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2NOVA LINCS, Universidade da Beira Interior, Covilhã, Portugal.
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Abstract

To perform a set of tasks in a robotic network cloud system as fast as
possible, it is recommended to use a scheduling approach that minimizes
the makespan. The makespan is defined as the time between the start
of the first scheduled task and the completion of all scheduled tasks.
Load balancing is a technique to distribute incoming tasks across pro-
cessing units in a way that the resource utilization is optimized and the
makespan is minimized. Robotic network cloud systems can be concep-
tualized as graphs, with nodes representing hardware with independent
computing power and edges representing data transmissions between the
nodes. The initial scheduler assigns a set of newly arrived tasks to the
processing units capable of performing them. To reduce the response
time we can replicate some of the tasks and assign them to different
processing units. This results in some tasks becoming redundant. Assign-
ing redundant tasks refers to determining which processing unit should
receive the replicated tasks. Load balancing for redundant allocation can
be viewed as assigning tasks to multiple processing units with different
resource sizes so that the load is evenly distributed among the units.
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We propose a technique for load balancing, the ordered balancing algo-
rithm (OBA), to minimize the makespan in the redundant allocation and
scheduling problem. We prove theoretically the correctness of the pro-
posed algorithm and illustrate with simulations, using R version 4.0.3, the
obtained results that outperform other recent load balancing proposals.

Keywords: Cloud, Fog, Edge, Load balancing, Makespan, Redundant task
scheduling, Robotic network

1 Introduction

Robotic systems are utilized in a variety of human activities, including domes-
tic [1, 2], industrial and manufacturing [3, 4], military [5, 6], and others [7].
Various tasks, such as transporting large objects and monitoring a large area,
often exceed the capabilities of a single robot. To overcome this limitation,
instead of using a single robot, it is a good idea to use multiple communi-
cating robots to perform the task cooperatively, in which case the system is
called a robotic network. A robotic network’s capacity is higher than that of
a single robot, but it is limited by the combined capacity of all robots [8]. To
increase the capacity, one can increase the number of robots, which increases
the complexity of the model. Another restriction is that most tasks that involve
human-robot interaction, such as object recognition [9], face recognition [10],
and speech recognition [11], are computationally intensive.

Cloud robotics uses the Internet and cloud infrastructure to assign com-
putations and also share big data in real-time [12]. Cloud robotics can help
robots overcome some of their computational limitations. Deciding whether
to transfer a newly received task to the cloud or process it on a server (Fog
computing [13]) or execute it on one of the robots (Edge computing [14]) is a
crucial feature of a cloud robotic system, called the allocation problem. The
result of solving the allocation problem is a set of tasks that each processing
unit should complete. The scheduling problem is concerned with arranging
(scheduling) of a set of tasks given their priority, time constraints, and the
order of precedence among the tasks, and answers the question of which of the
assigned tasks should be completed first for each processing unit. Since tasks
that do not satisfy the time window constraints and tasks’ priorities cannot be
executed by any processing unit, we can assume without loss of generality that
the scheduling order of tasks is the order of arrival. We focus on the theoretical
solution of the allocation and scheduling problem for a robotic network cloud
system. We can restrict the method to the tasks to be executed by the nodes
in the cloud. This is the answer to the allocation and scheduling problem that
minimizes the makespan and balances the loads in the cloud infrastructure.
Minimizing the makespan allows a sequence of tasks to be completed in the
fastest way, and load balancing allows all computational resources to be used
simultaneously without leaving any computational resource unused.
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In a robotic network cloud system, each task is assigned to a processing
unit for execution. The processing units may have different resources, which
means that they may not be able to execute all tasks. Also, each task may
require a certain amount of resources to ensure its execution. When a new set
of tasks arrives in the system, the initial scheduler assigns the tasks to the pro-
cessing units that are capable of performing them. We can replicate the tasks
as they arrive and assign them to different processing units that can perform
them to reduce response time. This results in some tasks becoming redun-
dant. Assigning redundant tasks refers to determining which processing unit
should receive the replicated tasks. New tasks arrive in the system dynami-
cally and are assigned to processing units. Depending on where the tasks are
assigned, the makespan may change. It is important to find the optimal way
to schedule the newly arrived tasks so that the makespan is minimized, i.e.,
all processing units complete their tasks in the shortest possible time, while
ensuring that a smaller number of processing units are in the idle state while
the system executes all tasks. This is referred to as load balancing. Load bal-
ancing ensures that the system operates at its maximum capacity and that
the available resources are used optimally.

In this paper, we propose a new method, ordered balancing, that solves the
problem of load balancing in redundant task allocation in a robotic network
cloud system. Our proposed method is an extension of another method, [15],
but the extension is non-trivial. It is equivalent to the graph coloring problem,
where nodes can only be colored from a given set of colors. This is a more
complex problem that cannot be handled by existing methods, and the com-
plexity of such problems is at least NP-complete. To solve this problem, we
defined a metric that satisfies several conditions for the tasks and the appro-
priate processing units to which they can be assigned. Then, depending on the
criterion, we call the existing result to show how each of the tasks satisfying
that criterion can be assigned to different nodes, such that the makespan is
minimized and the loads are balanced, see Figure 1.

