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INEB -Instituto de Engenharia Biomédica

Porto - Portugal

lmsilva@fe.up.pt, jmsa@fe.up.pt

Luı́s A. Alexandre

IT - Networks and Multimedia Group
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Abstract

In this paper we address some open questions on the

recently proposed Zero-Error Density Maximization algo-

rithm for MLP training. We propose a new version of the

cost function that solves a training problem encountered in

previous work and prove that the use of a nonparametric

density estimator preserves the optimal solution. Some ex-

periments are reported comparing this cost function to the

usual mean-square error and cross entropy cost functions.

1. Introduction

The training of multi-layer perceptron (MLP) classifiers

in statistical pattern recognition requires the use of objective

functions (or cost/loss functions) in order to find the optimal

set of parameters. Several proposals have been used ranging

from the well known mean-square error (MSE) to a number

of information theoretic objective functions [1, 3, 6, 8]. It

was based on the latter that we have recently presented the

Zero-Error Density Maximization procedure (Z-EDM) [7].

Its basic idea is to update the parameters of an MLP such

as to maximize the error density at the origin (details are

given in the following section). Some questions and prob-

lems remained unclear, such as the need for a larger number

of training epochs or the influence of the smoothing param-

eter of the kernel density estimation. Also, the answer to the

fundamental question about the influence in the final solu-

tion of the nonparametric density estimator was not known.

In this paper, we study and solve these issues while comple-

menting with a set of experiments where Z-EDM, MSE and

Cross Entropy (CE) cost functions are compared.

2. The Zero-Error Density Maximization Pro-

cedure

We consider an MLP with one hidden layer, an output

vector y and a target vector t (multi-class problems). We

also consider a training set with N pattern vectors, such that

the nth sample produces an output y(n) which is compared

with the corresponding target t(n) to produce the error (or

more precisely, the deviation) e(n) = t(n) − y(n), n =
1, . . . , N . Target vectors are encoded in an one-out-of-C

scheme such that t = [−1, . . . , 1, . . . ,−1], where the 1 ap-

pears at the kth component, is the target for a pattern from

class Ck. One can easily see that the errors belonging to

each class lie in disjoint hypercubes with the origin as their

unique common point. The three-class case is represented

in Figure 1.

Figure 1. Support space (shadowed cubes)

for the error distribution in a three-class
problem (with target encoding as described

in the text).

We expect, in the training process of an MLP, that the output

y gets closer to the target t and thus the errors (deviations)

will converge to the origin. In a limit scenario one would

get e(n) = 0 ∀n, which amounts to a δ-Dirac distribution

of the error variable centered at the origin. This means that,

as training evolves, a distribution with a higher peak at the

origin is induced in the errors. This idea leads us to the

adaptive criteria of adjusting the parameter vector w (MLP



weights) by maximizing the error density value at the origin

w∗ = argmax
w

f(0;w) (1)

where w∗ is the optimal weight vector for the MLP and

f is the error density. In practice, the error distribution is

not known and making parametric assumptions would be

very restrictive. Thus, we rely on nonparametric density

estimation by using the well-known kernel density estima-

tion procedure of Parzen windows [9]. Given a set of errors

e(1), . . . , e(N), the estimated density at e = 0 is given by

f̂(0) =
1

Nhd

N
∑

n=1

K

(

0− e(n)

h

)

, (2)

where K is a multidimensional kernel function, h is the

smoothing parameter (or kernel bandwidth) and d the di-

mension of e. By continuity, diferenciability and further

reasons stated in section 3, we choose for K the multivari-

ate Gaussian kernel with zero mean and unit covariance [9]

giving the final expression to be optimized as

f̂(0) =
1

Nhd

N
∑

n=1

1√
2π

exp

(

−1

2

e(n)2

h2

)

(3)

This new procedure, denoted as Zero-Error Density Maxi-

mization (Z-EDM), can be easily plugged in the usual back-

propagation scheme. Note that expression (3) depends on

the kernel parameter h. This parameter controls the smooth-

ness of the density estimate and consequently the smooth-

ness of the cost function. In order to better understand the

influence of h in the training process we conducted several

experiments. All datasets used in the experiments of section

4 were trained 100 times (full dataset) using several differ-

ent values of h. Figure 2 shows the mean training curves for

two datasets: OLIVE and CTG16. We found that a value of

h smaller than 1 does not work, independently of the num-

ber of classes and/or number of training examples. When h

is increased, the curve is basically shifted forward and a flat

region appears in the earlier epochs. The general behaviour

was the same for all datasets, which means that the num-

ber of classes (and consequently, the dimension of the error

space) and the number of examples available for training are

of little influence for the choice of h. Let us now consider,

for simplicity sake, the case of a two-class problem (scalar

output and target variables). The gradient of (3) is easily

derived as

∂f̂(0)

