
LEGClust—A Clustering Algorithm Based
on Layered Entropic Subgraphs
Jorge M. Santos, Joaquim Marques de Sá, and Luı́s A. Alexandre

Abstract—Hierarchical clustering is a stepwise clustering method usually based on proximity measures between objects or sets of

objects from a given data set. The most common proximity measures are distance measures. The derived proximity matrices can be

used to build graphs, which provide the basic structure for some clustering methods. We present here a new proximity matrix based on an

entropic measure and also a clustering algorithm (LEGClust) that builds layers of subgraphs based on this matrix and uses them and a

hierarchical agglomerative clustering technique to form the clusters. Our approach capitalizes on both a graph structure and a

hierarchical construction. Moreover, by using entropy as a proximity measure, we are able, with no assumption about the cluster shapes,

to capture the local structure of the data, forcing the clustering method to reflect this structure. We present several experiments on

artificial and real data sets that provide evidence on the superior performance of this new algorithm when compared with competing ones.

Index Terms—Clustering, entropy, graphs.

Ç

1 INTRODUCTION

CLUSTERING deals with the process of finding possible
different groups in a given set, based on similarities or

differences among their objects. This simple definition does
not convey the richness of such a wide area of research. What
are the similarities, and what are the differences? How do the
groups differ? How can we find them? These are examples of
some basic questions, none with a unique answer. There is a
wide variety of techniques to do clustering. Results are not
unique, and they always depend on the purpose of the
clustering. The same data can be clustered with different
acceptable solutions. Hierarchical clustering, for example,
gives several solutions depending on the tree level chosen for
the final solution.

There are algorithms based on similarity or dissimilarity
measures between the objects of a set, like sequential and
hierarchical algorithms; others are based on the principle of
function approximation, like fuzzy clustering or density-
based algorithms, yet others are based on graph theory or
competitive learning. In this paper, we combine hierarchical
and graph approaches and present a new clustering
algorithm based on a new proximity matrix that is built
with an entropic measure. With this measure, connections
between objects are sensitive to the local structure of the
data, achieving clusters that reflect that same structure.

In Section 2, we introduce the concepts and notation that

serve as the basis to present our algorithm. In Section 3, we

present the clustering algorithm (designated by LEGClust)

components: a new dissimilarity matrix and a new clustering

process. The experiments are described in Section 4 and the

conclusions in the last section.

2 BASIC CONCEPTS

2.1 Proximity Measures

LetX be the data setX ¼ fxig, i ¼ 1; 2; . . . ; N , whereN is the

number of objects, and xi is an l-dimensional vector

representing each object. We define S, an s-clustering of X,

as a partition of X into s clusters C1; C2; . . . ; Cs, obeying the

following conditions: Ci 6¼ �, i ¼ 1; . . . ; s; [si¼1Ci ¼ X and

Ci \ Cj ¼ �, i 6¼ j, i; j ¼ 1; . . . ; s. Each vector (point), given

these conditions, belongs to a single cluster. Our proposed

algorithm uses this so-called hard clustering. (There are

algorithms like those based on fuzzy theory in which a point

has degrees of membership for each cluster.) Points belong-

ing to the same cluster have a higher degree of similarity with

each other than with any other point of the other clusters. This

degree of similarity is usually defined using similarity (or

dissimilarity) measures.
The most common dissimilarity measure between two

real-valued vectors x and y is the weighted lp metric,

dpðx;yÞ ¼
Xl
i¼1

wijxi � yijp
 !1

p

; ð1Þ

where xi and yi are the ith coordinates of x and y,

i ¼ 1; . . . ; l, and wi � 0 is the ith weight coefficient. The

unweighted ðw ¼ 1Þ lp metric is also known as the

Minkowski distance of order p ðp � 1Þ. Examples of this

distance are the well-known euclidean distance, obtained

by setting p ¼ 2, the Manhattan distance, p ¼ 1, and the l1
or the Chebyshev distance.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008 1

. J.M. Santos is with the Department of Mathematics, ISEP-Polytechnic,
School of Engineering, R. Dr. António Bernardino de Almeida, 431, 4200-
072 Porto, Portugal, and the INEB-Biomedical Engineering Institute,
Porto, Portugal. E-mail: jms@isep.ipp.pt.

. J. Marques de Sá is with the Department of Electrical and Computer
Engineering at FEUP-Engineering University, Porto, Portugal, and the
INEB-Biomedical Engineering Institute, Porto, Portugal.
E-mail: jmsa@fe.up.pt.

. L.A. Alexandre is with the Department of Informatics, UBI-Beira Interior
University, Covilhã, Portugal, and the Networks and Multimedia Group of
IT, Covilhã, Portugal. E-mail: lfbaa@di.ubi.pt.

Manuscript received 6 Nov. 2006; revised 1 Mar. 2007; accepted 12 Mar.
2007; published online 4 Apr. 2007.
Recommended for acceptance by J. Buhmann
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0788-1106.
Digital Object Identifier no. 10.1109/TPAMI.2007.1142

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

2.2 Overview of Clustering Algorithms

Probably the most used clustering algorithms are the
hierarchical agglomerative algorithms. They, by definition,
create a hierarchy of clusters from the data set. Hierarchical
clustering is widely used in biology, medicine, and also
computer science and engineering. (For an overview on
clustering techniques and applications, see [1], [2], [3], and
[4]). Hierarchical agglomerative algorithms start by assign-
ing each point to a single cluster and then, usually based on
dissimilarity measures, proceed to merge small clusters into
larger ones in a stepwise manner. The process ends when
all the points in the data set are members of a single cluster.
The resulting hierarchical tree defines the clustering levels.
Examples of hierarchical clustering algorithms are CURE [5]
and ROCK [6] developed by the same researchers, AGNES
[7], BIRCH [8], [9], and Chameleon [10].

The merging phase of the agglomerative algorithms differs
in the sense that depending on the measures used to compute
the similarity or dissimilarity between clusters, different
merge results can be obtained. The most common methods to
perform the merging phase are the Single-Link, Complete-
Link,Centroid,andWard’smethods.TheSingle-Linkmethod
usually creates elongated clusters, and the Complete-Link
usually results in more compact clusters. The Centroid
method acts in a midway basis, yielding clusters somewhere
between the two previous methods. Ward’s method is
considered very effective in producing balanced clusters;
however, it has several problems in dealing with outliers and
elongated clusters. In [11], one can find a probabilistic
interpretation of these classical agglomerative methods.

Another type of algorithms is the one based on graphs and
graph theory. Clustering algorithms based on graph theory
are usually divisive algorithms, meaning that they start with a
single highly connected graph (that corresponds to a single
cluster) that is then split using consecutive cuts. A cut in a
graph corresponds to the removal of a set of edges that
disconnects the graph. A minimum cut (min-cut) is the
removal of the smallest number of edges that produces a cut.
The result of a cut in the graph causes the splitting of one
cluster into, at least, two clusters. An example of a min-cut
clustering algorithm can be found in [12]. Clustering
algorithms based on graph theory have existed since the
early 1970s. They use the high connectivity in similarity
graphs to perform clustering [13], [14]. More recent works
such as [15], [16], and [17] also perform clustering using
highly connected graphs and subsequent partition by edge
cutting to obtain subgraphs. Chameleon, mentioned earlier as
a hierarchical agglomerative algorithm, also uses a graph-
theoretic approach. It starts by constructing a graph, based on
k-nearest neighbors; then, it performs the partition of the
graph into several clusters (using the hMetis [18] algorithm)
such that it minimizes the edge cut. After finding the initial
clusters, it repeatedly merges these small clusters using
relative cluster interconnectivity and closeness measures.