We prove that our task allocation algorithm minimizes the makespan and
balances the loads within all suitable nodes, and is optimal. The proof includes
the precedence order between tasks. We have shown that our method is deter-
ministic and does not involve stochastic or statistical approaches, and we have
theoretically proved that it is optimal in the space of deterministic approaches
to minimize makespan and balance the loads, and this has been illustrated
with simulations. Our method has been rigorously tested and proven effective
in analyzing large-scale cloud models. Our method enables better optimization
with higher performance and maximizes efficiency.

The possibility of improving task scheduling with our method can have
an impact on the efficiency of the implementation of robotic network cloud
systems, since, as we show, our proposal is able to improve the state-of-the-art
in this area. In addition, minimizing the makespan and balancing the loads
means faster response time and better resource utilization, which can increase
the profit and reduce the costs in production.
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Fig. 1 Overview of the ordered balancing algorithm (OBA). At time step j, the available
tasks and the processing units that can perform them are sorted. Then the first task is
assigned to the first processing unit in the next time step, and when a new set of tasks
arrives, the union of all unscheduled tasks is sorted.

The following is the outline of the paper.

• Section 2 reviews some related work on the problem of task allocation on
robotic network cloud systems.

• Section 3 describes some basic but important concepts for this work.
• Section 4 presents the key algorithm of this work.
• In Section 5, we provide a proof of the optimality and correctness of the key
algorithm.

• In Section 6, we describe the experimental methodology and discuss the
results.

• In Section 7, we analyze the complexity of our key algorithm compared to
the state-of-the-art algorithms.

• Section 8 contains the scalability analysis of our key algorithm and the
state-of-the-art algorithms.

• Finally, in Section 9, we draw some conclusions and point out future lines
of work.

2 Related Work

We denote by T the set of all tasks that can be performed by a given multi-
robot system. Suppose that Ti ⊆ T is a set of tasks that are newly fed to the
system at the i-th step within the time horizon. As we can see in Figure 2,
there are two types of task allocation:
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Task allocation problem:
T = {A1, . . . ,Am} and (Ti)i∈N = T1, T2, . . . ,⊆ T

Dynamic: Optimal performance for
allocating (Ti)i∈N, [15, 16]

Static: Optimal perfor-
mance for allocating T

Distributed: tasks dis-
perse to all nodes, and
nodes decide whether to
perform tasks or not

Centralized: Cen-
tral unit provides
task allocation, [17]

Evolutionary
algorithm-
based, [18–
20]

Combinatorial
optimization-
based, [21]

Behavior-
based, [22, 23]

Market-based,
[24, 25]

Multi-robot, simultane-
ously time and memory
optimization [26]

Multi-
robot,
time opti-
mization
[27, 28]

Single robot,
simultane-
ously time
and memory
optimization
[29]

Machine
learning, [30]

Fig. 2 Diagram of studies on the subject of task allocation. Algorithm i is represented by
Ai. The dashed arrow indicates that the result in [29] for a single robot cannot be extracted
from the result in [27]. The dashed rectangle indicates that our proposed method belongs
to the dynamic work allocation category.

• static task allocation seeks the optimal performance of the system in
performing each task by allocating the set of all tasks;

• dynamic task allocation seeks the optimal performance along the time
horizon by dynamically allocating the newly arrived tasks.

In static task allocation, [28] proposed an algorithm for static task alloca-
tion for a multi-robot system, but it does not consider the cloud infrastructure
and communication times; [29] solved the static allocation problem by simul-
taneously minimizing the memory and time for a single robot cloud system,
and used the concept of algebra of memory and time to deal with the prece-
dence order between algorithms; [27] only approaches the allocation problem
by considering the minimum time, and ignores the memory parameter; [26]
investigated the static allocation problem for robotic network cloud systems
to minimize memory and time by translating it into an optimization problem.

Dynamic task allocation can be achieved using two types of methods:

• centralized methods, where a centralized unit has information about the
entire environment and performs task allocation, [17];

• distributed methods, where all tasks are distributed among all units, and
they decide which tasks to perform.

Five main approaches are considered for distributed allocation:
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• evolutionary algorithm-based, where the decision of each unit to con-
sider for a task is made by using evolutionary operators on the space of
solutions, [18, 19];

• combinatorial optimization-based, in which the decision of each unit
to consider a task or not is made by solving the combinatorial optimization
generated by the task allocation problems using an appropriate existing
technique, [21];

• market-based, where the decision of each unit to consider or not a task is
made based on an auction-based mechanism, [24];

• machine learning-based, where a machine learning algorithm is used to
find an optimal task allocation, [30].

• behavior-based, where the decision of each unit to assign a task to is made
based on the problem characteristics, [22];

Most studies simply transfer computationally intensive tasks to the cloud
without taking into account the amount of time required for communication
between robots and cloud infrastructure in task allocation in a cloud robotic
system, [31–33].

