
Hierarchical Decision Transformer

André Correia and Luı́s A. Alexandre

Abstract— Sequence models in reinforcement learning re-
quire task knowledge to estimate the task policy. This paper
presents the hierarchical decision transformer (HDT). HDT is
a hierarchical behavior cloning algorithm that improves the
performance of transformer methods in imitation learning,
improving their robustness to tasks with longer episodes and/or
sparse rewards, without requiring task knowledge or user
interaction currently present in the state-of-the-art. The high-
level mechanism guides the low-level controller through the task
by selecting sub-goals for the latter to reach. This sequence
replaces the returns-to-go of previous methods, improving its
performance overall, especially in tasks with longer episodes
and scarcer rewards. We validate our method in multiple
tasks of OpenAI Gym, D4RL, and RoboMimic benchmarks.
Our method outperforms the baselines in twenty three out of
thirty one settings of varied horizons and reward frequencies
without prior task knowledge, showing the advantages of the
hierarchical model approach for learning from demonstrations
using a sequence model. We also evaluate the method on a
reaching task on a physical robot.

I. INTRODUCTION

Reinforcement learning (RL) [1] has been successfully
applied to a diverse set of robotic tasks, such as pushing and
grasping objects, path finding and locomotion [2], [3], [4].
However, RL algorithms require large amounts of exploration
to successfully learn policies in large state and action spaces,
which is costly in real-world applications. Additionally,
learning a policy through RL requires specifying a reward
function that is specifically designed to assist in exploration.
Furthermore, RL often relies on dense rewards and struggles
in environments with sparse rewards. However, it is often
difficult to design such reward functions for complex real-
world tasks.

We can alleviate the above-mentioned problems by lever-
aging prior experience collected by an expert demonstrator
as an extra supervision signal using Imitation Learning (IL).
Behavioral cloning (BC) formulates the problem of learning
the task as a supervised learning problem to imitate an expert
demonstrator. Because the demonstrator was optimizing a
reward function, the data set can be used in lieu of a reward
function. However, the performance of the agent is dependent
on the quality of the data set which is often sub-optimal,
unstructured, and diverse due to the difficulty of collecting
data. One way to utilize unstructured prior experience is
to identify key states that contributed to the success of the

*This work was supported by NOVA LINCS (UIDB/04516/2020) with
the financial support of ‘FCT - Fundação para a Ciência e Tecnologia’ and
also through the research grant ‘2022.14197.BD’.

André Correia and Luı́s A. Alexandre are with NOVA LINCS,
Universidade da Beira Interior, R. Marquês de Ávila e Bolama
6201-001, Covilhã, Portugal andre.correia@ubi.pt,
luis.alexandre@ubi.pt

Fig. 1. HDT framework. The high-level mechanism guides the low-level
controller through the task by selecting sub-goal states, based on the history
of sub-goals and states. The low-level controller is conditioned on the history
of past states, sub-goals, and actions to select the appropriate action. By
reaching each sub-goal, the controller gets closer to completing the task.

trajectory. Hierarchical models are used to solve this issue,
where a high-level model identifies sub-goals that the low-
level model must reach, guiding it to the final goal and
consequently solving the task.

Transformer models have revolutionized several machine
learning fields and have recently been applied to RL by
reformulating it as a sequence modeling problem in the form
of decision transformers (DT) [5]. Instead of receiving a
single observation, the agent receives a sequence of past
interactions allowing it to make a more informed decision.
However, the reward sequence is what guides the agent
through the task. The performance of these models relies on
the specification of the value of desired accumulated rewards
as well as dense reward functions. However, the value of the
desired accumulated rewards is non-trivial to determine and
can not be arbitrarily high. The goal of this work is to train
a model to identify key sub-goal states from the data set that
replace the reward sequence.