Graph cutting is also used in spectral clustering, com-
monly applied in image segmentation and, more recently, in
Web and document clustering and bioinformatics. The
rationale of spectral clustering is to use the special properties
of the eigenvectors of a Laplacian matrix as the basis to
perform clustering. Fiedler [19] was one of the first to show
the application of eigenvectors to graph partitioning. The
Laplacian matrix is based on an affinity matrix built with a
similarity measure. The most common similarity measure

used in spectral clustering isAij ¼ expð�d2
ij=2�

2Þ, where dij is
the euclidean distance between vectors xi and xj, and � is a
scaling parameter. With matrix A, the Laplacian matrix L is
computed as L ¼ D�A, where D is the diagonal matrix
whose elements are the sums of all row elements of A.

There are several spectral clustering algorithms that differ
in the way they use the eigenvectors in order to perform
clustering. Some researchers use the eigenvectors of the
“normalized” Laplacian matrix [20] (or a similar one) in order
to perform the cutting usually using the second smallest
eigenvector [21], [22], [23]. Others use the highest eigenvec-
tors as input to another clustering algorithm [24], [25]. One of
the advantages of this last approach is that by using more than
one eigenvector, enough information may be provided to
obtain more than two clusters as opposed to cutting strategies
where clustering must be performed recursively to obtain
more than two clusters. A comparison of several spectral
clustering algorithms can be found in [26].

The practical problems encountered with graph-cutting
algorithmsarebasicallyrelatedtothebelief that thesubgraphs
produced by cutting are always related to real clusters. This
assumption is frequently true with well separated compact
clusters; however, in data sets with, for example, elongated
clusters, this may not occur. Also, if we use weighted graphs,
the choice of the threshold to perform graph partition can
produce very different clustering solutions.

Other clustering algorithms use the existence of different
density regions of the data to perform clustering. One of the
density-based clustering algorithms, apart from the well-
known DBScan [27], is the Mean Shift algorithm. Mean Shift
was introduced by Fukunaga and Hostetler [28], rediscov-
ered in [29], and also studied in more detail by Comaniciu and
Meer [30], [31] with applications to image segmentation. The
original algorithm, with a flat kernel, works this way: In each
iteration, for each point P , the cluster center is obtained by
repeatedly centering the kernel (originally centered in P) by
shifting it in the direction of the mean of the set of points
inside the same kernel. The process is similar if we use a
Gaussian kernel. The mean shift vector is aligned with the
local gradient estimate and defines a path leading to a
stationary point in the estimated density [31]. This algorithm
seeks modes in the sample density estimation and so is
considered to be a gradient mapping algorithm [29]. Mean
Shift has some very good results in image segmentation and
computer vision applications, but like other density-based
algorithms, it builds clusters with the assumption that each of
them is related to a mode of the density estimation. For
problems like the one depicted in Fig. 1a, with clusters of
different densities very close to each other, this kind of
algorithm usually has difficulties in performing the right
partition because it finds only one mode in the density
function. (If we use a smaller smoothing parameter it will find
several local modes in the low-density region). This behavior
is also observable in data sets like the double spiral data set
depicted in Fig. 10.

Another example of a clustering algorithm is the path-
based pairwise clustering algorithm [32], [33]. This clustering
method also groups objects according to their connectivity. It
uses a pairwise clustering cost function with a dissimilarity
measure that emphasizes connectedness in feature space to
deal with cluster compactness. This simple approach gives
good results with compact clusters. To deal with structured
clusters, a new objective function, conserving the same
properties of the pairwise cost function, is used. This new

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

objective function is based on the effective dissimilarity and the
length of the minimal connecting path between two objects
and is the basis for the path-based clustering. Some of the
applications of this clustering algorithm are edge detection
and texture image segmentation.

2.3 Renyi’s Quadratic Entropy

Since the introduction by Shannon [34] of the concept of
entropy, information theory concepts have been applied in
learning systems.

Shannon’s entropy, HSðXÞ ¼ �
PN

i¼1 pi log pi, measures
the average amount of information conveyed by the events
X ¼ xi that occur with probabilitypi. Entropy can also be seen
as the amount of uncertainty of a random variable. The more
uncertain the events ofX, the larger the information content,
with a maximum for equiprobable events.

The extension of Shannon’s entropy to continuous
random variables is HðXÞ ¼ �

R
C fðxÞ log fðxÞdx, where

X 2 C, and fðxÞ is the probability density function (pdf)
of the variable X.

Renyi generalized the concept of entropy [35] and
defined the (Renyi’s) �-entropy of a discrete distribution as

HR�ðXÞ ¼
1

1� � log
XN
i¼1

p�i

 !
; ð2Þ

which becomes Shannon’s entropy when �! 1. For contin-
uous distributions and � ¼ 2, one obtains the following
formula for Renyi’s Quadratic Entropy [35]:

HR2ðXÞ ¼ � log

Z
C

½fðxÞ�2dx
� �

: ð3Þ

The pdf can be estimated using the Parzen Window
method allowing the determination of the entropy in a
nonparametric and computationally efficient way. The
Parzen window method [36] estimates the pdf fðxÞ as

fðxÞ ¼ 1

Nhm

XN
i¼1

G
x� xi
h

; I
� �

; ð4Þ

where N is the number of data vectors, G can be a radially
symmetric Gaussian kernel with zero mean and diagonal
covariance matrix

Gðx; 0; IÞ ¼ 1

ð2�Þ
m
2 jIj

1
2

exp � 1

2
xT I�1x

� �
;

m is the dimension of the vector x ðx 2 IRmÞ, h is the
bandwidth parameter (also known as the smoothing para-
meter or kernel size), and I is the m�m identity matrix.
Substituting (4) in (3) and applying the integration of
Gaussian kernels [37], Renyi’s Quadratic Entropy can be
estimated as

ĤR2 ¼ � log

Z þ1
�1

1

Nhm

XN
i¼1

Gðx
h

;
xi
h
; IÞ

 !2

dx

2
4

3
5

¼ � log
1

N2

XN
i¼1

XN
j¼1

Gðxi � xj; 0; 2h2IÞ
 !

:

In our algorithm, we use Renyi’s Quadratic Entropy
because of its simplicity; however, one could use other
entropic measures as well. Some examples of the application
of entropy and concepts of information theory in clustering
are the minimum entropic clustering [38], entropic spanning
graphs clustering [39], and entropic subspace clustering [40].
In some works, the entropic concepts are usually related to
measures similar to the Kullback-Leibler divergence. In some
recent works, several authors used entropy as a measure of
proximity or interrelation between clusters. Examples of
these algorithms are those proposed by Jenssen et al.[41] and
Gokcay and Prı́ncipe [42], which use a so-called Between-
Cluster Entropy, and the one proposed by Lee and Choi [43],
[44], which uses the Within-Cluster Association. Despite the
good results in several data sets, these algorithms are heavily
time consuming, and they start by selecting random seeds for
the first clusters that may produce very different results in the
final cluster solution. These algorithms usually give good
results for compact and well-separated clusters.

