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Abstract. Most object recognition algorithms use a large number of
descriptors extracted in a dense grid, so they have a very high compu-
tational cost, preventing real-time processing. The use of keypoint de-
tectors allows the reduction of the processing time and the amount of
redundancy in the data. Local descriptors extracted from images have
been extensively reported in the computer vision literature. In this pa-
per, we present a keypoint detector inspired by the behavior of the early
visual system. Our method is a color extension of the BIMP keypoint
detector, where we include both color and intensity channels of an image.
The color information is included in a biological plausible way and repro-
duces the color information in the retina. Multi-scale image features are
combined into a single keypoints map. Our detector is compared against
state-of-the-art detectors and is particularly well-suited for tasks such
as category and object recognition. The evaluation allowed us to obtain
the best pair keypoint detector/descriptor on a RGB-D object dataset.
Using our keypoint detector and the SHOTCOLOR descriptor we obtain
a good category recognition rate and for object recognition it is with the
PFHRGB descriptor that we obtain the best results.

1 Introduction

Keypoint detection has been an area which has attracted a lot of attention in
the computer vision community, developing a series of methods which are stable
under a wide range of transformations [1]. Some of them developed based on
general features [2], specific [3,4,1] or a mixture of them [5]. Given the number
of keypoint detectors, it is surprising that many of the best recognition systems
do not use these detectors. Instead, they process the entire image, either by pre-
processing entire image to obtain feature vectors [6], by sampling descriptors on
a dense grid [7] or by processing entire images hierarchically and detecting salient
features in the process [8] These approaches provide a lot of data which helps
classification, but also introduce a lot of redundancy [9] or high computacional
cost [7]. Typically, the largest computational cost of these systems is in the stage
of computing the features (called descriptors in 3D), so, it makes sense to use
only a non redundant subset of points from the input image or point cloud.
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In this paper, we present a new 2D keypoint detector. Our method is a bio-
logically motivated multi-scale keypoint detector, which uses color and intensity
channels of an image. As the basis of our method we use the Biologically Inspired
keyPoints (BIMP) [1], which is a fast keypoint detector based on the biology of
the human visual cortex. We present an extension of this method by introducing
the color analysis, similar to what is done in the human retina. A compara-
tive evaluation is made on a large public RGB-D Object Dataset [10], which is
composed by 300 real objects from 51 categories. The evaluation of our and the
state-of-art keypoint detectors is based on category and object recognition using
3D descriptors. This dataset contains the location of each point in the 2D space,
which allows us to use 2D keypoint detector methods on the point clouds.

In [11], the author makes a comparison of the descriptors available the Point
Cloud Library (PCL) [12] and explains how they work. The same author studies
the accuracy of the distances both for objects and category recognition and finds
that simple distances give competitive results [13]. Our work will compare the
keypoint detectors using 3D descriptors that present better results in [11] and
we will do it using the best distance measure with the best accuracy presented
in [13].

The interest on using depth information in computer vision applications has
been growing recently due to the decreasing prices of 3D cameras, such as Kinect
and Xtion. With this type of cameras we can make a 2D and 3D analysis of the
captured objects. The cameras can return directly the 2D image and the corre-
sponding cloud point, which is composed by the RGB and depth information.
Depth information improves object perception, as it allows for the determination
of its shape or geometry.

The structure of the paper is as follows: the next section presents a description
of the methods that we evaluate; in section 3, we will describe our keypoint
detector; the section 4 discusses the recognition pipeline used in this paper; the
last two sections will discuss the results obtained and present the conclusions.

2 Evaluated Methods

In this section, we will describe the 2D keypoint detectors and 3D descriptors
evaluated in this work. The keypoints are used in this work to reduce the overall
computational time since instead of finding descriptors on a dense grid, we are
extracting them only on a smaller set of locations that correspond to the detected
keypoints. In [14], a complete list of 2D keypoint detectors is presented and in
[15] the focus is on biologically plausible keypoint detectors. The descriptors
are extracted based on a given point location and we use keypoint detectors to
provide this information to the descriptors. As mentioned earlier, it is possible
to perform at the same time an analysis in 2D and 3D space due to the type of
camera used.
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2.1 2D Keypoint Detectors

The Scale Invariant Feature Transform (SIFT) keypoint detector was proposed
by [3]. This method shares similar properties with neurons in inferior tempo-
ral cortex that are used for object recognition in primate vision. The image I
is convolved with a number of Gaussian filters whose standard deviations dif-
fer by a fixed scale factor. That is, σj+1 = kσj where k is a constant scalar
that should be set to

√
2. The convolutions yield smoothed images, denoted by

G(x, y, σj), i = 1, . . . , n. The adjacent smoothed images are then subtracted by
D(x, y, σj) = G(x, y, σj+1)−G(x, y, σj). These two steps are repeated, yielding
a number of Difference-of-Gaussians (DoGs) over the scale space. Once DoGs
have been obtained, keypoints are identified as local minima/maxima of the
DoGs across scales. This is done by comparing each point in the DoGs to its
eight neighbors at the same scale and nine corresponding neighborhood points
in each of the neighborhood scales. The dominant orientations are assigned to
localized keypoints.