Dynamic task allocation has been widely studied. The most recent works
are: [23], which proposed an algorithm to improve latency, energy consumption,
and computational cost for cloud robotics, taking into account the architec-
ture of the cloud robotic, the characteristics of the task, and quality of service
issues; [34] offered a centralized dynamic task allocation method by translating
the problem into a non-deterministic finite automaton, and presented a lowest
cost solution based on the robots’ energy levels.; [35] suggested a method to
deal with the tasks’ deadline while minimizing the total cost; [36] examined
task allocation considering that the tasks and the number of robots can change;
[21] developed an optimization model based on set theoretical parameters that
provides the optimal task allocation for the execution of some complex tasks
by two collaborative robot teams; and [16] translates optimal task assignment
into determining the largest volume of a hyperspace subspace (they studied
the compatibility of a node to perform a task, communication and communi-
cation instability, and the capability of fog, cloud, and robots). Most studies
on dynamic task allocation find a solution for optimal and sequential alloca-
tion of tasks to units and ignore the effects of assigned tasks on the allocation
of newly arriving tasks, which may cause delays in the execution of new tasks;
[30] proposed a scheduling strategy in a cloud infrastructure to reduce response
time and increase resource efficiency. Reinforcement learning is used in the
scheduling method. To use Bayes’ theorem, the size of the occupied buffer and
the total length of virtual machine tasks at each time step are assumed to be
independent and the Q-values are estimated; [37] reviewed most recent papers
published on scheduling in cloud computing.

For load balancing, [38] reviewed load balancing techniques on fog server;
[39] proposed a centralized resource-aware load balancing model (REAL) for a
batch of independent tasks considering communication time; A recent study,
[15], proposed a method called Allocation of Sorted Tasks to Processing Units
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(ASTPU), which describes an algorithm as a load balancing method such that
incoming tasks are sorted in decreasing order by their average completion time
and tasks are assigned to the processing unit with the shortest delay. They
proved that their proposed method is an optimal scheduling method for load
balancing. In their study, all units are identical and it is assumed that all tasks
can be performed by all units, which solves a particular problem. In more
realistic scenarios, different tasks usually require different resources, and we
can have an architecture with different units’ capabilities. In this case, each
task can only be assigned to some specific units that have enough resources to
execute the task, and the method proposed in [15] cannot handle this. In this
paper, our main goal is load balancing considering the incoming tasks that
require different resources; [40] proposed load balancing (min-min heuristic)
method in Large-Scale Computing Systems (LSCSs) to jointly balance the
loads of processing units and minimize the power consumption.

[41] studied load balancing as a mathematical model and proposed two
greedy strategy based solutions, Basic Load Balancing Algorithm (BLBA) and
Improved Load Balancing Algorithm (ILBA), where both methods measure
the loads considering the precedence order of tasks and then minimize the
mean square error of the loads using an optimization model. In the paper [42],
the Balancer Gene Algorithm (BGA) was proposed, which assigns tasks to the
virtual machines using a genetic algorithm and then uses the balancer operator
to distribute the workload among the virtual machines.

Most of the researches, such as [43, 44] use random sampling, and stud-
ies like [41, 45–47] have a greedy tendency when it comes to decreasing the
makespan and load balancing. For this reason, we will make a comparison
using the following methods:

• Random algorithm: Tasks are randomly assigned to processing units,
[44].

• FIFO: Tasks are assigned to processing units based on their arrival order
and are assigned to the corresponding processing units with the smallest
number of assigned tasks, [48].

• Genetic: Tasks are assigned to processing units using a genetic algorithm
that then employs the balancer operator to balance the workload between
processing units, called the Balancer Genetic Algorithm (BGA), [42].

• Greedy: Tasks are assigned to the processing units considering the length
of their queues, [41]. We used the greedy method (ILBA), where each task
is assigned to a processing unit that takes the least total time to complete
all of its scheduled tasks.

Table 1 shows the advantages and limitations of each method.
As can be seen in Figure 2, the work in this paper focuses on the dynamic

allocation problem. Our major goal is to propose a mechanism for allocating
and scheduling newly received tasks to various computational units in such a
way that the total makespan is kept to a minimum and the scheduled task
completion times for all nodes are near to each other. We assume that each
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Table 1 Table with advantages and limitations of each compared method.

Method Advantage Limitation
Random [44] simple implementation, easy to

scale, and cost efficient
uneven load distribution, no
traffic prioritization, limited
control, and inefficient resource
utilization

FIFO [48] fiarness, simplicity, cost effi-
cient, and system efficiency

inefficiency for systems with
varying capacity, limited flexi-
bility, and limited scalability

BGA [42] flexibile, efficient, and adapting
to change of workload

high complexity, solution
depends on the optimization
parameters, not suitable for
large scale scenarios

ILBA [41] simplicity, fast and efficient,
flexibible and scalable when
tasks are distributed to multiple
servers, and easy to modify

result is suboptimal, high com-
putational cost, lack of flexibil-
ity to adapt new scenarios.

Table 2 Table of notation.

Notation Description
⪯ Priority order defined between tasks
P A single processing unit
P The set of all processing units
T A single task
T The set of newly arrived tasks
T The set of all tasks
ΓT The set of processing units capable of performing the task T

task requires a certain amount of resources for its execution and that each unit
is capable of providing a certain amount of resources. The method should be
independent of the optimization parameters, suitable for large scale scenarios,
adaptable to new scenarios, and provide an optimal result that overcomes some
of the limitations of BGA and ILBA in Table 1. We begin with a description of
the mathematical tools used throughout the paper. Table 2 lists the notation
used in the paper.