3 THE CLUSTERING ALGORITHM COMPONENTS

One of the main concerns when we started searching for an
efficient clustering algorithm was to find an extremely
simple idea, based on very simple principles, that did not
need complex measures of intracluster or intercluster
association. Keeping this in mind, we performed clustering
tests involving several types of individuals (including
children) in order to grasp the mental process of data
clustering. The results of these tests can be found in [45].
The tests used two-dimensional (2D) data sets similar to
those presented in Section 4. An example of different
clustering solutions to a given data set suggested by
different individuals is shown in Fig. 2.

One of the most important conclusions from our tests is
that human clustering exhibits some balance between the
importance given to local (for example, connectedness) and
global (for example, structuring direction) features of the
data, a fact that we tried to reflect with our algorithm. The tests
also provided the majority choices of clustering solutions
against which one can compare the clustering algorithms.

Below, we introduce two new clustering algorithm
components: a new proximity matrix and a new clustering

SANTOS ET AL.: LEGCLUST—A CLUSTERING ALGORITHM BASED ON LAYERED ENTROPIC SUBGRAPHS 3

Fig. 1. An example of a data set difficult to cluster using density-based

clustering algorithms like Mean Shift. (a) The original data set. (b) The

possible clustering solution. (c) Density function.

process. We first present the new entropic dissimilarity
measure and, based on that, the computing procedure of a
layered entropic proximity matrix (EPM); following that,
we present the LEGClust algorithm.

3.1 The Entropic Proximity Matrix

Given a set of vectors X ¼ fx1;x2; . . . ;xNg, xi 2 IRm,
corresponding to a set of objects, each element of the
dissimilarity matrix A, A 2 IRN�N , is computed using a
dissimilarity measure Ai;j ¼ dðxi;xjÞ. Using this dissimilar-
ity matrix, one can build a proximity matrix L, where each
ith line represents the data set points, each jth column
represents the proximity order ð1st column ¼ closest point
. . . last column ¼ farthest pointÞ, and each element repre-
sents the point reference that, according to row point i, is in
the jth proximity position. An example of a proximity matrix
is shown in Table 5 (to be described in detail later on). The
points referenced in the first column (L1) of the proximity
matrix are those that have the smallest dissimilarity value to
each one of the row elements.

Each column of the proximity matrix corresponds to one
layer of connections.We can use this proximity matrix to build
subgraphs for each layer, where each edge is the connection
between a point and the corresponding point of that layer.

If we use a proximity matrix based on a dissimilarity
matrix built with the euclidean distance to connect each point
with its corresponding L1 point (first layer), we get a
subgraph similar to the one presented in Fig. 3a for the data
set in Fig. 10f. We will call the clusters formed with this first
layer the elementary clusters. Each of these resulting
elementary clusters (not considering directed edges) is a
Minimum Spanning Tree.

As we can see in Fig. 3a, these connections have no
relation with the structure of the given data set. In Fig. 3b, we
present what we think should be the “ideal” connections.
These ideal connections should, in our opinion, reflect the
local structuring direction of the data. However, using
classical distance measures, we are not able to achieve this
behavior. As we will see bellow, entropy will allow us to do

it. The main idea behind the entropic dissimilarity measure is
to make the connections follow the local structure of the data
set, where the meaning of “local structure” will be clarified
later. This concept can be applied to data sets with any
number of dimensions.

Let us consider the set of points depicted in Fig. 4. These
points are in a square grid except for points P and U . For
simplicity, we use a 2D data set, but the analysis is valid for
higher dimensions. Let us denote

. K ¼ fkig, i ¼ 1; 2; . . . ;M, the set of the M-nearest
neighbors of P ;

. dij the difference vector between points ki and kj,
i; j ¼ 1; 2; . . . ;M, i 6¼ j, which we will call the
connecting vector between those points; and

. pi the difference vector between point P and each of
the M-nearest neighbors ki.

We wish to find the connection between P and one of its
neighbors that best reflects the local structure. Without
making any computation and just by “looking” at the points,
we can say, despite the fact that the shortest connection is p1,
that the ideal candidates for “best connection” are those
connecting P withQ or withR because they are the ones that
best reflect the structuring direction of the data points.

Let us represent all dij connecting vectors translated to a
common origin as shown in Fig. 5a. We will call this an
M-neighborhood vector field. An M-neighborhood vector field
can be interpreted as a pdf in correspondence with the
2D histogram shown in Fig. 5b, where in each bin, we plot the
number of occurrences of dij vector ends. This histogram
estimates the pdf of dij connections. It can be interpreted as a
Parzen window estimate of the pdf using a rectangular kernel.

The pdf associated with point P reflects, in this case, a
horizontal M-neighborhood structure and, therefore, we
must choose a connection for P that follows this horizontal
direction. Although the direction is an important factor, we
should also consider the size of the connections and avoid the

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

Fig. 2. An example of some clustering solutions for a particular data set.

Children usually propose solution (b) and adults solutions (b) and (c).

Solution (d) was never proposed.

Fig. 3. Connections of the first layer using the euclidean distance and the

“ideal” connections for the spiral data set in Fig. 10f. (a) Connections

based on the euclidean distance. (b) “Ideal” connections.

Fig. 4. A simple example with the considered M-nearest neighbors of

point P , M ¼ 9. The M-neighborhood of P corresponds to the dotted

region.

selection of connections between points far apart. Taking this
into consideration, we can also see that in terms of the pdf, the
small connecting vectors are the most probable ones.

Now, since we want to choose a connection for point P
basedonrankingallpossibleconnections,wehavetocompare
all the pdf’s resulting from adding each connection pi to
the set of connection of the M-neighborhood vector field.
To perform this comparison between pdf’s, we will use an
entropic measure. Basically, what we are going to do is to rank
connection pi according to the variation they introduce in the
pdf. The connection that introduces less disorder into the
system (that least increases the entropy of the system) will be
top ranked as the stronger connection, followed by the other
M � 1 connections in decreasing order.

Let D ¼ fdijg, i; j ¼ 1; 2; . . . ;M, i 6¼ j. Let HðD; piÞ be the
entropy associated with connection pi, the entropy of the set
of all connections dij plus connection pi, such that

HðD; piÞ ¼ HðfDg [fpigÞ; i ¼ 1; 2; . . . ;M: ð5Þ

This entropy is our dissimilarity measure. We compute for
each point the M possible entropies and build an entropic
dissimilarity matrix and the corresponding EPM (an example
is shown in Tables 5 and 6). The elements of the first column
of the proximity matrix are those corresponding to the points
having the smallest entropic dissimilarity value (strongest
entropic connection), followed by those in the subsequent
layers in decreasing order.