Speeded-Up Robust Features (SURF) [4] is partly inspired by the SIFT de-
scriptor. SURF is based on sums of 2D Haar wavelet responses and makes an
efficient use of integral images. It uses an integer approximation to the determi-
nant of Hessian blob detector, which can be computed extremely quickly with
an integral image. For features, it uses the sum of the Haar wavelet response
around the point of interest.

Biologically Inspired keyPoints (BIMP) [1] is a cortical keypoint detector for
extracting meaningful points from images, solving the computational problem of
[15]. The keypoints are extracted by a series of filtering operations: simple cells,
complex cells, end-stopped cells and inhibition cells. Simple cells are modeled
using complex Gabor filters with phases in quadrature are given by:

gλ,σ,θ,φ(x, y) = exp

(
− x̃

2 + γỹ2

2σ2

)
exp

(
i
2πx̃

λ

)
, (1)

where x̃ = x cos(θ) + y sin(θ), ỹ = y cos(θ) − x sin(θ), with σ the receptive
field size, θ the filter orientation, λ is the wavelength and γ = 0.5. Simple cell
responses are obtained by convolving the image with the complex Gabor filter:
Rλ,θ = I ∗ gλ,θ. Complex cells are the modulus of simple cell responses Cλ,θ =
|Rλ,θ|. Remaining kernels are sums of Dirac functions (δ). If ds = 0.6λ sin(θ)
and dc = 0.6λ cos(θ), double-stopped cell kernels are defined by

kDλ,θ=δ(x, y)− δ(x−2ds, y+2dc)+δ(x+2ds, y−2dc)

2
(2)

and the final keypoints is given by

KD
λ =

π∑
θ=0

|Cλ,θkDλ,θ|+−
2π∑
θ=0

|Cλ,θkTIλ,θ+Cλ,θ⊥k
RI
λ,θ−Cλ,θ|+, (3)

where θ⊥ is orthogonal to θ, |.|+ represents the suppression of negatives values.
kTIλ,θ is the tangential inhibition kernel and kRIλ,θ the radial.

kTIλ,θ=−2δ(x, y)+δ(x+dc, y+ds)+δ(x−dc, y−ds) (4)

kRIλ,θ=δ(x+ dc/2, y + ds/2)+δ(x− dc/2, y − ds/2). (5)
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2.2 3D Descriptors

Point Feature Histograms (PFH) [16] can be categorized as geometry-based de-
scriptor [17]. This descriptor is represented by the surface normals, curvature
estimates and distances between point pair which are generated by a point and
its local neighborhood. They are represented by three angles and they are stored
into an histogram that encodes the correlations between the normal angles of
point pairs in a neighborhood. PFHRGB variant includes three more histograms,
one for the ratio between each color channel.

The Signature of Histograms of OrienTations (SHOT) descriptor [18] is based
on a signature histograms representing topological features, that make it invari-
ant to translation and rotation. For a given keypoint, it computes a repeatable
local reference frame using the eigenvalue decomposition around it, in order to
incorporate geometric information of point locations in a spherical grid. A his-
togram is constructed by summing point counts of the angle between the normal
of the keypoint and the normal of each point belonging to the spherical grid. In
[19], a color version (SHOTCOLOR) is proposed, where the CIELab color space
is used as color information.

3 OUR Method

Our Biological Motivated Multi-Scale Keypoint Detector (BMMSKD) is a color
information extension of BIMP. The way we add the color information is based
on an neural architecture of the primate visual system [20,21]. Figure 1 presents
the block diagram of our keypoint detector.

For a given color image, we create three images from the RGB channels,
which are: RG, BY and grayscale image I (shown in the left column of the
figure 2). The r, g, and b channels are normalized by I in order to decouple
hue from intensity. However, because hue variations are not perceivable at very
low luminance (and hence are not salient), normalization is only applied at the
locations where I is larger than 1/10 of its maximum over the entire image (other
locations yield zero r, g, and b). Four broadly-tuned color channels are created:
R for red channel, G for green, B for blue and Y for yellow: R = r − (g + b)/2,
G = g−(r+b)/2, B = b−(r+g)/2 and Y = (r+g)/2−|r−g|/(2−b). Accordingly,
maps RG = R−G are created in the model to represent the red/green opponency
and BY = B − Y for blue/yellow opponency (negative values are set to zero).