3 Preliminaries

Before describing the method, we explain some preliminaries related to graph
theory. See [49] for more details.

Throughout the paper for a set A, we donote by #A is the number of the
elements of the set A.

Definition 1 Let G = (V,E,W ) be a weighted graph. We say that G is a bipartite
graph if there exist nonempty and disjoint subsets ∅ ≠ V1, V2 ⊂ V , V1 ∩ V2 = ∅ and
V1 ∪ V2 = V such that.

E ⊆ {{v1, v2} ∣ v1 ∈ V1, v2 ∈ V2}. (1)

The sets V1 and V2 are called parts. And the vertices of the graph is weighted with
real values, W (vi) ∈ R, for i = 1, . . . ,#V .
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Definition 2 In a weighted bipartite graph G, a matching is a set of edges of G
such that no two edges share a vertex. A maximal matching is a matching with a
maximal number of edges. The size of a matching is equal to the number of edges in
the matching.

We can represent a weighted bipartite graph

G = (V,E,W ) (2)

as
G = {(V1,ΓV1

,W )} , (3)

where V1 and V2 are parts of G and ΓV1
is a set of subsets of V2, such that for

all v ∈ V1, Γv ∈ ΓV1
if and only if Γv is the set of vertices adjacent to v in V2.

On a weighted bipartite graph G we define an order, ⪯, on Γvi
’s as follows:

for vi, vj ∈ V :
Γvi ⪯ Γvj (4)

if one of the following occurs:

1. #Γvi <#Γvj ;
2. Γvi = Γvj and W (vi) ≥W (vj);
3. #Γvi =#Γvj but Γvi ≠ Γvj , find in this case

∆vi = {vk ∈ A ∣ Γvi = Γvk} (5)

and
∆vj = {vk ∈ A ∣ Γvj = Γvk}, (6)

then Γvi ⪯ Γvj if:
(a) #∆vi ≤#∆vj ;
(b) #∆vi =#∆vj and max(W (∆vj

)) ≥max(W (∆vi)).
Under this new metric, ⪯, which is defined over the tasks in terms of occurrence
relation and execution time as weights of tasks, each task is assigned to a node
that is suitable for its execution with the shortest time delay. This is done
assuming that the selected node is the one that has the smallest number of
occurrences in the set of all suitable nodes for all other tasks that have the
same number of suitable nodes to assign.

Let T be the set of all possible tasks that can be performed by the system.
The main load balancing problem can be formulated as follows:

min Makespan(T,P,Γ(T)) = timef(T,P,Γ(T)) − times(T,P,Γ(T))
s.t. times(T,P,Γ(T)) =min{Startprocessing(P,T ) ∣ T ∈ T, P ∈ Γ(T))}

timef(T,P,Γ(T)) =max{Completeprocessing(P,T ) ∣ T ∈ T, P ∈ Γ(T))}
T ⊆ T is the set of newly arrived tasks,

P is the set of all processing units,

Γ(T) = {ΓT ∣ T ∈ T},
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ΓT = {P ∈ P ∣ P can perform T},
Startprocessing(P,T ) is the time to start processing task T by

processing unit P ,

Completeprocessing(P,T ) is the time to complete processing task T

by processing unit P ,

#ΓT > 0,
all tasks in T have time window constraints.

The presence of time window constraints is handled by the grid of all tasks,
[15].

4 Key Method

We first describe the ordered balancing algorithm (OBA) that plays the key
role in the paper. OBA sorts the set of newly arrived tasks and the set of
processing units and allocates each task to the most suitable processing unit
based on the obtained order, as detailed in Algorithm 1. The proof of the
correctness and optimality of the algorithm is due to the existence of a proof
of Proposition 1.

Algorithm 1 Pseudocode of ordered balancing algorithm (OBA)

Input: T (the set of all newly arrived tasks), P (the set of scheduled tasks
for all processing units), and Γ(T ) (the set of processing units that can
perform each of the newly arrived tasks).

Output: M ∶ T→ P (the mapping from the set of newly arrived tasks to the
set of processing units).

1: while T ≠ ∅ do ▷ There is at least one task to be assigned to a
processor.

2: Sort the sets T in decreasing order ▷ Considering the metric ⪯.
3: Sort the set P in increasing order ▷ Considering the expected

completion time of all their scheduled tasks.
4: M(T ) = P . ▷ Assign the first task T of T (the sorted set) to the

first processing unit P of P (the sorted set) that is capable of performing
the task T .

5: T = T ∖ {T}. ▷ Update the set of tasks.
6: P = P ∪ {T}. ▷ Update the set of scheduled tasks for the pro-

cessing units. The set of scheduled tasks for all processing units remains
unchanged, except for processing unit P , which is assigned task T and
added to its scheduled tasks.

