Filter response for 1Hz band, in this case, between 5 and 6Hz.

To answer the first question, we split the frequency range
into 1Hz bands and investigated the classification accuracy
using each band separately. The number of 1Hz bands con-
sidered is 64, and the range starts at 0Hz (in fact, 0.1Hz), so
the full range of analyzed frequencies varies from 0 to 64Hz.
The width of Fourier peaks in the EEG time series is about
2-3Hz, so using 1Hz bands can represent the power of the
signal peaks with sufficient precision. The 1Hz band filtering
was made using an order 10 Butterworth digital filter for a
high pass at frequency i and a low pass at frequency i + 1.
An example filter response is shown in Figure 2, for a filter
between 5 and 6 Hz. A more costly alternative is to perform
Fourier transform shifting the time window on one sample.

Current deep-learning approaches usually involve complex
architectures with many design decisions and many parameters
that typically require large data sets for training. In the case
of small EEG datasets, when we are limited to a total of only
84 cases, it is not a good approach. Hence, we chose to use a
simple k-nearest neighbors (k-NN) classifier and fixed k = 3.
The reason for choosing this classifier has to do with the fact
that it does not need to be trained, and for small data sets it
is very fast. A fast classifier is necessary for the optimization
of subsets of narrow bands. The value of k was chosen by
considering that k = 1 might be too sensitive to outliers, k = 2
would allow for draws because this is a two-class problem, so
the next value would be a good compromise between the size
of the neighborhood to search and the size of the data set.
Other odd small values might be as good or better than 3, but
we did not focus on optimizing this parameter, as this smallest
acceptable value proved to be sufficient.

The first experiment looked at the results of the classifi-
cation for single 1Hz frequency bands. We run this for all
64 bands, and the results are presented in Figure 3. The
dashed line represents the accuracy using all bands (82.0%).
Interestingly, using only the band that contains frequencies
between 13 and 14Hz (low beta) outperforms this baseline
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Fig. 3. Accuracy when using one single 1Hz band at a time, for all 64
studied bands. The dashed red line shows the accuracy when using all bands
simultaneously (82.0%).

value (85.8%). This is the simplest diagnostic method with
quite high accuracy. Some other frequencies also show perfor-
mance above the baseline. For the 16Hz band accuracy drops
by almost 10%. This shows that some frequencies should be
excluded, and others added to the optimal subset. The worst
classification results were obtained with the lowest and the
highest frequency bands. The best single-band results are on
the border of alpha and beta bands (14Hz), around 20Hz, and
between 38-44Hz.

C. Multiple Band Classification

To find a subset of several 1Hz bands that could be
more useful for the detection of schizophrenia, we need to
solve an optimization problem, perform a search in the space
of all possible combinations of 1Hz bands, and identify a
combination that enables a high classification accuracy. To
explore the possible frequency band combinations, we have
used a Genetic Algorithm (GA). We considered the 64 1Hz
bands and represented a solution to this problem as a binary
chromosome with a length 64. If a particular position is 1,
then that band will be used to represent the data. The size of
the search space is then 264, which makes it unfeasible for
exploration with a brute-force exhaustive search.

The fitness function that was evaluated during the GA
search was the classification accuracy on a 5-fold cross-
validation using the 3-NN classifier. The mutation rate was
0.05, the selection rate (percentage of the population selected
for mating) was 0.5, the selection strategy was the roulette
wheel, and the number of crossover points was 1. We used a
population size of 10 chromosomes and ran the optimization
for 100 generations. We repeated the optimization 5 times and
presented the average and standard deviation of the accuracy
of the best chromosome. Figure 4 shows the evolution of the
fitness of the best chromosome and of the average population
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Fig. 4. The fitness of the best chromosome, as well as the average fitness of
each generation’s population, during the optimization process, for one of the
5 repetitions.

during the optimization process, for one repetition of the
process.

The result of the optimization produced a combination
of 1Hz bands that enabled an average 95.2% classification
accuracy (and standard deviation of 0.8%) over 5 repetitions
of the search process, which is much higher than the result
obtained when using all frequencies (82.0% accuracy). The
best accuracy on an individual repetition of the experiments
yielded 96.4% with 2.9% standard deviation (from the 5-fold
CV), with around 30 frequency bands.

