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Abstract. This paper presents a model for the probability of correct classifica-
tion for the Cooperative Modular Neural Network (CMNN). The model enables
the estimation of the performance of the CMNN using parameters obtained from
the data set. The performance estimates for the experiments presented are quite
accurate (less than 1% relative difference). We compare the CMNN with a multi-
layer perceptron with equal number of weights and conclude that the CMNN is
preferred for complex problems. We also investigate the error introduced by one
of the CMNN voting strategies.

1 Introduction

The basic idea behind a modular neural network (MNN) architecture [1–5] is the com-
bination of several small networks that are trained to solve a specific part of the full
problem. The output of these networks can be combined using, amongst others, rules
such as the simple and weighted averages or the product [6–8] or alternatively, one of
the outputs can be selected as the correct result.

Intuitively, a MNN architecture should perform better than a single network for
problems that can be separated into several subproblems. In this case, there is a decou-
pling of the neurons (and weights) used for learning each subproblem when compared
to the case of using a single network to solve the entire problem.

This paper introduces a model for the probability of correct classification for the
cooperative MNN (CMNN) [1, 9, 10]. This model enables a better understanding of the
way this MNN works. It also enables the estimation of the performance of the CMNN
using parameters estimated from the data set. We show empirically that these estimates
are accurate. We compare the CMNN with a multi-layer perceptron (MLP) with equal
number of weights and conclude that the CMNN is preferred for complex problems.
We also investigate the error introduced by one of the voting strategies.
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FEDER.



Section 2 introduces the CMNN architecture and the model for the probability of
correct classification (PCC). Section 3 includes the several voting strategies that can
be associated with the CMNN. Section 4 contains experiments, illustrating the ideas
presented in the previous sections and confirming the validity of the developed model.
In the last section, the results are discussed and the conclusions posted.

2 CMNN Architecture

In this section we describe the CMNN architecture. Consider a classification problem
with L classes. Cn represents class n. The input feature vector is X . The CMNN con-
sists of k expert NNs, gi(X), i = 1, . . . , k, that are trained to solve a particular sub-
problem of the total problem, and also to recognize when the input data does not belong
to its own subproblem.

A classifier gi outputs a vector of estimates of the posterior probabilities, pi(X ∈
Cn|X),

gi(X) = (pi(X ∈ Cn|X), . . . , pi(X ∈ Cn−1+#Ii
|X)), n, . . . , n − 1 + #Ii ∈ Ii (1)

with Ii being the set of indexes that correspond to the classes that classifier gi can deal
with and #Ii the number of corresponding classes.

We define the set containing the indexes of all the experts as

H = {1, . . . , k} (2)

and also

Hj = H\{j}, j ∈ H (3)

Each expert gi has also a set of k − 1 outputs, oi,j , j ∈ Hi, corresponding to the
other experts in the architecture. These outputs have values in [0, 1]. A higher value rep-
resents more confidence on the fact that the classifier gj should be selected to produce
the final decision.

For each input X , each expert NN produces a vector of posterior probabilities on the
Ii outputs corresponding to the classes of its own subproblem, and tries to guess which
classifier should be used to classify this pattern, using the remaining k − 1 outputs.

The final decision consists on the class with the largest posterior probability from
the classifier that is selected by the votes of the oi,j outputs of all classifiers. Several
voting strategies can be considered.

This architecture is represented in figure 1.

2.1 General case

We extend the operator ‘max’ to work with vectors: it outputs the largest component
of the vector. The set of points in which the event ‘class n has the largest posterior
probability for classifier gi ’ occurs will be represented as Bn,i:
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Fig. 1. The CMNN architecture.

Bn,i = {X : pi(X ∈ Cn|X) = max gi(X)} (4)

The set of points in which the event ‘classifier gi makes a correct classification’
occurs will be represented by Di:

Di =
⋃

n∈Ii

(Bn,i ∩ {X : X ∈ Cn}) (5)

To simplify, will call Bn,i an event and not the set of points where this event takes
place. This will also be done for the set Di and others to be defined below.