For each color channels RG, BY and I, we apply the BIMP keypoint detector
and fuse the keypoint locations. Given the application of BIMP method on
each channel, we obtain three sets of keypoints kRG, kBY and kI , respectively
(shown in the right column of the second to fouth rows of figure 2). With these
three sets, we create a keypoint map Km given by Km = kRG ∪ kBY ∪ kI .
A location is considered a keypoint, if there exists another color channel, in
its neighborhood, which indicates that there exists one keypoint in the region.
This is: kl ∈ Km : #Kr

m(kl) > 1, where kl is a keypoint location, r the
neighborhood radius and Kr

m(kl) is a sub-set of Km centered in the point kl and
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Fig. 1. Block diagram of our method. Our method receives an image directly
from the camera and generates the three new images (RG, BY and I). In each
of these images we apply the BIMP keypoint detector and fuse the result of the
three detections. See the text for details.

Fig. 2. Our keypoint detection method. In the first column, we have the original
image on the top and the keypoint fusion on the bottom. The second, third and
fourth columns contain the RG, BY and gray color channels (top) and the
respective keypoint detection on the bottom.

with radius r. An example of the fusion result is presented in the bottom of the
first column in figure 2.

4 Object Recognition Pipeline

In this section, we present the pipeline used in this work, shown in figure 3. Each
block will be explained in the following subsections.

4.1 Segmented Objects

The input camera and segmentation process is simulated by the large RGB-D
Object Dataset 1 [10]. This dataset was collected using an RGB-D camera and
contains a total of 207621 segmented objects and these were saved through both
3D point clouds and 2D images. The dataset contains 300 physically distinct
objects taken on a turntable and the objects are organized into 51 categories.
The chosen objects are commonly found in home and office environments, where
personal robots are expected to operate. In this work, we use 5 images/point
clouds of each physically distinct object, using a total of 1500 from each of
them.

1 The dataset is publicly available at http://www.cs.washington.edu/rgbd-dataset.
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Fig. 3. Block diagram of the 3D recognition pipeline. See the text in section 4
for more details.

Table 1. Keypoints statistics. The number of points, time in seconds (s) and
size in kilobytes (KB) presented are related to each cloud in the processing of
the test set.

Keypoints N. of Points Time (s) Size (KB)

BMMSKD 142.03±141.00 10.65±1.61 6.55±6.22
BIMP [1] 56.05±53.07 3.93±0.90 2.69±2.35
SIFT [3] 46.83±63.02 0.26±0.07 2.27±2.78
SURF [4] 47.77±60.06 0.28±0.07 2.32±2.67

Average 73.17±85.15 3.78±3.62 3.45±3.77
Original 5740.06±6851.42 316.86±375.73

4.2 2D Keypoint Detectors

The 2D image of the segmented object, present in the database, will feed the
keypoint extraction process, which is used to reduce the computational cost of
the recognition system. The keypoints implementation used in this work is done
in Open Source Computer Vision (OpenCV) library [22]. In table 1, we present
the average number of keypoints, mean computation time (in seconds) spent
by each method to extract the keypoints and the file size (in KiloBytes). These
times were obtained on a computer with Intel R©CoreTMi7-980X Extreme Edition
3.33GHz with 24 GB of RAM memory.

4.3 3D Descriptors

The descriptors are extracted at the locations given by the keypoint detector
obtained from the 2D images, but the processing of descriptors is done in point
clouds. The point clouds have the 3D information of the segmented object, which
is composed by: color (in the RGB color space) and depth information. The
3D descriptors that present better results in [11] are: PFH, SHOT and their
color based versions PFHRGB and SHOTCOLOR. In table 2, we present some
statistics about the extracted descriptors using the presented keypoint detectors
(like in table 1).
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Table 2. Descriptors statistics (for more details see caption of table 1).

Descriptor Time (s) Size (KB)

PFH 1.01±1.76 24.00±31.99
PFHRGB 1.97±4.01 53.35±77.49
SHOT 0.05±0.06 90.67±121.62
SHOTCOLOR 0.05±0.06 277.54±372.96

Average 0.79±2.36 111.39±223.57

4.4 Object Database

Using the 1500 point clouds selected, the observations is given by the Leave-One-
Out Cross-Validation (LOOCV) method [23]. As the name suggests, LOOCV
involves using a single observation from the original sample as the validation
data, and the remaining observations as the training data. This is repeated such
that each observation in the sample is used once as the validation data. This
is the same as a K-fold cross-validation with K being equal to the number
of observations in the original sampling. With 1500 point clouds and LOOCV
method, we perform more than 1200000 comparisons for each pair keypoint
detector/descriptor and we have a total of 16 pairs (4 keypoint detectors × 4
descriptors).