We propose the Hierarchical Decision Transformer (HDT),
a dual decision transformer architecture that scales trans-
formers in imitation learning to tasks with long episodes
and removes the need for the specification of desired re-
wards by a user. We propose a method for selecting sub-
goal states from the demonstration data set. The high-level
transformer predicts key sub-goal states, identified from the
demonstration data set, based on the sequence of prior states.
The low-level transformer is conditioned on the sequence
of sub-goals to perform the task. By successfully reaching
each sub-goal, the agent completes the task. Unlike the state-
of-the-art DT [5], HDT does not require any prior task
knowledge and user interaction. We conduct experiments on
several tasks from D4RL, OpenAI Gym, and RoboMimic
benchmarks. Our results show that the performance of the



DT is dependent on the careful specification of desired
rewards. We show that HDT successfully replaces the need
for specifying desired rewards with the added benefit of
an increase in performance, particularly in long tasks or
environments with sparse rewards, when compared with the
state-of-the-art.

Summary of Contributions:
1) We present the HDT, a dual transformer framework

that enables offline learning from a large set of diverse
and sub-optimal demonstrations by selectively select-
ing sub-goal states from the data set.

2) We present a method for sampling sub-goal states from
a trajectory. Experiments show that the sequence of
sub-goals can guide the agent through the task in place
of the sequence of returns-to-go.

3) We evaluate the HDT on ten environments and data
sets from the D4RL [6], OpenAI Gym [7] and
RoboMimic [8] benchmarks. We also validate HDT on
a reaching task using a physical robot. Our method out-
performs the original DT baseline, especially in tasks
with longer episodes, proving that the sub-goal se-
quence can replace the reward function. The code can
be found at https://github.com/meowatthemoon/HDT.

II. RELATED WORK

Imitation learning (IL) is a machine learning paradigm that
allows robots to learn tasks from demonstrations performed
by human experts and has been applied to multiple domains
such as playing games, driving autonomously and robotics
[9]. In this section, we provide a summary of some works
related to ours. BC treats imitation learning as a supervised
learning problem, where the problem maps observations into
actions, and the training signal is given by how similar the
actions are to the demonstrator’s [10].

Hierarchical approaches learn a high-level planner and a
low-level controller [11], [12]. The high-level planner finds
a path built with sub-goal states that drive the agent towards
the main task goal by conditioning the low-level controller to
try to achieve each sub-goal. This extra guidance helps the
agent learn in sparse reward environments and long tasks.
Conditioning reinforcement learning and imitation learning
approaches on goal observations improves sample efficiency.

Another approach is to learn an embedding space of skills
from unstructured demonstrations [13] and then train the
policy on the embedding space. Alternatively, complex tasks
can be divided into smaller sub-tasks [14], [12]. Each of
these new sub-tasks is learned from the demonstration data
set and constitutes sub-goals for the agent to reach. [4]
estimates a state distribution, to ensure the sub-goals are part
of reachable states. Other approaches try to generalize new
trajectories from the demonstration data using the insight that
the trajectories intersect at certain states [15]. A particularly
promising approach was proposed, using goal-conditioned
policies at multiple layers of hierarchy for RL [16]. Alterna-
tively, other methods generate sequences of sub-goals with
a divide-and-conquer approach [17].

Sequence modeling with deep networks has evolved from
LSTMs to Transformer architectures with self-attention [18].
The latter have revolutionized many natural language pro-
cessing tasks. Recently, they have been applied to RL by
re-formulating it as a sequence modeling problem [5], [19].
These treat reinforcement learning as a supervised learning
paradigm that predicts action sequences from trajectories and
task specification (e.g., target goal or returns), instead of
traditionally learning Q-functions or policy gradients. DT
[5] is a model-free context-conditioned policy, while the
trajectory transformer [19] is used both as a policy and
model.