D. Relevance of Segment Duration

To study how the size of samples impacts the ability to
detect the disease, we run the optimization process with
samples of smaller duration. Instead of the full 60 seconds
(7680 samples) for each subject, we have used 30 sec (3840
samples), 15 sec (1920 samples), 7.5 sec (960), and 3.75 sec
(480 samples). We could have increased the number of data
points per subject; for instance, when using 3840 samples, we
could have had two such segments per subject. This would
require care not to include samples from the same subject in
both training and test sets, and we would also have more data
points per subject than in the original representation. Instead,
we decided to retain only one shorter signal sequence per
each subject, with the new sample size. We can define how to
choose the used samples from the original ones in two ways:
first, simply use samples from the beginning of the recording
and discard the remaining data. The second approach was
to randomly choose, at each cross-validation fold, between
the existing samples, which sample to use. Figure 5 shows
the results of both procedures. Deterministic choice (in this
case, starting from the initial sample) produces better results
than random choice at every cross-validation fold. For small
sample durations, differences in accuracy are large, but already
for samples with half of the maximum duration (30 sec),
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Fig. 5. Accuracy and standard deviation of 5-fold CV using sample sizes 480,
960, 1920, 3840 and 7680. In red are the results when choosing the segments
deterministically and in blue when the choice was random, at each CV fold.

average values of accuracy are almost identical between the
two approaches.

E. Experimental Details

The experiments were run on a PC with an AMD Ryzen 7
3700X 8-Core processor, Pop! OS 22.04, 32GB RAM, 1TB
SSD, and an NVidia RTX 3080ti GPU. The optimization
process took around 9 hours to execute for each run. The
code was made in Python 3.10, and we used the Scikit-learn
[18] libraries for the classifier, Statsmodels [19] for the VAR
model, and Matplotlib [20] for the figures. We adapted the
code from the GeneAl Genetic Algorithm library [21] to our
needs.

IV. DISCUSSION

A. The Physiology of Schizophrenia

According to the DSM-5 [22], the diagnosis of schizophre-
nia is based on subjectively reported experiences, symptoms,
and observed behavior. It can be misdiagnosed with many
other mental disorders which have similar clinical manifesta-
tions. Symptoms may be positive (similar to psychosis), neg-
ative (deficits of normal emotional responses), and cognitive
(social cognition, perception, memory). We should expect that
schizophrenic boys exhibit symptoms that may be reflected
in the neurodynamics of their brains. However, symptoms are
often transient, so EEG data sets may not show clear signs
of unusual processes. Complex genetic, neurophysiological,
and environmental interactions are implicated in schizophrenia
etiology, with dysfunctions in the regulation of dopamine,
glutamate, serotonin, and nicotinic/acetylcholine systems, in-
flammation, and hormonal abnormalities. Review of structural
and functional magnetic resonance imaging results by Mubarik
and Tohid [23] was focused on the frontal lobe, temporal
lobe, and limbic system, noting changes in ”the left and
right inferior temporal, right supramarginal/superior temporal,

right and left inferiorfrontal, left frontopolar, right and left
dorsolateral/ventrolateral prefrontal cortices”.

Changes have also been found in the spatial distribution
of power [24]: schizophrenic patients with negative symptoms
had smaller activity in the left temporal area. Doege et al. [25]
mention a link between P300 reduction in schizophrenia and
reductions in delta and theta activity in the auditory oddball
task. Such effects can also be noticed in the asymptotic power
distributions presented in [7], where decreased left hemisphere
activity predominantly in alpha and theta bands is shown.
Ellis et al. [26] used a convolutional neural network and
perturbation-based approach to find the most important elec-
trodes and bands. They have found that T8 and C3 electrodes
with the delta and gamma bands provide the most distinctive
information.

It is quite likely that schizophrenia and other mental dis-
orders are the result of problems with synchrony between
different brain areas. Temporo-spatial processing disorders
(TSPD) are responsible for various cognitive and affective
disabilities [27], resulting from abnormal functional connec-
tivity and neuronal synchronization between multiple brain
areas. Review of brain oscillations in various brain disorders
[28] showed various changes that can be observed in EEG
of schizophrenics: decrease of gamma and delta activity, and
frequency shifts in alpha and lower frequencies. However,
there are also surprising observations, such as an increase,
greater than in the control subjects, of gamma activity during
cognitive loading. The index of structural synchrony, calcu-
lated by counting the coincidences of boundaries of quasi-
stationary alpha band segments, is 2.03 for the healthy group,
and only 1.67 for the schizophrenia group [5]. Changes in
the oscillations of local cortical neural ensembles and weaker
interdependence between different regions of the brain of
schizophrenics were also confirmed using another dataset
[29]. The largest connectivity group differences were in the
alpha band, reduced connectivity strength of SZ patients, and
changes in graph connectivity measures. Such changes in the
connectivity should also result in differences in the power of
oscillations in different brain areas.

