
Improving Performance on Problems with Few
Labelled Data by Reusing Stacked Auto-Encoders

Telmo Amaral∗, Chetak Kandaswamy∗, Luís M. Silva∗†, Luís A. Alexandre‡, Joaquim Marques de Sá∗¶, Jorge M. Santos∗§
∗Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Portugal. Email: tga@fe.up.pt

†Departamento de Matemática, Universidade de Aveiro, Portugal. Email: lmas@ua.pt
‡Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal

¶Dep. de Engenharia Electrotécnica e de Computadores, Fac. de Engenharia da Univ. do Porto, Portugal
§Departamento de Matemática, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Portugal

Abstract—Deep architectures have been used in transfer
learning applications, with the aim of improving the performance
of networks designed for a given problem by reusing knowledge
from another problem. In this work we addressed the transfer
of knowledge between deep networks used as classifiers of digit
and shape images, considering cases where only the set of class
labels, or only the data distribution, changed from source to target
problem. Our main goal was to study how the performance of
knowledge transfer between such problems would be affected by
varying the number of layers being retrained and the amount
of data used in that retraining. Generally, reusing networks
trained for a different label set led to better results than reusing
networks trained for a different data distribution. In particular,
reusing for less classes a network trained for more classes was
beneficial for virtually any amount of training data. In all cases,
retraining only one layer to save time consistently led to poorer
performance. The results obtained when retraining for upright
digits a network trained for rotated digits raise the hypothesis
that transfer learning could be used to better deal with image
classification problems in which only a small amount of labelled
data is available for training.

Keywords—transfer learning; deep learning; artificial neural
networks

I. INTRODUCTION

Deep architectures, such as neural networks with two or
more hidden layers, are a class of networks that comprise
several levels of non-linear operations, each expressed in terms
of parameters that can be learned [1]. The organisation of
the mammal brain into processing stages that correspond to
different levels of abstraction, as well as the way in which
humans organise their ideas hierarchically, are among the main
motivations for the use of such architectures. Nevertheless, un-
til 2006, attempts to train deep architectures generally resulted
in poorer performance than that achieved by shallow networks.
A breakthrough took place with the introduction by Hinton
et al. [8] of the deep belief network, whose hidden layers are
initially treated as restricted Boltzmann machines (RBMs) and
pre-trained, one at a time, in an unsupervised greedy approach.
This pre-training procedure was soon generalised to rely on
machines easier to train than RBMs, such as auto-encoders
[10].

This work was financed by FEDER funds through the Programa Opera-
cional Factores de Competitividade - COMPETE and by Portuguese funds
through FCT - Fundação para a Ciência e a Tecnologia in the framework of
the project PTDC/EIA-EIA/119004/2010.

The goal of transfer learning is to reuse knowledge as-
sociated with a source problem to improve the learning of
the classification function associated with a target problem
[11]. The source and target problems may differ, for example,
as to the data distributions, or they may involve different
sets of classes. A common approach to transfer learning is
that of transferring representations that were learned from
one problem onto another problem. Bruzzone and Marconcini
[3], for example, have explored novel ways of transferring
knowledge across support vector machines (SVMs) trained for
different domains.

More recently, deep architectures have been used in transfer
learning settings, as discussed by Bengio et al. [2, Section
2.4] and Deng and Yu [5, Chapter 11]. Glorot et al. [6], for
example, used a deep network to learn highly generic feature
representations from a source domain, then trained SVMs to
conduct recognition on a different domain while using the
same representations. Possibly the closest works to ours found
in existing literature are the cross-lingual speech recognition
experiments recently reported by Huang et al. [9] and by
Heigold et al. [7], though with important differences: in both
cases the problems at hand were not of image classification;
the source and target problems differed in terms of both
the set of class labels and the data distribution; and stacked
auto-encoders were not employed. In addition, the work of
Heigold et al. did not involve unsupervised pre-training of
source networks or variations in the amount of data used to
train target networks. Related work on character recognition,
such as that of Ciresan et al. [4], typically involves changes in
both the data distribution and the label set.