4.5 Distance Measure and Matching

One of the stages in 3D object recognition is the correspondence between a input
cloud and a known object cloud (stored in the database). The correspondence is
typically done using a distance function between the sets of descriptors. In [13],
multiple distance functions are studied. In this work, we will use the distance

D6 = L1(cA, cB) + L1(stdA, stdB) (6)

that presents good results, in terms of recognition and run time, where cA and
cB are the centroids of the sets A and B, respectively, and

stdA(i) =

√√√√ 1

|A| − 1

|A|∑
j=1

(aj(i)− cA(i))2, i = 1, . . . , n, (7)

aj(i) refers to the coordinate i of the descriptor j, and likewise for stdB . The L1

distance is between descriptor (not sets) x, y ∈ X and is given by

L1(x, y) =

n∑
i=1

|x(i)− y(i)|. (8)

5 Results and Discussion

In order to perform the evaluation, we will use three measures, which are the
Receiver Operator Characteristic (ROC) Curve, the Area Under the ROC Curve
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Table 3. AUC and DEC values for the category recognition for each pair key-
points/descriptor. The underline value is the best result for this descriptor and
the best pair is the bold one.

Keypoints
Category Recognition

PFH PFHRGB SHOT SHOTCOLOR
AUC DEC AUC DEC AUC DEC AUC DEC

BMMSKD 0.743 0.850 0.772 1.001 0.630 0.369 0.701 0.615
BIMP [1] 0.716 0.743 0.758 0.929 0.615 0.360 0.673 0.562
SIFT [3] 0.739 0.870 0.764 0.980 0.610 0.326 0.683 0.589
SURF [4] 0.737 0.854 0.764 0.978 0.606 0.304 0.678 0.571

Table 4. AUC and DEC values for the object recognition for each pair key-
points/descriptor. The underline value is the best result for this descriptor and
the best pair is the bold one.

Keypoints
Object Recognition

PFH PFHRGB SHOT SHOTCOLOR
AUC DEC AUC DEC AUC DEC AUC DEC

BMMSKD 0.796 1.076 0.920 1.926 0.666 0.473 0.791 0.931
BIMP [1] 0.766 0.941 0.904 1.781 0.627 0.393 0.738 0.790
SIFT [3] 0.789 1.093 0.892 1.724 0.620 0.371 0.729 0.760
SURF [4] 0.799 1.120 0.894 1.749 0.615 0.337 0.721 0.723

(AUC) and the decidability (DEC). The decidability index

DEC = |µintra − µinter|/
√

1

2
(σ2
intra + σ2

inter) (9)

is the distance between the distributions obtained for the two classical types of
comparisons: between descriptors extracted from the same (intra-class) and dif-
ferent objects (inter-class). The µintra and µinter denote the means of the intra-
and inter-class comparisons, σ2

intra and σ2
inter the respective standard deviations

and the decidability can vary between [0,∞[. The obtained AUC and DEC for
category and object recognition are given in tables 3 and 4.

As shown in table 3 and 4, our method increases the recognition results in
both category and object recognition. Comparing our method with the original
approach, we can see that color information has introduced a significant im-
provement in both category and object recognition. Only in the PFH descriptor
is where the SURF detector presents slightly better results, but for the AUC
and DEC measures this improvement is highlighted only in object recognition.
For this descriptor in terms of category recognition, SIFT reached better results
than DEC. The fact that we are using color information and the color informa-
tion fusion justifies these improvements. For grayscale images, the results will
be the same as the BIMP, since our method generalizes it to color.
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6 Conclusions

In this paper we focused on keypoint detectors and we present a novel keypoint
detector biologically motivated by the behavior and the neuronal architecture
of the early primate visual system. We made a recognition evaluation of the
proposed approach on public available data with real 3D objects. For this eval-
uation, we used the keypoint detectors in the OpenCV library and we projected
the keypoint locations to the 3D space to use available 3D descriptors on the
PCL library.

The main conclusions of this paper are: 1) the keypoint locations can help
or degrade the recognition process; 2) a descriptor that uses color information
should be used instead of a similar one that uses only shape information; 3)
since there are big differences in terms of recognition performance, size and
time requirements, the descriptor should be matched to the desired task; 4) to
recognize the category of an object or a real-time system, we recommend the use
the SHOTCOLOR method because it presents a recognition rate of 7% below
of the PFHRGB but with a much lower computational cost; and 5) to do the
object recognition, we recommend PFHRGB because it presents a recognition
rate 12.9% higher than SHOTCOLOR.

Acknowledgments

This work is supported by ‘FCT - Fundação para a Ciência e Tecnologia’ (Portu-
gal) through the research grant ‘SFRH/BD/72575/2010’, and the funding from
‘FEDER - QREN - Type 4.1 - Formação Avançada’, co-founded by the Euro-
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