7: end while
8: return The mapping M .
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The detailed description of Algorithm 1 is as follows: The OBA algorithm
takes the set of newly arrived tasks

T = {T1, . . . , Tn}, (7)

the set of scheduled tasks for processing units

P = {P1, . . . , Pm}, (8)

and
Γ(T ) = {ΓT1

, . . . ,ΓTn
} (9)

the set of processing units that can perform each of the newly arrived tasks,
as the input. And produces the mapping

M ∶ T→ P (10)

from the set of newly arrived tasks to the set of processing units, as the output.
The OBA algorithm then recursively applies the following steps until the set
is T = ∅:
1. Sort the setT in decreasing order considering ⪯ and sort the setP in increas-

ing order considering the expected completion time of scheduled tasks of
all processing units.

2. Take out the first task T from T (ordered set as defined in 1) and assign it
to the first processing unit P ∈ Γ(T ) from P∩Γ(T ) (ordered set as defined
in 1), and let M(T ) = P .

3. Update the set of tasks T = T ∖ {T}.
4. Update the processing units’ set of scheduled tasks. The set of scheduled

tasks for all processing units remains unchanged, except for processing unit
P , which is assigned task T and added to its scheduled tasks.

When the iteration completes, the mapping M defined in 2 for each task will
be obtained. The flowchart of the algorithm 1 is shown in Figure 3.

This method is an extension and more generalized version of the ASTPU
method in [15]. The paper [15] assumes that all processing units are capable
of performing tasks. However, in this paper we assume that tasks can only
be performed by some specific processing units, not all. Such an extension is
not trivial, and to find an optimal task scheduling, we need to consider the
capabilities of the processing units, the length of the scheduled tasks, and the
execution time of the newly arrived tasks. We combine these three orders into
a single order (4) and then prove in Proposition 1 that optimal scheduling with
minimal time is possible with this newly defined order. The grid of all tasks
is developed and designed in [15], which allows us to handle the precedence
order between tasks by letting each task take its specific position in the grid
and then assigning the stream of the grid to different processing units.
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Fig. 3 Flowchart of the ordered balancing algorithm (OBA).

5 Proof of Optimality

The following proposition shows that the ordered balancing algorithm 1 is
an optimal task allocation method in the sense that all processing units can
finish their tasks practically simultaneously. We show that assigning tasks to
processors in a different way than the ordered balancing algorithm 1 increases
the variance, meaning that the loads will be less balanced.

Proposition 1 (OBA method) Let

A = {ai ∣ i = 1, . . . , n} (11)

be a list of positive real numbers, m ≥ 1 be an integer, and

Γai ⊆ {1, . . . ,m}, (12)

with Γai be the set of places where ai can be located. Consider randomly removing
of one ai’s and putting it in exactly one of the places in Γai and repeating the same
process until the set A is empty. Define random variables Xj for j = 1, . . . ,m to be
the sum of ai’s at place j. Then, the ordered balancing algorithm 1 minimizes the
variance of Xi’s.

Moreover, when A = {a1, . . . , an}, with m ≥ n, and Γai ’s describe a maximal
matching of A to {1, . . . ,m}, one can obtain the minimal variance by placing each of
the ai’s at its matching location on the set {1, . . . ,m}.

Proof We first show that if A = a1, . . . , an, m ≥ n, and Γai describes a maximal
matching of A with {1, . . . ,m} of size #A, the minimal variance can be obtained by
putting each ai at the location of its match on the set {1, . . . ,m}. Then, the result
of having a minimum variance is given by the ASTPU proposition in [15].
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For the optimal allocation with minimal variance, we consider the order, ⪯ defined
in (4), on Γai ’s. Without loss of generality, we can assume that

Γa1 ⪯ Γa2 ⪯ . . . ⪯ Γan . (13)

Now we apply the ASTPU proposition [15] for the allocation ai’s, with respect to the
order ⪯, to the particular place j ∈ Γai with the smallest value Xj . If there are more
than one suitable places with the smallest value, then put ai into the one that has the
smallest number of occurrences in all Γ(ak), with #Γai = #Γak . From the ASTPU
proposition, [15], setting each ai with this method gives the smallest variance with
respect to its appropriate places.

Note that the defined order ⪯ prioritizes the ai’s. The idea for placing the elements
of A is first to place the elements that have the smallest number of suitable places
because other elements of A, with a larger number of suitable places, have more
opportunities to be placed. Given the smaller sum of ai’s in the positions where
the elements of A are placed, and the ASTPU proposition, [15], it implies that this
placement produces a smaller variance increase. That is, the condition 1 implies that
the element ai should be placed first before the placement of aj if #Γai < #Γaj . In
this case, ai has a smaller number of suitable positions to be placed in.

Condition 2 implies that if two elements ai and aj have the same set of suitable
places, then the one with the larger value should be placed first, which is the equiva-
lent way of saying that the ASTPU proposition [15] should only be applied over the
fixed set of suitable places.

Conditions 3 and 33a, imply that if two elements ai and aj have the same number
of suitable places, then, the one that has the smaller number of identical sets of
suitable places should be placed first. This is because, in this case, we are adding a
smaller number of elements in certain places.