Regarding our simple example in Fig. 4, we show in
Tables 1 and 2 the dissimilarity and proximity values for

point P and their neighbors. We use Renyi’s quadratic

entropy computed as explained in Section 2.3. The points in

Fig. 4 are referenced left to right and top to bottom as 1 to 14.
In Fig. 6, we show the first layer connections, where we can

see the difference between using a dissimilarity matrix based

on distance measures (Fig. 6a) and a dissimilarity matrix

based on our entropic measure (Fig. 6b). The connections

derived by the first layer when using the entropic measure

clearly follow an horizontal line and despite the fact that point

k1 is the closest one, the stronger connection for point P is the

connection between P and R, as expected. This different

behavior can also be seen in the spiral data set depicted in

Fig. 7. The connections that produce the elementary first-layer

clusters are clearly following the structuring direction of the

data. We obtain the same behavior for the connections of all

the layers favoring the union of those clusters that follow the

structure of the data.
The pseudocode to compute the EPM is presented in

Table 3.

SANTOS ET AL.: LEGCLUST—A CLUSTERING ALGORITHM BASED ON LAYERED ENTROPIC SUBGRAPHS 5

Fig. 5. (a) The M-neighborhood vector field of point P and (b) the

histogram representation of the pdf.

TABLE 1
Entropic Dissimilarities Relative to Point P (10)

TABLE 2
Entropic Proximities Relative to Point P (10)

Fig. 6. Difference on elementary clusters using a dissimilarity matrix

based (a) on the euclidean distance and (b) on our entropic measure.

Fig. 7. The first layer connections following the structure of the data set
when using an EPM.

TABLE 3
Pseudocode for Computing the EPM with

Any Dissimilarity Measure

The process just described is different from the appar-
ently similar process of ranking the connections pi accord-
ing to the value of the pdf derived from the
M-neighborhood vector field. In Fig. 8, we show the
estimated pdf and the points corresponding to the
pi connections. The corresponding point ranking according
to decreasing pdf value is 11, 9, 12, 8, 4, 2, 3, 5, 1; we can see
that even in this simple example, a difference exists
between the pdf ranking and the entropy ranking pre-
viously reported in Table 2 (fifth rank). As a matter of fact,
one must bear in mind that our entropy ranking is a way of
summarizing (and comparing) the degree of randomness of
the several pdf’s corresponding to the pi connections,
whereas single-value pdf ranking cannot clearly afford the
same information.

3.2 The Clustering Process

Having created the new EPM, we could use it with an existing
clustering algorithm to cluster the data. However, the
potentialities of the new proximity matrix can be exploited
with a new hierarchical agglomerative algorithm that we
propose and call LEGClust. The basic foundations for this
new clustering algorithm are unweighted subgraphs. More
specifically, they are directed, maximally connected, un-
weighted subgraphs, built with the information provided by
the EPM. Each subgraph is built by connecting each point
with the corresponding point of each layer (column) of the
EPM. An example of such a subgraph was already shown in
Fig. 7. The clusters are built hierarchically by joining together
the clusters that correspond to the layer subgraphs.

We will start by presenting, in Table 4, the pseudocode of
the LEGClust algorithm. This will be followed by a further
explanation using a simple example.

To illustrate the procedure applied in the clustering
process, we use a simple 2D data set example (Fig. 9a). This
data set consists of 16 points apparently constituting two

clusters with 10 and 6 points each. Since the number of
clusters in a data set is highly subjective, the assumption that
it has a specific number of clusters is always affected by the
knowledge about the problem.

In Table 6, we present the EPM built from the entropic
dissimilarity matrix in Table 5.

The EPM defines the connections between each point and
those points in each layer: point 1 is connected with point 2 in
the first layer, with point 5 in the second layer, with point 10 in
the third layer, and so on (see Table 6). We start the process by
defining the elementary clusters. These clusters are built by
connecting, with an oriented edge, each point with the
corresponding point in the first layer (Fig. 9b). There are four
elementary clusters in our simple example.

In the second step of the algorithm, we connect, with an
oriented edge, each point with the corresponding point in

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

Fig. 8. The pdf of the M-neighborhood vector field and the points

corresponding to the pi connections. The labels indicate the element

number and the pdf value.

TABLE 4
Pseudocode for the LEGClust Algorithm

Fig. 9. The clustering process in a simple 2D data set. (a) The data

points. (b) First-layer connections and the resulting elementary clusters.

(c) The four elementary clusters and the second-layer connections.

the second layer (Fig. 9c). In order to build the second-step
clusters, we apply a rule based on the number of
connections to join each pair of clusters. We can use the
simple rules of 1) joining each cluster with the ones having
at least k connections with it or 2) joining each cluster with
the one having the highest number of connections with it
not less than a predefined k. In the performed experiments,
this second rule proved to be more reliable, and the
resulting clusters were usually “better” than using the first
rule. The parameter k must be greater than 1 in order to
avoid outliers and noise in the clusters. In our simple
example, we chose to join the clusters with the maximum
number of connections larger than 2 ðk > 2Þ. In the second
step, we form three clusters by joining clusters 1 and 3 with
three edges connecting them (note that the edge connecting
points 3 and 4 is a double connection).

The process is repeated, and the algorithm stops when
only one cluster is present or when we get the same number of
clusters in consecutive steps. The resulting number of clusters
for this simple example was 4-3-2-2-2. As we can see, the
number of clusters in Steps 3 and 4 is the same (2); therefore,
we will consider it to be the acceptable number of clusters.

3.3 Parameters Involved in the Clustering Process

3.3.1 Number of Nearest Neighbors

The first parameter that one must choose in LEGClust is the
number of nearest neighbors ðMÞ. We do not have a specific
rule for this. However, one should not choose a very small
value because a minimum number of steps in the algorithm
is needed in order to guarantee reaching a solution.
Choosing a relatively high value for M is also not a good
alternative because one loses information about the local
structure, which is the main focus of the algorithm.

Based on the large amount of experiments performed with
the LEGClust algorithm on several data sets, we came to a rule
of thumb of usingM values not higher than 10 percent of the
data set size. Note that since the entropy computation for all
the data set has complexity OðNð M

2

� �
þ 1Þ2Þ, the value of M

has a large influence on the computational time. Hence, for
large data sets, a smaller M is recommended, down to
2 percent of the data size. For image segmentation, M can be
reduced to less than 1 percent due to the nature of image
characteristics (elements are much closer to each other than in
a usual classification problem).

3.3.2 The Smoothing Parameter

The h parameter is very important when computing the
entropy. In other works, [41], [42], using Renyi’s Quadratic
Entropy to perform clustering, it is assumed that the
smoothing parameter is experimentally selected and that it
must be fine tuned to achieve acceptable results. One of
the formulas for an estimate of the Gaussian kernel
smoothing parameter for unidimensional pdf estimation,
assuming Gaussian distributed samples, was proposed by
Silverman [46]:

hop ¼ 1:06�N�0:2; ð6Þ

where � is the sample standard deviation, and N is the
number of points. For multidimensional cases, also assum-
ing normal distributions and using the Gaussian kernel,
Bowman and Azzalini [47] proposed the following formula:

hop ¼ �
4

ðmþ 2ÞN

� � 1
mþ4

; ð7Þ

where m is the dimension of vector x. Formulas (6) and (7)
were also compared by Jenssen et al. in [48], where they use (6)
to estimate the optimal one-dimensional kernel size for each
dimension of the data and use the smallest value as the
smoothing parameter.