In this work, we explored the transfer of knowledge be-
tween deep networks designed to classify images of digits.
We aimed to limit the differences between source and target
problems by considering only two types of cases: either the set
of class labels changed, while the underlying data distribution
remained the same; or the label set remained fixed, while the
data distribution changed. Our main goal was to study in a sys-
tematic way how the performance of transfer learning on such
problems would be affected by varying the number of layers
being retrained and, simultaneously, varying the amount of data
available for retraining. In each experiment, we pre-trained
without supervision and fine-tuned with supervision a network,
using labelled data associated with the source problem; then
we retrained with supervision selected layers from that network
(while keeping the other layers untouched), using labelled data



available for the target problem, to obtain a new network.
Our results are pertinent for situations in which few labelled
data exist for the target problem (even if a large amount of
unlabelled data happen to be available, for example to be used
in unsupervised pre-training).

II. STACKED AUTO-ENCODERS

The auto-encoder (AE) is a simple network that tries to
produce at its output what is presented at the input. The basic
AE is in fact a simple neural network with one hidden layer
and one output layer, subject to two restrictions: the number
of output neurons is equal to the number of inputs; and the
weight matrix of the output layer is the transposed of the
weight matrix of the hidden layer (that is, the weights are
clamped). The values of the hidden layer neurons are called
the encoding, whereas the values of the output neurons are
called the decoding. Unsupervised learning of the weights and
biases of AEs can be achieved by gradient descent, based on
a training set of input vectors.

Consider a network designed for classification, with a layer
of inputs, two or more hidden layers, and a softmax output
layer with as many units as classes. The hidden layers of such
a network can be pre-trained one at a time in an unsupervised
way. Each hidden layer is “unfolded” to form an AE. Once that
AE has learned to reconstruct its own input, its output layer
is no longer needed and its hidden layer becomes the input to
the next hidden layer of the network. The next hidden layer
is in turn pre-trained as an individual AE and the process is
repeated until there are no more hidden layers. A deep network
pre-trained in this fashion is termed a stacked auto-encoder
(SAE).

The goal of unsupervised pre-training is to bring the net-
work’s hidden weights and biases to a region of the parameter
space that constitutes a better starting point than random
initialisation, for a subsequent supervised training stage. In
this context, the supervised training stage is usually called
fine-tuning and can be achieved by conventional gradient
descent, based on a training set of input vectors paired with
class labels. The output layer weights are randomly initialised
and learned only in the fine-tuning stage.

III. TRANSFER LEARNING

Let X be a random variable whose probability distribution
is P (X) and whose realisation values are data samples, each
represented for example as a vector x of raw pixel values; and
let Ω be a set of class labels, for example Ω={odd, even}.
A classification problem involves learning a classification
function that assigns data samples from P (X) to labels in
Ω. Given a source classification problem associated with data
distribution PS(X) (or PS for short) and label set ΩS , and a
target problem associated with distribution PT and label set
ΩT , such that PS 6=PT or ΩS 6=ΩT or both, the aim of transfer
learning is to help to learn the classification function associated
with the target problem by using knowledge from the source
problem. In other words, the aim is to learn a function that
performs better than would be possible by learning “from
scratch”, i.e. using only knowledge from the target problem.

In all transfer learning experiments carried out in this
work, the difference between the source problem and the
target problem lay only on the label set or only on the

probability distribution, i.e. either ΩS 6=ΩT and PS=PT , or
ΩS=ΩT and PS 6=PT . Our approach consisted in pre-training
and fine-tuning a network to classify data sampled from the
source distribution into the source label set, then partially
retraining that network to classify data sampled from the target
distribution into the target label set. In order to partially retrain
a source network, we selected one or more of its layers and
fine-tuned them using labelled training data available for the
target problem. When retraining a layer in this way, the weights
and biases from the source network were used as initial values
(except, of course, for the output layer in cases where the
number of classes changed, implying the rebuilding of that
layer from scratch). The main goal of this work was to study
the impact, on the performance of transfer learning, of varying
the amount of training data associated with the target problem
as well as the number of retrained layers.