The conditions 3 and 33b, imply that if two elements ai and aj have the same
number of matching positions and have the same number of identical sets of matching
positions, then the one that has the same set of matching positions of a larger value
should be placed first. This implies that the largest values should be placed first, and
the result is given by the ASTPU proposition [15]. □

6 Experiments

The experiments were performed on a HP Laptop 15-dw2xxx with Intel Core
i5 10th generation with processor Intel(R) Core(TM) i5-1035G1 CPU @ 1.19
GHz, RAM 16.0 GB, x64-based processor, and we used R version 4.0.3. We
compared our result with random algorithm [44], FIFO [48], Balancer Genetic
Algorithm (BGA) [42], and a greedy algorithm (ILBA) [41]. The code is made
available at: https://github.com/SaeidZadeh/LoadBalancer.

6.1 Experiment 1

We consider 10 processing units and the total number of tasks is unknown.
Each of the newly arrived tasks’ average execution time is chosen at random
from the range [0,10000] milliseconds. We then randomly select the set of
appropriate processing units that can execute each of the tasks.

As we have shown in Proposition 1, when there are a large number of pro-
cessing units, the optimal task allocation to the processing units can be done

https://github.com/SaeidZadeh/LoadBalancer
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Table 3 Average execution time (in milliseconds) of all methods applied to the last
settings for scheduling tasks with 1000 time steps.

Parameter Value
Number of Processing units 10
average execution time of each task [0,10000] milliseconds
Task arrival rate constant n ∈ {1, . . . ,200}
Number of iterations 50
Number of time steps 1
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Fig. 4 Average makespans (in milliseconds) in a single time step.

by assigning at most one task to each processing unit, and in this situation the
performance of the state-of-the-art methods and our proposed method is indis-
tinguishable. To avoid such a scenario, we consider the number of processing
units to be equal to 10. Moreover, the execution time of the tasks can be either
slow or fast. Within the interval [0,10000] milliseconds, we consider tasks that
can be executed in short and long time and that are randomly generated.

We consider that the task arrival rate is fixed (the number of tasks that
arrive in all time steps is constant), and varies from 1 to 200 tasks in a single
time step. For each task arrival rate n ∈ {1, . . . ,200}, we randomly select 50
tasks according to their execution time interval [0,10000]. For all 50 repeti-
tions of task selection, we apply all task allocation algorithms and find their
average makespan considering the task arrival rate n. Figure 4 shows the aver-
age makespan of the different methods. As can be seen in Figure 4, in a single
time step OBA outperforms all the other methods when the number of newly
arrived tasks is larger than the number of processing units.

Table 3 shows the detailed simulation setup.
Another advantage of OBA is that all processing units complete their sched-

uled tasks at almost the same time. The Task Completion time Difference
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Fig. 5 TCD as a function of the number of arriving tasks in a single time step (in millisec-
onds). When compared to the OBA approach, it can be shown that ILBA, BGA, and FIFO
have growing TCD.

(TCD) is used in [15] as a measure to check how balanced the loads of all
processing units are:

TCD = tmax − tmin, (14)

where tmin is the shortest time in which one of the processing units has
completed all of its scheduled tasks, and tmax is the total time in which all pro-
cessing units have completed all of their scheduled tasks. Figure 5 shows the
changes of TCD as a function of the number of arrived tasks. From Figures
4 and 5, it can be seen that OBA minimizes the makespan and has better
performance in balancing the loads.

6.2 Experiment 2

Now consider that the arrival rate of the tasks is a random variable from the
Poisson distribution with parameter 10 within the total time steps of 200.
In this setting we assume that at each time step all processing units has no
scheduled tasks, i.e., before new set of tasks arrives all processing units com-
plete their scheduled tasks. We repeat the same procedure 50 times. First, for
each time step, we independently compute the average makespan, TCD, and
the difference between OBA, Random method, ILBA, BGA, and the FIFO
method. The average makespan with respect to each method is shown in Figure
6, where we have averaged all the average makespans of all 50 repetitions at
the end. As can be seen in Figure 6, if a new set of tasks arrives after all pro-
cessing units complete their scheduled tasks, then OBA better minimizes the
makespan compared with all the other methods.

Table 4 shows the detailed simulation setup.
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Table 4 Average execution time (in milliseconds) of all methods applied to the last
settings for scheduling tasks with 1000 time steps.

Parameter Value
Number of Processing units 10
average execution time of each task [0,10000] milliseconds
Task arrival rate random Poisson distribution with parameter 10
Number of iterations 50
Number of time steps 200
Time steps at completion of all scheduled tasks
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Fig. 6 Average makespans (in milliseconds) per each of the 200 time steps for 50 repetitions
with a Poisson distribution with parameter 10 changing the number of arrival tasks. The
average makespans of all experiments with respect to each method are represented by straight
lines.

Now we take the average of the 50 repetitions’ makespans and repeat the
experiment 50 times more. The mean of the average makespans of the different
methods for all the 50 runs are

15915.79(±62.71), 12159.51(±37.52), 15713.71(±60.08),
11502.77(±33.02), 9752.72(±18.92)

for Random, FIFO, ILBA, BGA, and OBA, respectively.
The mean TCD’s are

10494.06(±30.65),7852.82(±18.63),40.93(±0.08)

for ILBA, BGA, and OBA, respectively. So, the tasks are better distributed
among the processing units with OBA, and it reduces the average makespan.
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Table 5 Average execution time (in milliseconds) of all methods applied to the last
settings for scheduling tasks with 1000 time steps.