III. PRELIMINARIES

A. Reinforcement Learning

We consider learning in a Markov Decision Process
(MDP) described by the tuple (S,A, P,R). The tuple con-
sists of states s ∈ S, actions a ∈ A, the state transition
function P (s′ | s, a) and a reward function r = R(s, a). We
use st, at, and rt = R(st, at) to denote the state, action,
and reward at timestep t, respectively. With sparse rewards,
optimizing the expected discounted reward using RL may be
difficult. Because of this, we augment this MDP with sets
of absorbing goal and sub-goal states G ⊂ S and Sg ⊂ S.
Where each goal state g ∈ G is a state of the world in
which the task is considered to be solved and sg ∈ Sg is
a valuable state of the world that contributes to the success
of the trajectory. A trajectory is a sequence of length N of
states, actions, and rewards: τ = (s1, a1, r1, ..., sN , aN , rN ).
The accumulated rewards of a trajectory Rτ with length N
are:

∑N
t=1 rt. At every step t, the agent observes a state st

and queries the policy π to choose an action at = π(st).
The agent performs the action and observes the next state
st+1 ∼ P (st+1 | st, at) and reward rt = R(st, at). The goal
is to learn a policy π which produces trajectories τ which
maximize the expected return Eπ[Rτ ].

B. Behavior Cloning

In BC, instead of learning from experience by interacting
with the environment, the agent learns solely from the
trajectories present in the demonstration data set. This setting
is harder because it removes the ability for agents to explore
the state space and try different trajectories. We assume there
is access to a data set of trajectories D = {τ1, ..., τN}. In BC
the agent is encouraged to select the action the demonstrator
took for a given state in the data set. A common approach is
to maximize the likelihood of actions in the demonstration,
maxE(s,a)∼D logπ(a | s). Although BC remains one of
the simplest forms of learning tasks from demonstrations, it
comes with several limitations such as compounding errors.
We tackle this particular problem by using a sequence model.
By providing the agent with a history of interactions instead
of a single observation, we aim to reduce the compounding
error of learning from limited data.



C. Decision Transformer

Transformers are a group of architectures that model
sequential data [18]. These are encoder-decoder models built
with blocks of self-attention layers with residual connections.
Due to their success in many natural language processing
tasks, and because RL learns from sequences of trajectories,
[5] created the DT. DT transforms RL into a sequence objec-
tive problem. Instead of processing a single state transition,
the policy receives a sequence of 3 types of input tokens:
(rtg1, s1, a1, ..., rtgN , sN , aN ), corresponding to returns to
go, states and actions. Additionally, the transformer receives
a mask and the sequence of timesteps. The mask is a vector
with as many elements as the length of the sequence. Each
element in the mask indicates if the corresponding token
should be hidden from the transformer. Transformers require
information about the relative position of the tokens in
the sequence. In DT, this information is provided by the
sequence of timesteps.

The policy is trained using the MSE loss, in a similar
manner to BC, to predict the demonstrator’s action. DT feeds
these trajectories through a GPT 2 [20] architecture. During
training, the value of the returns-to-go at timestep t is the
sum of future rewards in the trajectory rtgt =

∑T
t′=t rt′ .

However, during the test time, the full trajectory is not known
to calculate the sum. Because of this, a user specifies a value
for the desired accumulated returns. We performed ablation
studies in Sec. V, and the results show that the DT relies
on the sequence returns-to-go to learn and that the value
of the desired accumulated returns impacts the performance
of the agent. However, determining a good value for the
desired accumulated returns is done through trial and error.
The original DT sets the value to the maximum accumulated
rewards found in the data set. The results in Sec. V show
that this is not optimal, because in some tasks, setting a
lower value resulted in increased performance. Additionally,
in tasks with sparse rewards, where the environment returns
a reward of zero, the value of returns-to-go is not changed
for concurrent transitions. The DT struggles to learn the task
when the value of returns-to-go is static.

Our goal is to replace the sequence of returns-to-go with
a different sequence that does not require human interaction
and knowledge beforehand and is less reliant on frequent
rewards. The sequence should guide the agent through the
task and result in equal or higher performance than the
original DT.

IV. PROPOSED APPROACH

A. Overview

We present the HDT, represented in Fig. 1. HDT is a
hierarchical behavior cloning algorithm that improves the
performance of transformer methods in imitation learning,
improving their robustness to tasks with longer episodes
and/or sparse rewards, without requiring task knowledge or
user interaction currently present in the state-of-the-art.