B. Connection between Physiology and Selected 1Hz Bands

To understand if there is a connection between the bands
identified as more useful in the GA search results and what
is known about schizophrenia physiology, we first relate the
1Hz bands to the 5 classical EEG bands. We calculate the
percentage of usage (PU) of each classical band by a particular
chromosome, defined as the ratio between the number of 1Hz
bands used by a chromosome and the total number of 1Hz
bands in that EEG band. For instance, if a chromosome is
using 3 of the 4 available 1Hz bands inside the delta band,
then the PU of this band by this chromosome is 75%.

We calculated the average PU for the 5 EEG bands, by
the best 10, 20, 30, and 40 chromosomes taken from all
generations and repetitions and also by the worst 10, 20,
30, and 40 chromosomes, again from all generations and
repetitions. These values are presented in Fig. 6. The worst
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Fig. 6. Average percentage of usage of the five classical EEG bands by the
10, 20, 30, and 40 best and 10, 20, 30, and 40 worst chromosomes.

chromosomes use frequencies from each band almost as often
as the best ones. Frequencies that belong to all classical bands
are important, with the low-frequency delta band used more
often than the remaining ones. For 10 chromosomes the delta
frequencies in the best chromosomes are not used as much as
in the worst ones.

Figure 7 shows the 40 best and 40 worst chromosomes

Fig. 7. Best 40 (top) and worst 40 (bottom) chromosomes. Each chromosome
is a row. White represents the use of a particular 1Hz band. Note that the 64
columns represent the 64 1Hz bands encoded in the chromosomes.

found (each chromosome is a row in this figure). Some
frequencies have not been selected by any chromosomes, while
others were quite popular among the best chromosomes that
have evolved. Vertical lines show how similar to each other
the chromosomes are. The worst chromosomes are randomly
initialized and do not show much similarity, whereas the best
chromosomes have evolved to achieve good performance and
show the tendency to use the same frequency bands. With
a large input space and comparable contributions from single
bands, as seen in Fig. 3, many combinations of bands may give
similar accuracies. Fig. 8 shows the most used 1Hz bands in
the top 40 chromosomes. Note that 35 out of the 40 best ones
are using 8, 16, 30, 35, 38, 40, 46, 50, 54, 59 and 60 Hz bands.
The region between 23 and 28Hz is probably the least used.
Also, none of these chromosomes used either the 55 or 56Hz
bands. This shows that information useful for distinguishing
between the schizophrenic and the healthy controls can be
obtained from almost the entire 64Hz spectrum considered.



0 10 20 30 40 50 60
EEG band

0

5

10

15

20

25

30

35

40
Nu

m
be

r o
f t

im
es

 u
se

d

Fig. 8. Number of times a given 1Hz band was used in the best 40
chromosomes.

V. CONCLUSIONS

In this paper we introduced an optimization approach to
study the classification accuracy for detecting schizophrenia
in EEG signals, using combinations of selected 1Hz bands.
One goal was to find which frequencies are sufficient to
predict schizophrenia. Using all frequencies, we achieved 82%
accuracy, whereas the best mix of about 1Hz bands achieved
96.4% accuracy. Another goal was to find what relation these
1Hz bands might have with the physiological knowledge of the
disease. The bands used by the best chromosomes are a mix
from all over the 64Hz spectrum considered and hence make
it hard to see a relation with already identified specific bands
that can be used for schizophrenia detection. Nonetheless, we
did observe that certain groups of frequencies were not being
used and still we could attain a high classification accuracy,
pointing to a marginal importance of these bands in the
detection of this pathology. We also wished to investigate the
influence of the sample size in the ability to detect the disease
using our method: the results show that the accuracy drops
quickly for samples under 30 seconds duration, when using
our approach, making this an important guideline for future
research based on EEG schizophrenia detection. Although the
optimization step is computationally demanding the whole
method is extremely simple and after selecting a subset of
the most useful frequencies can be used in practice.

A similar optimization approach can be used to select
combinations of specific frequencies and the positions of
electrodes. An analysis of recordings made with higher-density
EEG equipment to make more precise predictions would be
needed. This could be the way to discover specific EEG
biomarkers that could be measured using simpler equipment
with judiciously positioned electrodes and a small number of
frequency filters. In future work, we plan on applying this
process to other schizophrenia EEG data sets and also to other
brain disorders that can be diagnosed using EEG.
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