Parameter Value
Number of Processing units 100
average execution time of each task [0,10000] milliseconds
Task arrival rate random Poisson distribution with parameter 200
Number of iterations 50
Number of time steps 1000
Time steps any, while processing units performing tasks

Table 6 Average execution time (in milliseconds) of all methods applied to the last
settings for scheduling tasks with 1000 time steps.

Method OBA FIFO Random ILBA BGA
Average

260.47 44.53 80.90 142.28 146.60
Time

6.3 Experiment 3

Now consider the total time step to be 1000, the Poisson distribution variate
to be the parameter 200, and the number of processing units to be 100. We
also consider that time steps are while some processing units performing their
scheduled tasks, i.e, new set of tasks arrives while some processing units have
some scheduled tasks to perform. We repeat the same procedure 50 times. But
now we calculate the average makespan, TCD, and the differences between
OBA and ILBA, BGA, and FIFO methods for all 1000 time steps.

Table 5 shows the detailed simulation setup.
The average makespan with respect to each method is shown in Figure

7, where we take the mean of all the average makespans of all 50 repeti-
tions at the end. In Figure 7 the mean of differences between ILBA and OBA
is 1993.32(±209.80) and the mean of differences between BGA and OBA is
2542.84(±301.85). The average TCD in each of 1000 time steps for all the
methods does not have significant changes. The mean and standard devia-
tion of the values for the average TCD in each of 1000 time steps for the
methods ILBA, BGA, and OBA are 10105.86(±207.42), 12128.87(±303.69),
9070.40(±68.63), respectively, showing that ILBA and BGA always has a larger
average TCD compared to OBA.

Our result shows that BGA performs better than both FIFO and ILBA
in the short run, and ILBA performs better than both BGA and FIFO in the
long run. In both cases, OBA performs better than either of them.

In this experiment, all methods were used to measure the average time to
complete task scheduling after 1000 time steps. The values are listed in Table
6. First take the average time of 50 iterations, then add the value of 1000
time steps. The result in Table 6 shows that although OBA is slower than
BGA and ILBA, it reduces the average makespan by at least 1500 milliseconds
compared to ILBA and BGA, as the mean of differences between ILBA and
OBA is 1993.32(±209.80) so 1993.32 − 2 ∗ 209.80 > 1500, which is a significant
improvement compared to the execution time.
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Fig. 7 Average makespans (in milliseconds), for the overall 1000 time steps, for 50 rep-
etitions where the number of arrival tasks changes following a Poisson distribution with
parameter 200. The differences between ILBA, BGA, and OBA are difficult to discern in this
figure. Nevertheless, the mean of the differences between ILBA and OBA is 1993.32(±209.80)
and the mean of the differences between BGA and OBA is 2542.84(±301.85).

The Violin plot for time step 1000 are used to compare the kernel densi-
ties of all the methods. For better illustration, all the average makespans are
divided by their maximum value within all methods, Figure 8. In this figure,
the kernel densities of the OBA, ILBA, and BGA are similar and shows that
all have a similar pattern to the Gaussian distribution. Therefore, their results
can be compared using the mean and standard deviation of their differences,
where the mean of the differences between ILBA and OBA is 1993.32(±209.80)
and the mean of the differences between BGA and OBA is 2542.84(±301.85).

To compare the difference between the data collected using different meth-
ods, we perform a t-test for time step 1000. In Table 7 we show the t-values
along with the p-values in the t-test. From the first row of the Table 7, since
all the p-values are smaller than 0.05 and all the t-values are larger than 1.96,
OBA is significantly different from all other methods.

7 Complexity

Let m be the number of newly arrived tasks and n the number of processors.
The complexity of general dynamic scheduling can be easily determined as
follows: Each task should be assigned to the appropriate processor. Thus, if ni

is the number of matching processors that can execute the i-th task, then M =
∑m

i=1 ni is the total constraint on assigning tasks to different processing units.
Now, to find the optimal solution, we need to find the minimum makespan
within these constraints that has complexity O(M), in the worst case M = nm,



Springer Nature 2021 LATEX template

Ordered Balancing 19

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Random FIFO ILBA BGA OBA

●

●

● ● ●

A
v.

m
ak

es
pa

n
m

ax
.m

ak
es

pa
n

Fig. 8 Comparing the kernel densities of all methods for time step 1000, all the average
makespans are divided by their maximum value within all methods.

Table 7 Comparing t-values (p-values) for the data obtained using Random, FIFO, BGA,
ILBA, and OBA for time step 1000.