Here we first provide an overview of HDT and the
motivation of each component. We split the decision-making

Algorithm 1 HDT training algorithm.
Input: Demonstration data set D = {τ1, ..., τN}, batch
size B, token size K, training iterations I , high-level
mechanism πϕ, low-level controller πθ, sub-goal selection
method f .
for i = 1 to I do

s, a, t, sg, mask ← Sample B sequences from D.
sg′ ← πϕ(s, sg, t,mask), obtain sub-goal predictions.
Update ϕ by minimizing Lϕ(sg, sg

′).
a′ ← πθ(s, sg, a, t,mask), obtain action predictions.
Update θ by minimizing Lθ(a, a

′).
end for
return πθ, πϕ

process of the agent into a high-level mechanism that sets
sub-goal states for a low-level controller to try and reach.
We use the GPT 2 [20] transformer architecture, the same
used by the DT [5], for both the high-level mechanism
and the low-level controller. The high-level mechanism is
conditioned on the state sequence and aims to produce sub-
goal states for the low-level controller to reach, guiding it
through the task. The low-level controller is conditioned on
the sequence of sub-goals produced by the high-level model
to predict the correct action.

The algorithm learns solely from demonstration data
present in a data set. The data set is first processed, where
for each state, a sub-goal state is selected from the trajectory
using the sub-goal selection algorithm we present. The
original transition is then augmented with the selected sub-
goal state. Then, both the high-level mechanism and low-
level controller are trained simultaneously using the sampled
batches of sequences. The high-level mechanism receives
sequences of the previous states and sub-goals and tries to
predict the next sub-goal state in the sequence. The low-
level controller receives sequences of the previous states,
sub-goals, and actions, and tries to predict the next action
in the sequence. Because both models are transformers, they
also receive the sequence of time steps and the mask for
positional encoding and to hide the future tokens from the
decoder, respectively.

The complete training loop is provided in Algorithm 1.
We encourage training both models simultaneously to avoid
repeating steps, such as batch sampling. However, because
both models do not rely on data produced by the other
to learn, they can be trained sequentially. Next, we further
explain each component.

B. Sub-Goal Selection

Our method requires sequences of states, actions, time
steps, and sub-goals. To obtain these sequences, it processes
the demonstration data set before training. The sequences
of states, actions, and time steps can be directly extracted
from the data set. However, the sub-goal sequences are not
explicitly present in the data set and must be inferred. We
define sub-goals sg in regards to the current state st as later
states in the trajectory, which are highly valuable for the



agent to reach. These states should mark milestones in the
trajectory which when reached sequentially, would make it
highly probable that the agent successfully performs the task.

Using this definition, the sub-goals guide the agent through
the task, meaning they have the same purpose as the returns-
to-go. Therefore, we replace the returns-to-go sequences with
the sub-goal sequences. This way, the user does not need to
iterate over the value of the desired returns for each task in
order for the method to perform. Additionally, it replaces
null rewards in tasks with sparse rewards, consequently
improving the learning process. We perform experiments to
show that the original DT is dependent on the returns-to-go
sequences to learn and that the value of the desired returns
is important.

By our definition, a sub-goal state sg has a high value for
the success of the trajectory. We can model this behavior by
finding a future state sj in the trajectory with high values
of accumulated rewards since the current state W (sj) =∑j

k=i+1 rk. However, this would always prioritize the last
states of the trajectory. To encourage selecting states close
to the current state, we divide the accumulated rewards by
the distance between the states: W (sj) =

∑j
k=i+1

rk
j−i .

The weighted average of the accumulated rewards in a
sub-trajectory identifies sub-goal states that have correctly
completed a part of the task resulting in a significant reward,
without always selecting far away states, by punishing the
length of the sub-trajectory. For each state-action pair, we
select the state with the highest associated weight to be the
sub-goal. The result is a data set of M trajectories D =
{τ1, ..., τM}, where each trajectory τj = {(si, ai, sgi), i ∈
N}, where N is the length of the trajectory.