The event ‘classifier gi is elected as the one which will output the final decision’
will be represented by Fi.

This way, the probability of correct classification for this architecture comes as

PCC = P

(

k
⋃

i=1

⋃

n∈Ii

(Bn,i ∩ {X ∈ Cn} ∩ Fi)

)

(6)

Using expression 5 results

PCC = P

(

k
⋃

i=1

(Di ∩ Fi)

)

(7)

Since the events Di are disjoint, so is the intersection (Di ∩ Fi), and expression 7
can be written as

PCC =

k
∑

i=1

P (Di ∩ Fi) (8)

To simplify the last expression we will assume that the events Di and Fi are inde-
pendent. This leads to the following expression for PCC



PCC =

k
∑

i=1

P (Di)P (Fi) (9)

This assumption can be justified since the fact that classifier gi is the chosen one for
classifying the input (event Fi) is dependent of the majority of the classifiers, thus not
particularly dependent of classifier gi (the dependence that may exist, since classifier
gi also votes, is decreased as the total number of experts increases). Since the event
Di depends exclusively of classifier gi, it is not a strong assumption to consider its
independence from Fi.

The different voting strategies will now be considered.

3 Different voting strategies

These are the voting strategies proposed by the original author of the CMNN architec-
ture [9]. We present them in a formal manner using the events defined above and also
defining new ones.

3.1 Plurality vote

In this case, each expert gi votes only for one (other) expert: the one with the highest
value of oi,j . The expert with more votes wins.

The number of votes that classifier gi receives is Ti:

Ti =
∑

j∈Hi

I{maxn∈Hj
oj,n=oj,i} (10)

where I{A} denotes the indicator function, which gives one if the event A is true
and zero otherwise.

Using this definition, we can write Fi = {Ti = maxj∈H Tj}.

3.2 Borda count

The oj,i are ranked and a value of k− 2 is assigned to the largest output of classifier gj ,
k − 3 to the second largest and so on, such that the smallest output receives a value of
zero.

The values are summed for each classifier and the one with the largest sum is
elected.

We define the function r(oj,i) : H × H 7→ {1, . . . , k − 1} that gives the rank of
oj,i.

The total value assigned to classifier gi is

BCi =
∑

j∈Hi

(k − 1 − r(oj,n)) (11)

The event Fi is thus Fi = {BCi = maxj∈H BCj}.



3.3 Fuzzy vote

In this case, the elected classifier is the one with the largest summation over all values
of the votes oj,i.

We define

Si =
∑

j∈Hi

oj,i (12)

In this case, the event Fi comes as Fi = {Si = maxj∈H Sj}.

3.4 Nash vote

Nash vote is similar to fuzzy vote but instead of having a sum of the oj,i we have the
product.

We define

Pdi =
∏

j∈Hi

oj,i (13)

In this case, we have Fi = {Pdi = maxj∈H Pdj}.

4 Experiments

4.1 A 17 class artificial problem

An artificial problem with 2 features and 17 classes that are roughly clustered in 5
groups was produced. The classes were generated using Gaussian distributions. The
data is plotted in figure 2. Each class has 150 data points, hence, the data set has 2550
data points.

The CMNN architecture consists of 5 MLPs with topologies [2:22:7] for the 3
groups with 3 classes (the other 4 outputs are for the voting scheme) and [2:20:8] for
the 2 groups with 4 classes (again using 4 outputs for the voting scheme). The voting
strategy used was the plurality vote. We trained a single multi-layer perceptron (MLP)
with the same number of weights as the CMNN architecture (topology [2:56:17]) to
give an idea of the improvement that can be obtained with the CMNN over a single
MLP. Since both the CMNN and the MLP use the same number of weights, the differ-
ences of performance are related to the way the weights are connected and not to their
number. All networks were trained using resilient back-propagation for 100 epochs.

Table 1 presents the average classification error and standard deviation, both in per-
centage, for the 10 repetitions of the leave-k-out cross-validation, with k = 255.