In a previous paper [49], we have proposed the formula
hop ¼ 25

ffiffiffiffiffiffiffiffiffiffiffi
m=N

p
and experimentally showed that higher

values of h than those given by (7) produce better results in
neural network classification using error entropy minimiza-
tion as a cost function. Following the same approach, we
propose a formula similar to (7) but with the introduction of
the mean standard deviation

hop ¼ 2��
4

ðmþ 2ÞN

� � 1
mþ4

; ð8Þ

where�� is the mean value of the standard deviations for each
dimension. All experiments of LEGClust were performed
using (8).

Although the value of the smoothing parameter is
important, it is not crucial in order to obtain good results.
As we increase the h value, the kernel becomes smoother,
and the EPM becomes similar to the euclidean distance
proximity matrix. Extremely small values of h will produce

SANTOS ET AL.: LEGCLUST—A CLUSTERING ALGORITHM BASED ON LAYERED ENTROPIC SUBGRAPHS 7

TABLE 5
The Dissimilarity Matrix for Fig. 9 Data Set

TABLE 6
The Proximity Matrix for Fig. 9 Data Set

undesirable behaviors because the entropy will have high
variability. Using h values in a small interval near the
optimal value does not affect the final clustering results (for
example, we used in the spiral data set (Fig. 3) values
between 0.05 and 0.5 without changing the final result).

3.3.3 Minimum Number of Connections

The third parameter that must be chosen in the LEGClust
algorithm is the value of k, the minimum number of
connections to join clusters in consecutive steps of the
algorithm. As mentioned earlier, we should not use k ¼ 1 to
avoid outliers and noise, especially if they are located
between clusters. In our experiments, we obtained good
results using either k ¼ 2 or k ¼ 3. If the elementary clusters
have a small number of points, we do not recommend
higher values for k because it can cause the impossibility of
joining clusters due to lack of a sufficient number of
connections among them.

4 EXPERIMENTS

We have experimented the LEGClust algorithm in a large
variety of applications. We have performed experiments with
real data sets, some of them with a large number of features,
and also with several artificial 2D data sets. The real data sets
are summarized in Table 7. They are from the public domain.
Data set UBIRIS can be found in [50], NCI Microarray in [51],
20NewsGroups, Dutch Handwritten Numerals (DHN), Iris,
Wdbc, and Wine in [52], and Olive in [53]. The artificial data
sets were created in order to better visualize and control the
clustering process, and some examples are depicted in Fig. 10.
For the artificial data set problems, the clustering solutions
yielded by different algorithms were compared with the
majority choice solutions obtained in the human clustering
experiment mentioned in Section 3 and described in [45]. For
real data sets, the comparison was made with the supervised
classification of these data sets with the exception of the
UBIRIS data set where the objective of the clustering task was
the correct segmentation of the eye’s iris. In both cases
—majority choice or supervised classes—we will designate
these solutions as reference solutions or reference clusters.

We have compared our algorithm with several well-
known clustering algorithms: Chameleon algorithm, two
Spectral clustering algorithms, DBScan algorithm, and Mean
Shift algorithm.

The Chameleon clustering algorithm, included in Cluto
[54], is a software package for clustering low and high-
dimensional data sets. The parameters used in the experi-
ments among the innumerous used by Chameleon are

referred in the results. In fact, the number of parameters
needed to tune this algorithm was one of the main problems
we encountered when we tried to use it in our experiments. To
perform the experiments with Chameleon, we followed the
advice in [10] and in the manual for the Cluto software [55].

For the experiments with the spectral clustering ap-
proaches, we implemented the algorithms (Spectral-Ng)
and (Spectral-Shi) presented in [24] and [21], respectively.
One of the difficulties with both Spectral-(Ng/Shi) algo-
rithms is the choice of the scaling parameter. Extremely
small changes in the scaling parameter produced very
different clustering solutions. In these algorithms, the
number of clusters is the number of eigenvectors used to
perform clustering. The number of clusters is a parameter
that is chosen by the user in both algorithms. We tried to
make this choice, in Spectral-Ng, an automatic procedure by
implementing the algorithm presented in [56]; this, how-
ever, produced poor results. When making the choice of the
cluster centroids in the K-Means clustering used in Spectral-
Ng, we performed a random initialization and 10 restarts
(deemed acceptable by the authors).

We tested the adaptive Mean Shift algorithm [31] in our
artificial data sets, and the results were very poor. In most
of the cases, the proposed clustering solution has a high
number of modes and, consequently, a high number of
clusters. For problems having a small number of points, the

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

TABLE 7
Real Data Sets Used in the Experiments

Fig. 10. Some of the artificial data sets used in the experiments (in

brackets the number of points). (a) Data set 7 (142). (b) Data set 13 (113).

(c) Data set 15 (184). (d) Data set 22 (141). (e) Data set 34 (217). (f) Spiral

(387).

estimated density function will present, depending on the
window size, either a unique mode if we use a large
window size or several modes not corresponding to really
existing clusters if we use a small window size. We think
that this algorithm probably works better with large data
sets. An advantage of this algorithm is the fact that one does
not have to specify the number of clusters as these will be
driven by the data according to the number of modes.

The DBScan algorithm is a density-based algorithm that
claims to find clusters of arbitrary shapes but presents
basically the same problems as the Mean Shift algorithm. It
is based on several density definitions between a point and its
neighbors. This algorithm only requires two input para-
meters, Eps and MinPts, but small changes in their values,
especially in Eps, produce very different clustering solutions.

For our experiments, we used an implementation of DBScan
available in [57].

In the LEGClust algorithm, the parameters involved are
the smoothing parameter ðhÞ, related to the Parzen pdf
estimation; the number of neighbors to consider ðMÞ; and
the number of connections to join clusters (k). For the
parameter h, we used in all experiments the proposed
formula (8). For the other two parameters, we indicate in
each experiment the chosen values.

Regarding the experiments with artificial data sets,
depicted in Fig. 10, we present in Fig. 11 the results
obtained with LEGClust.

In Fig. 12, we present the solutions obtained with the
Chameleon algorithm that differ from those suggested by
LEGClust.

SANTOS ET AL.: LEGCLUST—A CLUSTERING ALGORITHM BASED ON LAYERED ENTROPIC SUBGRAPHS 9

Fig. 11. The clustering solutions for each data set suggested by LEGClust. Each label shows the data set name, the number of neighbors (M), the

number of connections to join clusters (k), and the number of clusters found in each step of the algorithm (underlined is the considered step). (a) Data

set 13, M ¼ 10, k ¼ 3, 11 7 5 4 3 3 3. (b) Data set 13, M ¼ 10, k ¼ 3, 11 7 5 4 3 3 3. (c) Data set 15, M ¼ 18, k ¼ 2, 55 37 16 7 5 3 2 1. (d) Data set 22,

M ¼ 14, k ¼ 2, 45 26 12 8 5 3 2 2. (e) Data set 34, M ¼ 20, k ¼ 3, 68 59 36 25 15 8 5 3 2 2. (f) Spiral, M ¼ 30, k ¼ 2, 116 72 28 14 5 3 2 1.

Fig. 12. Some clustering solutions suggested by Chameleon. The considered values nc, a, and n are shown in each label. (a) Data set 13, nc ¼ 4,

a ¼ 20, n ¼ 20. (b) Data set 13, nc ¼ 3, a ¼ 20, n ¼ 20. (c) Data set 34, nc ¼ 2, a ¼ 50, n ¼ 6.