In a recent survey, Pan and Yang [11] define a number
of transfer learning settings, depending on how the source and
target problems differ. For each setting, they further define one
or more possible approaches, depending on how the transfer
of knowledge is achieved. In our work, the experiments
in which the set of class labels changed correspond to an
inductive setting, whereas the experiments in which the data
distribution changed can be seen as a variant of transductive
setting (though in our case only labelled data were used). The
approach we took to both these settings was that of transferring
sets of parameters associated with learned representations (i.e.
the actual weights and biases from a network trained for the
source problem).

IV. EXPERIMENTS AND RESULTS

A. Data

Our experiments involved nine datasets of images, whose
numbers of training, validation and test instances are shown
in Table I. All datasets were balanced across classes, and
all samples corresponded to a vector containing 28×28=784
real-valued pixel intensities. The first dataset consisted of
samples from a distribution Pu of images representing upright
handwritten digits in MNIST format1, each assigned to a
label from the set Ω09={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. A second
set contained different samples from the same Pu distribution,
each assigned to a label from the set Ωoe={odd, even}. A
third set consisted of samples from a distribution Pr of images
representing handwritten digits in MNIST format subjected to
a random rotation, each labelled using Ω09. A fourth dataset
contained samples from a distribution Pm of synthesised
machine-printed digits, each labelled using Ω09. This set was
then split into two halves, one keeping the labels from Ω09,
the other labelled using Ωoe. All digit data originated from the
mnist-basic and mnist-rot sets provided by the LISA lab2

and from the Chars74K set provided by Microsoft Research
India3. A seventh dataset contained samples from a distribu-
tion Pc of canonical shapes, each assigned to a label from
Ω02={ellipse, rectangle, triangle}; the term canonical means
that all ellipses were circles, all rectangles were squares, and
all triangles were equilateral. An eighth dataset consisted of

1See http://yann.lecun.com/exdb/mnist/.
2See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/

MnistVariations.
3See http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/.



Table I. NUMBER OF INSTANCES AVAILABLE FOR EACH DATASET.
ALSO SHOWN IS THE PERCENT AVERAGE CLASSIFICATION TEST ERROR (ε)

OBTAINED WITH A SOURCE NETWORK TRAINED USING EACH DATASET.
dataset # Instances ε
Sampled from Labelled using Training Validation Test
Pu Ω09 5000 1000 25000 05.9 (0.2)
Pu Ωoe 5000 1000 25000 03.4 (0.2)
Pr Ω09 5000 1000 25000 20.8 (0.5)
Pm Ω09 5000 1000 04160 02.3 (0.2)
Pm Ω09 2500 0500 02080 03.4 (0.3)
Pm Ωoe 2500 0500 02080 02.1 (0.2)
Pc Ω02 5000 1000 10000 05.7 (4.9)
Pn Ω02 5000 1000 10000 06.7 (4.5)
Pn Ω01 5000 1000 10000 04.5 (4.0)

samples from a distribution Pn of non-canonical (i.e. generic)
shapes, each labelled using Ω02. A final dataset contained sam-
ples from Pn, each labelled using Ω01={round,with corners},
where “round” stands for elliptical shapes and “with corners”
stands for rectangles and triangles. Shape data originated from
the Baby AI Shapes dataset made available by the LISA
lab4.

B. Network Architecture

The networks we used in experiments with digit data
had two hidden layers, with 100 units each, and an output
layer appropriate to the number of classes being considered.
The networks used with shape data had three hidden layers
also with 100 units each. All hidden layers were pre-trained
as auto-encoders via gradient descent, the cross-entropy cost
function, and a learning rate of 0.001. Pre-training ran for
a minimum of 15 epochs in the case of digit data, and
for a minimum of 40 epoch when using shape data. The
complete networks were fine-tuned via gradient descent, using
the cross-entropy cost function and a learning rate of 0.1. Fine-
tuning ran until the validation error did not decrease for 50
epochs, in the case of digit data, and for exactly 1000 epochs
when using shape data. Our code for experiments with digit
data was based on an implementation of stacked auto-encoders
originally developed by Hugo Larochelle, using the MLPython
library5; this code ran on an Intel Core i7-950 CPU, using a
pool of six parallel processes and enough physical memory to
prevent swapping. Code for experiments with shape data was
based on the Theano library6 and ran with the help of an Asus
GTX 770 GPU.