C. Low-Level Controller

The low-level controller is a goal-conditioned transformer
πθ. Similar to DT [5], we model the demonstration trajec-
tories as sequences of tokens for the transformer to learn
from. The low-level controller receives sequences of states,
actions, and sub-goals and tries to predict the next action.
During training, sequences of size K are randomly sampled
in a batch from the enhanced data set, where K indicates the
number of tokens in a sequence. The low-level transformer
is trained to minimize the Behavioral Cloning loss:

Lθ(st:t+K , at:t+K , sgt:t+K) = ∥at:t+K − πθ(st:t+K , at:t+K , sgt:t+K)∥ (1)

In practice, this corresponds to calculating the mean
squared error between the generated action and the action
in the data set. For each sequence, the model also receives
the respective token time steps for positional encoding and
a mask to hide the future tokens from the decoder. We do
not include them in the formulas for simplicity. At test time,
the sequences are built by keeping a history of past states,
actions, and time steps from the environment and past sub-
goals selected from the high-level mechanism. Hence, the
new sequence model does not require any task knowledge to
be provided by a user.

TABLE I
MAXIMUM ACCUMULATED RETURNS OF THE ORIGINAL DT AND OF A

DT VARIANT WITHOUT THE DESIRED RETURNS INPUT SEQUENCE

TRAINED FOR 100 THOUSAND ITERATIONS.

Task Data Set Desired
Return

Original
DT

DT w/o
Desired Returns

Half-Cheetah medium
2655 5095 47
5309 5092 47

10000 4953 47

Hopper medium
1611 2303 300
3222 2557 300

10000 2036 300

Kitchen complete
2 2.4 1.0
4 2.5 1.0

10000 2.1 1.0

Walker-2D medium
2113 3619 149
4227 3711 149

10000 3100 149

D. High-Level Mechanism

The high-level mechanism chooses sub-goal states for the
low-level controller to try and reach. It is a state-conditioned
transformer πϕ. The high-level mechanism receives the se-
quence of states, past sub-goals, time steps, and a mask. The
mechanism aims to predict the next sub-goal state which
will help the low-level controller succeed in the task. During
training, the high-level mechanism is trained to minimize its
own Behavioral Cloning loss:

Lϕ(st:t+K , sgt:t+K) = ∥sgt:t+K − πϕ(st:t+K , sgt:t+K)∥ (2)

In practice, this corresponds to calculating the mean
squared error between the generated sub-goal state and the
ground-truth sub-goal state in the data set.

V. EXPERIMENTS

In this section, we evaluate the performance of the HDT
and compare it with the state-of-the-art method, DT [5],
and BC baseline. We evaluate the models on ten tasks
from OpenAI Gym [7], D4RL [6] and RoboMimic [8]
benchmarks. The tasks range from short episodes to long
episodes and from frequent rewards to sparse reward settings.
We train the algorithms on the different data sets provided
by the benchmarks for each task. For DT, we first find the
maximum accumulated returns collected by a trajectory in
the demonstration data set. We then set the desired returns to
this value and also to half, following the original tests of DT.
We train each model for 100 thousand epochs, using batch
sizes of 64, a learning rate of 1e−4, and a sequence length of
20 tokens. To reduce the impact of outliers and because the
episodes are seed-dependent, for every one thousand epochs
we validate the model on 100 episodes and calculate the
average accumulated rewards. In the tables, we present the
highest average accumulated rewards seen throughout the
100 thousand epochs.

A. Does DT rely on desired returns?

One of the motivations of our work is to remove the
requirement of specifying the value of the desired returns



TABLE II
MAXIMUM ACCUMULATED RETURNS OF THE HDT AND OF A HDT

VARIANT INCLUDING THE DESIRED RETURNS INPUT SEQUENCE

TRAINED FOR 100 THOUSAND ITERATIONS.