∂w
= − 1

Nh

N
∑

n=1

1

h2
√

2π
exp

(

−1

2

e(n)2

h2

)

e(n)
∂e(n)

∂w

(4)

If we look into this expression we may consider the function

ϕ(e) =
1

Nh3

1√
2π

exp

(

−1

2

e2

h2

)

e e ∈ [−2, 2]

(5)
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Figure 2. Mean training curves with Z-EDM for
different values of h.

as a weight function of the gradient “particle” ∂e

∂w
. Figure

3 shows ϕ(e) for some values of N and h. We can see

that gradient particles corresponding to larger values (in ab-

solute value) of e get larger weights and gradient particles

corresponding to smaller values of e will have a small con-

tribution to the update value (4) of the parameter w. Of

course, if we increase N or h, then ϕ(e) → 0 and this is the

reason for the initial flat platforms encountered in the first

epochs of the training error (see Figure 2). If we also look

to the order of magnitude of the values given by (5), we

can conclude that this behaviour is due to the initial work

being done by the adaptive learning rate procedure1 while

attempting to compensate those orders of magnitude.

In fact, we can make some modifications to our cost func-

tion in order to avoid this problem. Note that minimizing

expression (3) is equivalent to the minimization of

N
∑

n=1

h2 exp

(

−1

2

e(n)2

h2

)

(6)

in the sense that the same solutions are encountered, be-

cause 1

Nhd
√

2π
and h2 are just positive scaling factors2. This

1We use an adaptive learning rate procedure as described in [7].
2We keep the factor h2 to allow a simplification of the gradient.
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Figure 3. ϕ(e) as in (5) for different values of
N and h.

is the new expression used in the experiments of section 4.

3. Preserving the global maximum

The maximum value of f(0;w) in (1) is attained when

the distribution of the errors is a δ-Dirac, or equivalently,

when e(n) = 0, ∀n. It is important to show that the use of

kernel density estimation in (2) preserves this maximum. In

this sense, we must evaluate the gradient and the Hessian

of (2) at the origin. Let ē = (e(1), . . . , e(N)). Using the

chain rule, the first derivatives are given by

∂f̂(0)

∂e(k)
= − 1

Nhd+1
K ′

(

−e(k)

h

)

(7)

and

∂f̂(0)

∂e(k)

∣

∣

∣

∣

∣

ē=0

= 0 ⇔ K ′(0) = 0 (8)

Thus, condition (8) sets the property that the kernel must

satisfy in order to have a stationary point at the origin. To

infer about its nature we compute the second derivatives

∂2f̂(0)

∂e2(k)
=

1

Nhd+2
K ′′

(

−e(k)

h

)

(9)

∂2f̂(0)

∂e(n)∂e(k)
= 0 n 6= k (10)

Hence at ē = 0, we have

∂2f̂(0)

∂e2(k)

∣

∣

∣

∣

∣

ē=0

=
1

Nhd+2
K ′′(0) (11)

∂2f̂(0)

∂e(n)∂e(k)

∣

∣

∣

∣

∣

ē=0

= 0 n 6= k (12)

Hence the Hessian matrix is of the form 1

Nhd+2 K ′′(0)I,

which means that there exists an unique eigenvalue λ =
1

Nhd+2 K ′′(0) with multiplicity N . Thus, the origin is a

(strict) local maximum if

λ < 0 ⇔ K ′′(0) < 0 (13)

This is the second condition that the kernel function must

satisfy. We proceed by showing that a global maximum of

(2) is reached when e(n) = 0 ∀n. We must show that

f̂(0)
∣

∣

∣

ē=0

≥ f̂(0)
∣

∣

∣

ē

⇔ NK(0) ≥
N

∑

n=1

K

(

0− e(n)

h

)

(14)

Now, if the kernel function is unimodal with the mode cen-

tered at the origin, one has

N
∑

n=1

K

(

0 − e(n)

h

)

≤ N max
n

K

(

0− e(n)

h

)

≤ NK(0)

(15)

Hence, if the kernel function satisfies the following three

conditions

1. K ′(0) = 0

2. K ′′(0) < 0

3. unimodal with mode at the origin

then the use of a nonparametric density estimator (2) to

build our cost function (3) preserves the global maximum.