From the performed experiments, an important aspect
noticed when using the Chameleon algorithm was the
different solutions obtained for slightly different parameter
values. The data set in Fig. 12c was the one where we had
more difficulties in tuning the parameters involved in the
Chameleon algorithm. A particular difference between the
Chameleon and LEGClust results corresponds to the curious
solution given by Chameleon and is depicted in Fig. 12b.
When choosing three clusters as input parameter ðnc ¼ 3Þ,
this solution is the only solution that is not suggested by the
individuals that performed the tests referred in Section 3. The
solutions for this same problem, given by LEGClust, are
shown in Figs. 11b and 11c.

The spectral clustering algorithms gave some good results
for some data sets, but they were unable to resolve some
nonconvex data sets like the double spiral problem (Fig. 13).

The DBScan algorithm clearly fails in finding the
reference clusters in all data sets (except the one in Fig. 10a).

Comparing the results given by all the algorithms
applied to the artificial data sets, we clearly see, as expected,
that the solutions obtained with the density-based algo-
rithms are worse than those obtained with any of the other
algorithms. The best results were achieved with LEGClust
and Chameleon algorithms.

We now present the performed experiments with
LEGClust in real data sets and the comparative results
with the different clustering algorithms.

UBIRIS is a data set of eye images used for biometric
recognition. In our experiments, we used a sample of
12 images from this data set, some of which are shown in
Fig. 14a. The biometric identification process starts by
detecting and isolating the iris with a segmentation algo-
rithm. The results for this image segmentation problem with
LEGClust and Spectral-Ng are depicted in Figs. 14b and 14c.
In all experiments with LEGClust, we used the valuesM ¼ 30
and k ¼ 3. For the experiments with Spectral-Ng, we chose 5

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

Fig. 13. Some clustering solutions suggested by Spectral-Ng (a), (b), (c), and (d) and by Spectral-Shi (e), (f), (g), and (h). Each label shows the data

set name, the preestablished number of clusters, and the � value. (a) Data set 13, nc ¼ 4, � ¼ 0:065. (b) Data set 22, nc ¼ 3, � ¼ 0:071. (c) Spiral;

nc ¼ 2, � ¼ 0:0272. (d) Spiral, nc ¼ 2, � ¼ 0:0275. (e) Data set 13, nc ¼ 4, � ¼ 0:3. (f) Data set 15, nc ¼ 5, � ¼ 0:3. (g) Data set 22, nc ¼ 3, � ¼ 0:15.

(h) Spiral, nc ¼ 2, � ¼ 0:13.

as the number of final clusters. We can see by the segmenta-
tions produced that both algorithms gave acceptable results.
However, one of the striking differences is the way Spectral
clustering splits each eyelid in two by its center region
(Fig. 14c is a good example of this behavior), which is also
observable if we choose a different number of clusters.

To test the sensitivity of our clustering algorithm to
different values of the parameters, we have made some
experiments with different values of M and k in the UBIRIS
data set sample. An example is shown in Fig. 15. We can see
that different values ofM and kdo not affect substantially the
final result of the segmentation process; the eye iris in all
solutions is distinctly obtained.

The Dutch Handwritten Numerals (DHN) data set consists
of 2,000 images of handwritten numerals (“0”-“9”) extracted
from a collection of Dutch utility maps [58]. A sample of this
data set is depicted in Fig. 16. In this data set, the first two

features represent the pixel position, and the third one, the
gray level. Experiments with this data set were performed
with LEGClust and Spectral clustering, and their results were
compared. The results are presented in Table 8. ARI stands for
Adjusted Rand Index, a measure for comparing results of
different clustering solutions when the labels are known [59].
This index is an improvement of the Rand Index, it lies
between 0 and 1, and the higher the ARI index, the better the
clustering solution. The parameters for both Spectral cluster-
ing and LEGClust were tuned to give the best possible
solutions. We can see that in this problem, LEGClust performs
much better than Spectral-Shi and with similar (but slightly
better) results than Spectral-Ng. We also show in Table 8 some
different results for LEGClust for different choices of the
minimum number of connections ðkÞ to join clusters. In these
results, we can see that different values of k produce results
with small differences in the ARI index.

In the experiments with the 20NewsGroups data set, we
used a random subsample of 1,000 elements from the original
data set. This data set is a 20-class text classification problem
obtained from 20 different news groups. We have prepared
this data set by stemming words according to the Porter
Stemming Algorithm [60]. The size of the corpus (the number
of different words presented in all the stemmed data set)
defines the number of features. In this subsample, we
consider only the words that occur at least 40 times, thus
obtaining a corpus of 565 words. The results of the
experiments with LEGClust and Spectral clustering are
shown in Table 8.

SANTOS ET AL.: LEGCLUST—A CLUSTERING ALGORITHM BASED ON LAYERED ENTROPIC SUBGRAPHS 11

Fig. 14. Sample from the (a) UBIRIS data set and (b) the results of the

LEGClust and (c) Spectral clustering algorithms. The number of clusters

for LEGClust was 8, 12, 7, 5, and 8 with M ¼ 30 and k ¼ 3.

Fig. 15. Segmentation results for the fourth image (line 4) in Fig. 14

using different values of k or M. (a) k ¼ 2. (b) M ¼ 10. (c) M ¼ 20.

Fig. 16. A sample of the DHN data set.

TABLE 8
The Results and Parameters Used in the Comparison of

LEGClust and Spectral Clustering in Experiments with DHN,
20NewsGroups, and NCI Microarray Data Sets

The NCI Microarray data set is a human tumor microarray
data and an example of a high-dimensional data set. The data
are a 64� 6; 830 matrix of real numbers, each representing an
expression measurement for a gene (column) and a sample
(row). There are 12 different tumor types, one with just one
representative and three with two representatives. We have
performed some experiments with LEGClust and compared
the results with Spectral clustering. We chose three clusters,
following the example in [61], as the final number of clusters
for both algorithms. The results are also shown in Table 8.
Again, the results produced by LEGClust were quite
insensitive to the choice of parameter values.

The results presented in Table 8 show that the LEGClust
algorithm performs better than the Spectral-Shi algorithm in
the three data sets, and compared with Spectral-Ng, it gives
better results in the DHN data set and similar ones in the NCI
Microarray.

In the experiments with the data sets Iris, Olive, Wdbc, and
Wine, we compared the clustering solutions given by
LEGClust and Chameleon. The parameters used for each
experiment and the results obtained with both algorithms are
shown in Table 9. Each experiment with the Chameleon
algorithm followed the command vcluster dataset name
number of clusters ¼ nc� clmethod ¼ graph� sim ¼ dist�
agglofrom ¼ a � agglocr ¼ wslink � nnbrs ¼ n given in [55].
The final number of clusters is the same as the number of
classes. We can see that the results with LEGClust are better
than the onesobtained with Chameleon,except for the dataset
“Olive.”

Finally, we also experimented our algorithm in two images
from [32], used to test textured image segmentation. We show
in Fig. 17 the results obtained and the comparison with those
obtained by Fischer et al. [32] with their path-based
algorithm. We are aware that our algorithm was not designed
having in mind the specific requirements of texture segmen-
tation; as expected, the results were not as good as those
obtained in [32], but nevertheless, LEGClust was still capable
of detecting some of the structured texture information.