Notice that there is a third line in the table for an CMNN-IV. This is the same as the
CMNN but assuming that the voting was ideal, i.e., that the experts always made the
correct choice of the expert that should made the final decision. It has slight better per-
formance than the CMNN giving an idea of the error introduced by the voting scheme,
which is about 0.75%.
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Fig. 2. The data set for the artificial problem.

Table 1. Average classification errors and corresponding standard deviations, for the artificial
problem.

Architecture Error [%] St. Dev. [%]
MLP 17.61 2.95

CMNN 14.55 3.26
CMNN-IV 13.80 3.22

During testing, the values of P (Di) and P (Fi) were estimated. These values were
then used with the model for the PCC, yielding the value of 86.44%. This is equivalent
to an error of 100-86.44=13.56% . This is in good agreement with the obtained value
of 14.55% error for the CMNN (the difference is 0.89% out of 14.55%), thus asserting
that the model developed is accurate.

4.2 A 2 group, 4 class real problem

To test the prediction capabilities of our bounds on real problems we used a data set
for a vowel discrimination problem. The data consists of the first and second formants
of the vowels ‘i’,‘I’,‘a’ and ‘A’ produced by 76 speakers (33 males, 28 females and 15
children). Each vowel was repeated twice by each speaker, giving a total number of
608 data points. It is a subset of the Peterson and Barney data set referred in [3] and is
represented in figure 3. Both features were linearly scaled by dividing by 1000.

The CMNN architecture consists of 2 multi-layer perceptrons (MLPs) with topolo-
gies [2:15:3] - 2 outputs for each class in each group and the other for the output used for
the voting strategy. The voting strategy used was again the plurality vote. We trained a
single multi-layer perceptron (MLP) with the same number of weights as the CMNN ar-
chitecture (topology [2:26:4]) to give an idea of the improvement that can be obtained



with the CMNN over a single MLP. The networks were again trained using resilient
back-propagation for 100 epochs. Table 2 presents the average classification error and
standard deviation, both in percentage, for the 8 repetitions of the leave-k-out cross-
validation, with k = 76.
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Fig. 3. Data set for a 4 class, 2 group problem.

Table 2. Average classification errors and corresponding standard deviations, for the real prob-
lem.

Architecture Error [%] St. Dev. [%]
MLP 6.41 2.04

CMNN 8.39 3.22
CMNN-IV 8.22 2.88

The CMNN-IV has again, and as expected, a slight better performance than the
CMNN. In this case, the error introduced by the voting scheme against the CMNN with
the ideal voting scheme is 0.17%.

With the estimated values of P (Di) and P (Fi) replaced in the model, we obtain an
estimate for the PCC of 91.64%. This is equivalent to an error of 100-91.64=8.36% .
This is again in good agreement with the obtained value of 8.39% error for the CMNN.
Once again the model for the PCC yields a good estimate: the difference of the estimate
to the true value is only 0.03%.

In this case the MLP outperformed the CMNN. We believe that this happened be-
cause the problem was too simple for the CMNN. Some of the weights used in the
voting scheme were better used by the MLP in approximating the problem as a whole.



5 Conclusions

This paper presents a model for the probability of correct classification for the coopera-
tive modular neural network (CMNN) architecture. The validity of the presented model
was confirmed by experiments using both artificial and real data sets. Its predictions
of the CMNN error rates, using some estimated parameters from the data sets, were in
good accordance with the empirical errors.

The error introduced by one of the voting strategies, the plurality vote, as compared
with the ideal vote was also investigated. We concluded that the error the voting scheme
introduces is small when compared with the error of the experts in their subproblems.

Finally, a multilayer perceptron (MLP) with equal number of weights as the CMNN
was used. This makes the differences in accuracy of these two classifiers to be only due
to the way the weights are connected and not to their number. The results suggest that
the CMNN produces better results with problems involving several groups, i.e., if the
problem is simple, a simple architecture should be used.
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