OBA FIFO Random ILBA BGA

OBA -
t = -45.00 t = -42.81 t = -3.25 t = -7.10
(p < 2.2e-16) (p < 2.2e-16) (p = 0.002) (p = 4.6e-9)

FIFO
t = 45.00

-
t = -20.01 t = 45.02 t = 44.60

(p < 2.2e-16) (p < 2.2e-16) (p < 2.2e-16) (p < 2.2e-16)

Random
t = 42.81 t = 20.01

-
t = 42.75 t = 42.65

(p < 2.2e-16) (p < 2.2e-16) (p < 2.2e-16) (p < 2.2e-16)

ILBA
t = 3.25 t = -45.02 t = -42.75

-
t = -3.84

(p = 0.002) (p < 2.2e-16) (p < 2.2e-16) (p = 0.0004)

BGA
t = 7.10 t = -44.60 t = -42.65 t = 3.84

-
(p = 4.6e-9) (p < 2.2e-16) (p < 2.2e-16) (p = 0.0004)

and the complexity is O(nm). In OBA, the idea is to sort the tasks and
processing units and then assign the tasks to the respective processor based
on the obtained order. The complexity of OBA is then

O(max{m log(m), ni log(ni)}), (15)

and in the worst case, the complexity is

O(max{m log(m), n log(n)}). (16)
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The complexity of the genetic algorithm is O(max{gnim}), where g is the
number of generations, so in the worst case the complexity is O(gnm). And
the complexity of ILBA, which is only about finding the processing unit with
minimum execution time, is O(max{ni}), in the worst case the complexity is
O(n).

8 Scalability

To better illustrate the scalability in two dimensional space we consider two
settings.

• Setting 1 fix the number of processing units equal to 256, change the
average number of arrival tasks as 2,4, . . . ,8192, and measure the aver-
age execution time (in milliseconds) of methods ILBA, BGA, and OBA as
functions of average number of arrival tasks, Figure 9;

• Setting 2 fix the average number of tasks equal to 256, change the number
of processing units as 2,4, . . . ,8192, and measure the average execution time
(in milliseconds) of methods ILBA, BGA, and OBA as functions of number
of processing units, Figure 10.

For both settings we consider only the total time steps of 20 and each experi-
ment is repeated 50 times. Figures 11 and 12 show the minimum improvement
of the average makespan of BGA and ILBA compared with OBA as a func-
tion of average number of tasks and number of processing units for setting 1
and setting 2, respectively. Figures 9 and 11 show that the growth rates of the
average execution time of ILBA, BGA, and OBA are similar and differ only by
constant factors. Figure 10 shows that for a fixed number of processing units,
increasing the number of tasks further improves the average execution time of
OBA compared to BGA and ILBA. Figure 12 shows that for a fixed number
of arrival tasks, increasing the number of processing units further improves
the average makespan obtained by OBA compared to BGA and ILBA for a
small number of processing units. When the number of processing units is very
large (much larger than the number of arrival tasks), the Pigeonhole princi-
ple suggests that each processing unit should be assigned at most one task to
minimize the makespan so that all methods have the same makespan.

9 Conclusion and Future Work

The execution of each task requires a certain amount of resources, and we
have assumed that each unit can only provide a limited amount of resources.
We have proposed a method to allocate the newly arrived tasks to different
processing units such that the scheduled load of all processing units is bal-
anced and the minimum makespan is achieved. The OBA, Ordered Balancing
Algorithm, can handle load balancing in the presence of redundant task allo-
cation. It is a non-trivial extension of the ASTPU method [15]. We compared
OBA with existing scheduling methods. We proved the correctness of OBA and
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Fig. 9 The average execution time (in milliseconds) of methods ILBA (in blue), BGA (in
red), and OBA (in black) in setting 1 as functions of average number of arrival tasks when
the number of processing units is 256 and the average number of newly arriving task is
2,4, . . . ,8192. x axis is in logarithmic, log2, scale.
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Fig. 10 The average execution time (in milliseconds) of methods ILBA (in blue), BGA (in
red), and OBA (in black) in setting 2 as functions of number of processing units when the
number of processing units is 2,4, . . . ,8192 and the average number of newly arriving task
is 256. x axis is in logarithmic, log2, scale.

illustrated through simulations its performance compared to four other meth-
ods and showed that it outperforms all of them. Our result shows that when
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Fig. 11 The minimum improvement of the average makespan (in milliseconds) of BGA and
ILBA compared with OBA in setting 1 as a function of average number of arrival tasks. x
axis is in logarithmic, log2, scale.
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Fig. 12 The minimum improvement of the average makespan (in milliseconds) of BGA and
ILBA compared with OBA in setting 2 as a function of number of processing units. x axis
is in logarithmic, log2, scale.

the average number of newly arrived tasks is larger than the number of pro-
cessing units, OBA has better performance for load balancing and minimizing
makespan.
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OBA is a method that can be added to any processing for distributed task
assignment, or it can be added to the centralized entity. In the distributed
case, the task arrives at a processing unit and all processing units exchange
information about their current scheduled length and the length of new tasks
that have arrived and are to be assigned. Then the task is migrated to an
appropriate processing unit after OBA is performed. In the case of a centralized
entity, the length of the tasks to be assigned along with the length of the
scheduled tasks to each processing unit is communicated to the central unit,
then OBA is applied and the tasks are migrated to the appropriate processing
units determined by OBA.

For future work, we will include communication instabilities [16] and
possible processing unit failures, for more realistic scenarios.
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