5 CONCLUSION

The present paper presented a new proximity matrix, built
with a new entropic dissimilarity measure, as input for
clustering algorithms. We also presented a simple cluster-
ing process that uses this new proximity matrix and
performs clustering by combining a hierarchical approach
with a graph technique.

The new proximity matrix and the methodology imple-
mented in the LEGClust algorithm allows taking into account

the local structure of the data, represented by the statistical

distribution of the connections in a neighborhood of a
reference point achieving a good balance between structuring

direction and local connectedness. In this way, LEGClust is
able, for instance, to correctly follow a structuring direction

presented on the data, with the sacrifice of local connected-
ness (minimum distance), as human clustering often does.

The experiments with the LEGClust algorithm in both
artificial and real data sets have shown that

. LEGClust achieves good results compared with
other well-known clustering algorithms.

. LEGClust is simple to use since it only needs to
adjust three parameters and simple guidelines for
these adjustments were presented.

. LEGClust often yields solutions that are majority
voted by humans.

. LEGClust’s sensitivity to small changes of the
parameter values is low.

. LEGClust is a valid proposal for data sets with any
number of features.

In our future work, we will include our entropic measure

in other existing hierarchical and graph based algorithms and
compare them with the LEGClust algorithm in order to try to

establish the importance of the entropic measure in the
clustering process. We will also implement another clustering

process using as input our entropic dissimilarity matrix with
a different approach than the one presented here that does not

depend on the choice of parameters by the user and that can
give us, for example, a fixed number of clusters if so desired.

ACKNOWLEDGMENTS

This work was supported by the Portuguese Fundação para

a Ciencia e Tecnologia (project POSC/EIA/56918/2004).

REFERENCES

[1] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice
Hall, 1988.

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

TABLE 9
The Results and Parameters Used in the

Comparison of LEGClust and Chameleon in
Experiments with Four Real Data Sets

Fig. 17. Segmentation results for (a) textured images with (b) Fischer et

al.’s path-based clustering and (c) LEGClust. The parameters used in

LEGClust were M ¼ 30 and k ¼ 3, and the final number of clusters was

4 (top) and 6 (bottom).

[2] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering: A
Review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.

[3] A. Jain, A. Topchy, M. Law, and J. Buhmann, “Landscape of
Clustering Algorithms,” Proc. 17th Int’l Conf. Pattern Recognition,
vol. 1, pp. 260-263, 2004.

[4] P. Berkhin, “Survey of Clustering Data Mining Techniques,”
technical report, Accrue Software, San Jose, Cailf., 2002.

[5] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering
Algorithm for Large Databases,” Proc. ACM Int’l Conf. Management
of Data, pp. 73-84, 1998.

[6] S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering
Algorithm for Categorical Attributes,” Information Systems, vol. 25,
no. 5, pp. 345-366, 2000.

[7] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[8] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Clustering Method for Very Large Databases,” Proc. ACM
SIGMOD Workshop Research Issues on Data Mining and Knowledge
Discovery, pp. 103-114, 1996.

[9] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: A New Data
Clustering Algorithm and Its Applications,” Data Mining and
Knowledge Discovery, vol. 1, no. 2, pp. 141-182, 1997.

[10] G. Karypis, E.-H.S. Han, and V. Kumar, “Chameleon: Hierarchical
Clustering Using Dynamic Modeling,” Computer, vol. 32, no. 8,
pp. 68-75, 1999.

[11] S.D. Kamvar, D. Klein, and C.D. Manning, “Interpreting and
Extending Classical Agglomerative Clustering Algorithms Using
a Model-Based Approach,” Proc. 19th Int’l Conf. Machine Learning,
pp. 283-290, 2002.

[12] E.L. Johnson, A. Mehrotra, and G.L. Nemhauser, “Min-Cut
Clustering,” Math. Programming, vol. 62, pp. 133-151, 1993.

[13] D. Matula, “Cluster Analysis via Graph Theoretic Techniques,”
Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing,
R.C. Mullin, K.B. Reid, and D.P. Roselle, eds., pp. 199-212, 1970.

[14] D. Matula, “K-Components, Clusters and Slicings in Graphs,”
SIAM J. Applied Math., vol. 22, no. 3, pp. 459-480, 1972.

[15] E. Hartuv, A. Schmitt, J. Lange, S. Meier-Ewert, H. Lehrachs, and
R. Shamir, “An Algorithm for Clustering cDNAs for Gene
Expression Analysis,” Proc. Third Ann. Int’l Conf. Research in
Computational Molecular Biology, pp. 188-197, 1999.

[16] E. Hartuv and R. Shamir, “A Clustering Algorithm Based on
Graph Connectivity,” Information Processing Letters, vol. 76, nos. 4-
6, pp. 175-181, 2000.

[17] Z. Wu and R. Leahy, “An Optimal Graph Theoretic Approach to
Data Clustering: Theory and Its Application to Image Segmenta-
tion,” IEEE Trans. Pattern Analysis and Machine Learning, vol. 15,
no. 11, pp. 1101-1113, Nov. 1993.

[18] G. Karypis and V. Kumar, “Multilevel Algorithms for Multi-
Constraint Graph Partitioning,” Technical Report 98-019, Univ. of
Minnesota, Dept. Computer Science/Army HPC Research Center,
Minneapolis, May 1998.

[19] M. Fiedler, “A Property of Eigenvectors of Nonnegative Sym-
metric Matrices and Its Application to Graph Theory,” Czechoslo-
vak Math. J., vol. 25, no. 100, pp. 619-633, 1975.

[20] F.R.K. Chung, Spectral Graph Theory. Am. Math. Soc., no. 92, 1997.
[21] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888-905, Aug. 2000.

[22] R. Kannan, S. Vempala, and A. Vetta, “On Clusterings: Good, Bad,
and Spectral,” Proc. 41st Ann. Symp. Foundation of Computer Science,
pp. 367-380, 2000.

[23] C. Ding, X. He, H. Zha, M. Gu, and H. Simon, “A Min-Max Cut
Algorithm for Graph Partitioning and Data Clustering,” Proc. Int’l
Conf. Data Mining, pp. 107-114, 2001.

[24] A.Y. Ng, M.I. Jordan, and Y. Weiss, “On Spectral Clustering:
Analysis and an Algorithm,” Advances in Neural Information
Processing Systems, vol. 14, 2001.

[25] M. Meila and J. Shi, “A Random Walks View of Spectral
Segmentation,” Proc. Eighth Int’l Workshop Artificial Intelligence
and Statistics, 2001.

[26] D. Verma and M. Meila, “A Comparison of Spectral Clustering
Algorithms,” Technical Report UW-CSE-03-05-01, Washington
Univ., 2003.

[27] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise,” Proc. Second Int’l Conf. Knowledge Discovery and Data
Mining, pp. 226-231, 1996.

[28] K. Fukunaga and L.D. Hostetler, “The Estimation of the Gradient
of a Density Function, with Applications in Pattern Recognition,”
IEEE Trans. Information Theory, vol. 21, pp. 32-40, 1975.

[29] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 8,
pp. 790-799, Aug. 1995.

[30] D. Comaniciu and P. Meer, “Mean Shift Analysis and Applica-
tions,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1197-1203, 1999.