It is easy to see that the Gaussian kernel satisfies these con-

ditions and thus the justification for our choice.

4. Experimental Results

To evaluate the generalization ability of MLP’s trained

with Z-EDM, we conducted a train and test procedure with

five datasets. WDBC, NEW THYROID and SONAR were

taken from the UCI repository [2], CTG16 is a dataset

containing measurements and classification results of car-

diotocographic examination of 2126 foetuses (see [5] for a

more detailed description) and OLIVE deals with the classi-

fication and prediction of the origin of different Italian olive

oil samples [4]. Table 1 gives a brief description of the five

datasets.



Table 1. Description of the five datasets used
in the experiments. The last column reports

the value of h used in each dataset.

Datasets #Samples #Features #Classes h

WDBC 569 30 2 0.8

CTG16 2126 16 10 10

OLIVE 572 8 9 10

SONAR 208 60 2 3

NEW THYROID 215 5 3 10

Note that we have to set the value of the smoothing pa-

rameter h in (6). The strategy was to try several values of

h and choose the one that produces better results. We first

used h ∈ {1.6, 2, 3, 5, 10}. Graphs as shown in Figure

4 were produced and used to choose the best value of h for

each dataset. For example, in Figure 4(a) we observe that

increasing h produces better results. However, we verified

an opposite behaviour in WDBC, where smaller values of h

seemed to be preferable. Thus, we also tried several values

in the range [0.5, 1.6]. Figure 4(b) shows the mean errors

for some of these values. We verified that decreasing h to a

value around 0.8 the mean errors also decreased. However,

a large decrease of h caused the errors to increase again (see

the mean line for h = 0.5 in Figure 4(b)). The last column

of Table 1 presents the value of h chosen for each dataset.

The following procedure was performed 100 times: divide

the data randomly in two subsets, half for training and half

for testing; train and test the network; interchange the roles

of the training and test sets; perform training and test again.

This procedure was applied to several MLP’s varying the

number of hidden units from 2 to 20. For comparison pur-

poses we also applied the same experimental procedure to

MLP’s trained with the mean square error (MSE) and cross

entropy (CE) cost functions [1]. Also, to have a fair com-

parison, the same 100 train/test partitions were used for the

three algorithms. Figure 5 shows the mean test error lines

for these experiments.

We can see that for three datasets, CTG16, OLIVE and

SONAR, the mean test error lines are quite similar. How-

ever, for WDBC we clearly observe that Z-EDM has a con-

sistently lower mean line than MSE and CE. In NEW THY-

ROID we observe a similar behaviour but in this case CE

performs better than MSE and Z-EDM. Table 2 shows the

mean test errors and standard deviations (in brackets) for

some values of the number of hidden units.

The table confirms that Z-EDM performs better in

WDBC while MSE and CE have similar results. This be-

haviour is inverted in NEW THYROID, where CE performs

better than Z-EDM and MSE (which have similar results).

The results also highlight some differences in other datasets
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Figure 4. Mean error lines (100 repetitions) for
different values of h.

that are not visible in Figure 5. For example, we can see

that in CTG16, Z-EDM and MSE achieve its best result

with hid = 20 corresponding to an error of 15.7% while

CE has 16% as its best result. Also in SONAR we en-

counter some differences. Z-EDM achieves 21.7% while

CE only achieves 22%. Note however that in this case we

have higher standard deviations. To verify if the differ-

ences encountered are statistically significant, we applied

the non-parametric Mann-Whitney test for the location of

two independent samples. The test was only applied to the

best results of each method listed in the bottom of Table

2. The p-values are shown in Table 3. A p-value smaller

than 0.05 (5% level) was considered statistically significant

evidencing differences in the results. This is what happens

in WDBC. The result of Z-EDM is significantly better than

the result of MSE. Comparing with CE the p-value is barely

above the threshold 0.05. It would be significant if we re-

laxed our threshold to the 10% level.

We also encounter significant differences in CTG16. Z-

EDM and MSE, performing equally, achieve a significant

better result than CE. In the other datasets the differences

are not statistically significant. In particular, the difference

mentioned above for the SONAR dataset is not significant.

It is also interesting to see that the differences encountered



Table 2. Test error rates (%) and standard de-
viations (in brackets) for the train and test

procedure. For each dataset the most sig-

nificant results were chosen. The top line of
each box is the number of hidden units. The

last box presents the best results.