Task Data Set Desired
Return HDT HDT with

Desired Returns

Half-Cheetah medium 2655 5205 5004
5309 5205 5002

Hopper medium 1611 3071 1213
3222 3071 1198

Kitchen complete 2 2.6 2.1
4 2.6 1.4

Walker 2D medium 2113 3879 3645
4227 3879 3516

in transformer models in imitation learning, which is present
in the state-of-the-art, DT. We first need to know whether the
DT truly depends on the returns-to-go sequence to perform or
if they can simply be removed from the model’s input. Table
I shows the accumulated returns obtained by the original DT
model and by a DT model variant without the desired returns
sequence. For the original DT, we set the value of the desired
returns for the task to the maximum value of accumulated
rewards present in the data set and to half of this value. We
also set the value of the desired return to an arbitrarily high
value, for example 10000.

The results in Table. I show that the DT model is depen-
dent on the returns-to-go sequence to perform. Removing
them prevents DT from learning the task. Additionally, it also
shows that the value of the desired returns is not obvious.
Because DT only reaches the desired return of half of the
maximum value on the kitchen task. Then, when doubling
the value of the desired returns, it only slightly increases the
performance. Lastly, when using an arbitrarily high value,
DT underperforms. In conclusion, the value of the desired
returns is crucial for the performance of the DT model while
being non-trivial to determine. This means that the state-of-
the-art transformer model in imitation learning relies on task
knowledge and user interaction to perform.

B. Does HDT replace the need for desired returns?

Next, we test whether the high-level mechanism, by select-
ing sub-goals, replaces the need for the sequence of desired
returns, in regards to guiding the agent through the task.
We test this hypothesis by adding the sequences of desired
returns as an extra input to the low-level controller and
compare the performance with our base method without this
extra input. Similarly to the previous experiment, we test the
performance by setting the value of the desired returns to the
maximum accumulated reward present in the data set and to
half of this value. Table II shows the accumulated returns
obtained by our base HDT model and by the HDT model
variant with the extra sequence of desired returns.

The results show that HDT performs slightly better with-
out the desired returns sequence. This means that the high-
level mechanism is able to output sub-goal states from the
history of past states. Moreover, such generated sequences
are capable of guiding the low-level controller through

the task successfully replacing the need for the sequence
returns-to-go. Consequently, HDT removes the requirement
for external knowledge about the specific task present in DT.

C. Baseline Comparison

Next, we compare the performance of HDT on ten tasks
against DT and BC baselines and present the results in Table
III. For BC, we used an MLP with two fully connected lay-
ers. Because the three methods clone the behavior present in
the data set, their performance is limited by the quality of the
demonstrations. Hence, we include the average accumulated
rewards collected by the demonstrator in the data set. HDT
outperforms the baselines in twenty three out of thirty one
settings. This means that our method successfully improved
upon the original DT in raw performance while also remov-
ing its dependency on desired reward specification, making it
task-independent. Particularly, the Maze 2D constitutes a task
with sparse rewards where on average 90% of the transitions
receive no reward. Similarly, in the kitchen task, the agent
only receives a reward after completing each of the four
sub-tasks. However, the data sets for the Kitchen task are
augmented to include extra rewards. HDT vastly outperforms
the baselines in the Maze 2D task and also outperforms the
baselines in the kitchen task. This shows that the sequence of
sub-goals provides a stronger guiding signal for the model
than the sequence of returns-to-go. This means that HDT
is more robust to tasks with sparse rewards. For tasks with
longer horizons, such as half-cheetah and walker 2D, HDT
also surpasses the two baselines. The discrepancy between
the transformer methods and BC is more prominent in these
types of tasks. We conclude that our method offers superior
performance overall, and is more robust to both long and
sparse-reward tasks.