[31] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach
toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.

[32] B. Fischer, T. Zöller, and J.M. Buhmann, “Path Based Pairwise
Data Clustering with Application to Texture Segmentation,” Proc.
Int’l Workshop Energy Minimization Methods in Computer Vision and
Pattern Recognition, pp. 235-250, 2001.

[33] B. Fischer and J.M. Buhmann, “Path-Based Clustering for Group-
ing of Smooth Curves and Texture Segmentation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 25, no. 4, pp. 513-518,
Apr. 2003.

[34] C. Shannon, “A Mathematical Theory of Communication,” Bell
System Technical J., vol. 27, pp. 379-423 and 623-656, 1948.

[35] A. Renyi, “Some Fundamental Questions of Information Theory,”
Selected Papers of Alfred Renyi, vol. 2, pp. 526-552, 1976.

[36] E. Parzen, “On the Estimation of a Probability Density Function
and Mode,” Annals of Math. Statistics, vol. 33, pp. 1065-1076, 1962.

[37] D. Xu and J. Prı́ncipe, “Training MLPS Layer-by-Layer with the
Information Potential,” Proc. Int’l Joint Conf. Neural Networks,
pp. 1716-1720, 1999.

[38] H. Li, K. Zhang, and T. Jiang, “Minimum Entropy Clustering and
Applications to Gene Expression Analysis,” Proc. IEEE Computa-
tional Systems Bioinformatics Conf., pp. 142-151, 2004.

[39] A.O. Hero, B. Ma, O.J. Michel, and J. Gorman, “Applications of
Entropic Spanning Graphs,” IEEE Signal Processing Magazine,
vol. 19, no. 5, pp. 85-95, 2002.

[40] C.H. Cheng, A.W. Fu, and Y. Zhang, “Entropy-Based Subspace
Clustering for Mining Numerical Data,” Proc. Int’l Conf. Knowledge
Discovery and Data Mining, 1999.

[41] R. Jenssen, K.E. Hild, D. Erdogmus, J. Prı́ncipe, and T. Eltoft,
“Clustering Using Renyi’s Entropy,” Proc. Int’l Joint Conf. Neural
Networks, pp. 523-528, 2003.

[42] E. Gokcay and J.C. Prı́ncipe, “Information Theoretic Clustering,”
IEEE Trans. Pattern Analysis and Machine Learning, vol. 24, no. 2,
pp. 158-171, Feb. 2002.

[43] Y. Lee and S. Choi, “Minimum Entropy, K-Means, Spectral
Clustering,” Proc. IEEE Int’l Joint Conf. Neural Networks, vol. 1,
pp. 117-122, 2004.

[44] Y. Lee and S. Choi, “Maximum Within-Cluster Association,”
Pattern Recognition Letters, vol. 26, no. 10, pp. 1412-1422, July 2005.

[45] J.M. Santos and J. Marques de Sá, “Human Clustering on Bi-
Dimensional Data: An Assessment,” Technical Report 1, INEB
—Instituto de Engenharia Biomédica, Porto, Portugal,http://
www.fe.up.pt/~nnig/papers/JMS_TechReport2005_1.pdf, Oct.
2005.

[46] B.W. Silverman, Density Estimation for Statistics and Data Analysis,
vol. 26, Chapman & Hall, 1986.

[47] A.W. Bowman and A. Azzalini, Applied Smoothing Techniques for
Data Analysis. Oxford Univ. Press. 1997.

[48] R. Jenssen, T. Eltoft, and J. Prı́ncipe, “Information Theoretic
Spectral Clustering,” Proc. Int’l Joint Conf. Neural Networks,
pp. 111-116, 2004.

[49] J.M. Santos, J. Marques de Sá, and L.A. Alexandre, “Neural
Networks Trained with the EEM Algorithm: Tuning the Smooth-
ing Parameter,” Proc. Sixth World Scientific and Eng. Academy and
Soc. Int’l Conf. Neural Networks, 2005.

[50] H. Proença and L.A. Alexandre, “UBIRIS: A Noisy Iris Image
Database,” Proc. Int’l Conf. Image Analysis and Processing, vol. 1,
pp. 970-977, 2005.

[51] “Stanford NCI60 Cancer Microarray Project,”http://genome-
www.stanford.edu/nci60/, 2000.

[52] C. Blake, E. Keogh, and C. Merz, “UCI Repository of
Machine Learning Databases,” http://www.ics.uci.edu/
~mlearn/MLRepository.html, 1998.

[53] M. Forina and C. Armanino, “Eigenvector Projection and
Simplified Non-Linear Mapping of Fatty Acid Content of Italian
Olive Oils,” Annali di Chimica, vol. 72, pp. 127-155, 1981.

[54] G. Karypis, “Cluto: Software Package for Clustering High-
Dimensional Datasets,” version 2.1.1, Nov. 2003.

SANTOS ET AL.: LEGCLUST—A CLUSTERING ALGORITHM BASED ON LAYERED ENTROPIC SUBGRAPHS 13

[55] G. Karypis, Cluto: A Clustering Toolkit, Univ. of Minnesota, Dept.
Computer Science, Minneapolis, Nov. 2003.

[56] G. Sanguinetti, J. Laidler, and N.D. Lawrence, “Automatic
Determination of the Number of Clusters Using Spectral Algo-
rithms,” Proc. Int’l Workshop Machine Learning for Signal Processing,
pp. 55-60, 2005.

[57] X. Xu, “DBScan,” http://ifsc.ualr.edu/xwxu/, 1998.
[58] R.P. Duin, “Dutch Handwritten Numerals,” http://

www.ph.tn.tudelft.nl/~duin, 1998.
[59] L. Hubert and P. Arabie, “Comparing Partitions,” J. Classification,

vol. 2, no. 1, pp. 193-218, 1985.
[60] M.F. Porter, “An Algorithm for Suffix Stripping,” Program, vol. 14,

no. 3, pp. 130-137, 1980.
[61] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning. Springer, 2001.

Jorge M. Santos received the degree in
industrial informatics from the Engineering Poly-
technic School of Porto (ISEP) in 1994, the MSc
degree in electrical and computer engineering
from the Engineering Faculty of Porto University
(FEUP) in 1997, and the PhD degree in en-
gineering sciences from FEUP in 2007. He is
presently an assistant professor in the Depart-
ment of Mathematics at ISEP and a member of
the Signal Processing Group of the Biomedical

Engineering Institute at Porto.

Joaquim Marques de Sá received the degree
in electrical engineering from the Engineering
Faculty of Porto University (FEUP) in 1969 and
the PhD degree in electrical engineering (Signal
Processing) from FEUP in 1984. He is presently
a full professor at FEUP and the leader of the
Signal Processing Group of the Biomedical
Engineering Institute at Porto.

Luı́s A. Alexandre received the degree in
physics and applied mathematics from the
Faculty of Sciences of the Porto University in
1994 and both the MSc and PhD degrees in
electrical engineering from the Engineering
Faculty of Porto University in 1997 and 2002,
respectively. He is currently an auxiliar professor
in the Department of Informatics at the Uni-
versity of Beira Interior (UBI) and a member of
the Networks and Multimedia Group of the

Institute of Telecommunications at UBI.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