WDBC 2 3 4 5 6 7

Z-EDM 2.46(0.49) 2.49(0.51) 2.51(0.49) 2.52(0.52) 2.50(0.53) 2.52(0.53)

MSE 2.59(0.45) 2.61(0.54) 2.64(0.55) 2.59(0.55) 2.59(0.54) 2.62(0.54)

CE 2.59(0.49) 2.65(0.50) 2.62(0.46) 2.64(0.52) 2.62(0.51) 2.64(0.45)

CTG16 15 16 17 18 19 20

Z-EDM 16.2(0.7) 16.0(0.8) 15.9(0.8) 15.8(0.8) 15.8(0.7) 15.7(0.7)

MSE 16.1(0.7) 16.1(0.7) 15.9(0.7) 16.0(0.8) 15.9(0.8) 15.7(0.6)

CE 16.3(0.7) 16.4(0.7) 16.2(0.7) 16.1(0.7) 16.0(0.7) 16.0(0.7)

OLIVE 15 16 17 18 19 20

Z-EDM 5.52(0.70) 5.56(0.68) 5.41(0.75) 5.50(0.66) 5.47(0.68) 5.33(0.71)

MSE 5.55(0.61) 5.45(0.62) 5.50(0.63) 5.48(0.68) 5.45(0.68) 5.45(0.67)

CE 5.57(0.63) 5.56(0.67) 5.44(0.63) 5.43(0.65) 5.48(0.64) 5.44(0.63)

SONAR 12 13 14 15 16 17

Z-EDM 22.2(2.8) 21.8(2.7) 22.1(2.8) 21.7(2.9) 21.7(2.7) 21.9(2.8)

MSE 22.0(3.1) 22.1(2.8) 21.9(2.8) 22.0(3.1) 22.0(2.7) 21.9(2.7)

CE 22.3(2.8) 22.2(2.7) 22.0(2.9) 22.2(2.6) 22.2(2.9) 22.2(2.9)

NEW THYROID 3 7 9 12 14 15

Z-EDM 4.24(1.20) 4.08(1.13) 4.07(1.13) 4.21(1.62) 4.16(1.20) 3.93(1.06)

MSE 4.26(1.24) 4.14(1.23) 4.12(1.23) 4.13(1.23) 4.13(1.17) 4.09(1.20)

CE 4.05(1.14) 3.98(1.05) 3.99(1.06) 3.94(1.04) 3.93(1.12) 3.93(1.06)

Best Z-EDM MSE CE

hid % hid % hid %

WDBC 2 2.46(0.49) 2 2.59(0.45) 2 2.59(0.49)

CTG16 20 15.7(0.7) 20 15.7(0.6) 19 16.0(0.7)

OLIVE 20 5.33(0.71) 15 5.45(0.62) 18 5.43(0.65)

SONAR 16 21.7(2.7) 14 21.9(2.8) 14 22.0(2.9)

THYROID 9 4.07(1.13) 15 4.09(1.20) 15 3.93(1.06)

Table 3. p-values of the Mann-Whitney test for

differences in the best results.
WDBC CTG16 OLIVE SONAR THYROID

CE MSE CE MSE CE MSE CE MSE CE MSE

Z-EDM 0.058 0.026 0.002 0.898 0.371 0.186 0.455 0.663 0.505 0.981

CE - 0.719 - 0.000 - 0.629 - 0.725 - 0.535

in Figure 5 and in the results of Table 2 for NEW THYROID

are not significant.

5 Conclusion

In this paper we present some new developments on the

Zero-Error Density Maximization procedure. One of the

problems encountered before was the need of more training

epochs than the usual MSE or CE. This was understood to

be caused by the scaling factors present in the cost function

and thus a new version is here proposed that eliminates this

problem. We also show that the use of a nonparametric den-

sity estimator in the derivation of the proposed cost function

to substitute the (unknown) true density, does not affect the

optimal solution. This means that we can simply rely on the

data with no a priori information needed about the distri-

bution, while guaranteeing that the optimal solution is pre-

served. The experimental procedure has also shown that

there are types of datasets, such as WDBC, where Z-EDM

can be a valuable alternative in comparison with MSE or

CE. It would be important, in future work, to characterize

these datasets in order to have some practical rule that could

help us to choose the best approach (CE, MSE or Z-EDM)

for each dataset.
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Figure 5. Mean lines of test error obtained in the experimental procedure.