D. UR3 Reaching Task

We evaluate HDT by performing an experiment on a
physical UR3 robot performing a reaching task. We defined
five positions that the robot must reach in any sequence.
A state is defined by the six joint angles and a one hot-
encoded vector representing the goal positions reached. An
action is the translation of the angle of each joint, and the
reward is the negative absolute error between the angles of
the current joints and the nearest goal position. We generated
100 demonstrations, each starting the robot at a random
position and teleoperating the robot through the sequence
of goal positions. 80 of the demonstrations are used for
training the methods, and 10 for validation. We also evaluate
the performance of the algorithms when trained with fewer
demonstrations. The remaining 10 demonstrations are used
for setting the robot’s initial position during the test phase.
During testing, we run the algorithms for a maximum of 200
steps and measure the number of goal positions reached. The
results are presented in Table IV. Results show that HDT
reaches the five goal positions on all 10 initial positions
when trained with 70 demonstrations. DT is never able
to consistently reach the five positions. Moreover, HDT
consistently outperforms DT when trained with the same



TABLE III
MAXIMUM ACCUMULATED RETURNS OF THE HDT COMPARED TO DT

AND BC BASELINES. WE TEST THE MODELS ON TEN TASKS FROM D4RL
[6], OPENAI GYM [7], AND ROBOMIMIC [8] BENCHMARKS AND

VARYING DEMONSTRATION DATA SETS.

Task Data set Data Avg. BC DT HDT

Ant
expert 4621 5261 5319 5365

medium 3051 3952 3943 3993
replay 390 3244 3624 3325

Door
cloned 304 -53 758 275
expert 2915 -53 3053 3056
human 796 363 459 338

Half-Cheetah
expert 10656 10549 10984 11092

medium 4770 5198 5095 5205
replay 3093 0 4567 4412

Hammer
cloned 786 -202 118 775
expert 12393 16399 16492 16507
human 3072 50 -68 3115

Hopper
expert 3511 3467 3626 3654

medium 1422 1969 2557 3071
replay 467 1017 2762 1169

Kitchen
complete 325 0.8 2.5 2.6

mixed 302 0.6 2.1 2.7
partial 255 0.6 2.7 2.7

Maze 2D

large 2 126 31 145
medium 4 37 68 188

open 6 72 57 75
umaze 7 49 54 228

Pen
cloned 3334 1561 3716 3961
expert 3297 2540 4551 4696
human 6326 867 3606 3897

Relocate
cloned 1223 3 50 58
expert 4329 3730 4697 4624
human 3674 232 35 35

Walker 2D
expert 4921 4261 5063 5065

medium 2852 3723 3711 3879
replay 896 876 3627 3325

Count: 1 8 23

TABLE IV
NUMBER OF GOAL POSITIONS ACHIEVED BY HDT AND DT ON UR3

REACHING TASK, VARYING THE NUMBER OF TRAIN DEMONSTRATIONS.

Train
Demos 10 20 30 40 50 60 70 80

HDT 1.4 ±1.6 2.7 ±2.3 2.3 ±2.3 3.6 ±2.2 4.4 ±1.3 4.5 ±1.5 5 ±0 5 ±0
DT 2.1 ±1.2 0.3 ±0.6 1 ±2 3.2 ±2.1 2.6 ±2.4 1.5 ±2.3 3 ±2.4 4.5 ±1.5

number of demonstrations. This shows that HDT can be
applicable to tasks using a physical robot and improves the
performance over DT, especially in long-horizon tasks, while
not requiring human intervention.

VI. CONCLUSIONS

In this work, we introduced HDT, a hierarchical trans-
former model. We show that the state-of-the-art DT relies
on the sequence of returns-to-go to perform. This sequence
requires precise specification of the value of the desired
accumulated rewards, which is non-trivial to determine. By
replacing the sequence of returns-to-go with a sub-goal selec-
tion method, we achieved a fully task-independent model that
outperforms DT and BC baselines in various tasks. Notably,
HDT is more robust to longer episodes and sparse rewards,
making it suitable for real-world applications.

Our experimental results demonstrate the effectiveness
of HDT on three benchmarks and a reaching task with a

real-world robot. HDT achieved higher accumulated rewards
compared to DT and BC in most tasks and reached a higher
number of positions in the reaching task. Future work will
explore different architectures for both models to further
improve their performance. Our findings suggest that using
a hierarchical transformer model with a sub-goal selection
method can enhance the performance of learning methods
and facilitate their application to complex tasks.

REFERENCES

[1] Sutton, R. & Barto, A. Reinforcement Learning: An Introduction. A
Bradford Book. (2018)

[2] Hansen, N., Su, H., Wang, X. Stabilizing deep q-learning with con-
vnets and vision transformers under data augmentation. Advances In
Neural Information Processing Systems. 34 (2021)

[3] Yu, T., Kumar, A., Chebotar, Y., Hausman, K., Levine, S., Finn, C.
Conservative data sharing for multi-task offline reinforcement learning.
Advances In Neural Information Processing Systems. 34 (2021)

[4] Chane-Sane, E., Schmid, C., Laptev, I. Goal-conditioned reinforce-
ment learning with imagined subgoals. International Conference On
Machine Learning. pp. 1430-1440 (2021)

[5] Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M.,
Abbeel, P., Srinivas, A., Mordatch, I. Decision transformer: Reinforce-
ment learning via sequence modeling. Advances In Neural Information
Processing Systems. 34 (2021)

[6] Fu, J., Kumar, A., Nachum, O., Tucker, G., Levine, S. D4RL: Datasets
for Deep Data-Driven Reinforcement Learning. (2020)

[7] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., Zaremba, W. Openai gym. ArXiv Preprint ArXiv:1606.01540.
(2016)

[8] Mandlekar, A., Xu, D., Wong, J., Nasiriany, S., Wang, C., Kulkarni,
R., Fei-Fei, L., Savarese, S., Zhu, Y., Martı́n-Martı́n, R. What matters
in learning from offline human demonstrations for robot manipulation.
ArXiv Preprint ArXiv:2108.03298. (2021)

[9] Argall, B., Chernova, S., Veloso, M., Browning, B. A survey of robot
learning from demonstration. Robotics And Autonomous Systems. 57,
469-483 (2009)

[10] Ross, S., Gordon, G., Bagnell, J. A Reduction of Imitation Learning
and Structured Prediction to No-Regret Online Learning. (2011)

[11] Mandlekar, A., Ramos, F., Boots, B., Savarese, S., Fei-Fei, L., Garg,
A., Fox, D. : Implicit reinforcement without interaction at scale for
learning control from offline robot manipulation data. 2020 IEEE
International Conference On Robotics And Automation (ICRA). pp.
4414-4420 (2020)

[12] Krishnan, S., Garg, A., Liaw, R., Thananjeyan, B., Miller, L., Pokorny,
F., Goldberg, K. SWIRL: A sequential windowed inverse reinforce-
ment learning algorithm for robot tasks with delayed rewards. The
International Journal Of Robotics Research. 38, 126-145 (2019)

[13] Pertsch, K., Lee, Y., Lim, J. Accelerating reinforcement learning with
learned skill priors. ArXiv Preprint ArXiv:2010.11944. (2020)

[14] Paul, S., Vanbaar, J., Roy-Chowdhury, A. Learning from trajectories
via subgoal discovery. Advances In Neural Information Processing
Systems. 32 (2019)

[15] Mandlekar, A., Xu, D., Martı́n-Martı́n, R., Savarese, S., Fei-Fei,
L. Learning to generalize across long-horizon tasks from human
demonstrations. ArXiv Preprint ArXiv:2003.06085. (2020)

[16] Nachum, O., Gu, S., Lee, H., Levine, S. Data-efficient hierarchical
reinforcement learning. Advances In Neural Information Processing
Systems. 31 (2018)

[17] Pertsch, K., Rybkin, O., Ebert, F., Zhou, S., Jayaraman, D., Finn,
C., Levine, S. Long-horizon visual planning with goal-conditioned
hierarchical predictors. Advances In Neural Information Processing
Systems. 33 pp. 17321-17333 (2020)

[18] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A., Kaiser, Ł., Polosukhin, I. Attention is all you need. Advances In
Neural Information Processing Systems. 30 (2017)

[19] Janner, M., Li, Q., Levine, S. Offline Reinforcement Learning as One
Big Sequence Modeling Problem. Advances In Neural Information
Processing Systems. 34 (2021)

[20] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.,
Others Language models are unsupervised multitask learners. OpenAI
Blog. 1, 9 (2019)