C. Source Networks

Each of the datasets presented in Section IV-A was used
to train a network to be used as source in subsequent exper-
iments. These source networks were always trained using all
the available training and validation data. Table I shows the
average and standard deviation of the classification test error
obtained with each network.

D. Changing the Set of Class Labels

In this section we address experiments whose source and
target problems differed (only) in terms of the class label set.
In a first set of experiments, we defined the target problem
as that of classifying samples of handwritten upright digits
(Pu) into ten classes (Ω09={0, ..., 9}). We started by training a

4See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/
BabyAIShapesDatasets.

5See http://www.dmi.usherb.ca/~larocheh/mlpython/.
6See http://deeplearning.net/software/theano/.

Figure 1. Results when classifying handwritten upright digits into ten classes
by reusing a network trained for two classes: average classification test error
(ε) and average total training time (t, in seconds), for different amounts (N )
of data used to train the target network and for different numbers of retrained
layers.

number of target networks “from scratch” (i.e. without reusing
anything) for different numbers of training plus validation
samples (N ). The average classification test errors (ε) obtained
over 20 repetitions are shown in the first row of Table II and
are also plotted as the thick black line in Fig. 1a, along with
standard deviation bars.

We then trained another series of target networks, for the
same values of N , this time reusing the source network trained
to classify samples of upright digits into odd and even (Ωoe).
In other words, we aimed to classify into ten classes by reusing
a source network trained for only two (though related) classes.
Each target network was initialised using the weights and
biases from the source network, then the two hidden layers
were left untouched, while the output layer was retrained with
supervision. This procedure is denoted as [0,0,1] in the second
row of Table II, where the results are shown. Two additional
rows of results are included: for the case where the first hidden
layer was left untouched while both the second hidden layer
and the output layer were retrained, denoted as [0,1,1]; and
for the case where all three layers were retrained, denoted as
[1,1,1]. These results are also plotted in Fig. 1a. In Table II,
the lowest error obtained for each value of N is shown in
boldface.

Our purpose was to investigate whether retraining only
the output layer would be sufficient to successfully adapt the
network to the new set of class labels, then try retraining
increasingly more layers towards the input. It should be noted
that the retraining procedure differed slightly depending on
the type of layer it was applied to. When the output layer
was retrained, it had to be rebuilt to match the new num-
ber of classes, then randomly initialised and fine-tuned. But,
when a hidden layer was retrained, the weights and biases



Table II. CHANGING THE SET OF CLASS LABELS: PERCENT AVERAGE CLASSIFICATION TEST ERROR (ε), FOR DIFFERENT AMOUNTS (N ) OF DATA USED
TO TRAIN THE TARGET NETWORK AND FOR DIFFERENT COMBINATIONS OF: TARGET DATA DISTRIBUTION (PT ); TARGET LABEL SET (ΩT ); SOURCE

DISTRIBUTION (PS ); SOURCE LABEL SET (ΩS ); AND RETRAINED LAYERS. STANDARD DEVIATIONS SHOWN IN PARENTHESES.
PT ΩT PS ΩS Retrained N

layers 150 300 450 600 900 1200 1500 1800 2400 3000 6000
Pu Ω09 27.3 (1.0) 18.9 (0.9) 13.3 (0.4) 11.6 (0.4) 9.3 (0.1) 8.7 (0.3) 7.8 (0.2) 5.9 (0.2)
Pu Ω09 Pu Ωoe [0,0,1] 16.6 (1.3) 14.2 (1.1) 12.1 (0.6) 11.4 (0.6) 10.6 (0.5) 10.1 (0.4) 9.8 (0.4) 9.0 (0.6)
Pu Ω09 Pu Ωoe [0,1,1] 15.5 (1.6) 11.8 (0.8) 10.6 (0.8) 9.7 (0.6) 8.3 (0.4) 8.1 (0.4) 7.4 (0.5) 5.9 (0.2)
Pu Ω09 Pu Ωoe [1,1,1] 15.4 (1.9) 12.1 (1.3) 10.6 (1.0) 9.6 (0.4) 8.3 (0.3) 8.0 (0.4) 7.4 (0.4) 5.8 (0.2)
Pm Ω09 29.5 (4.0) 11.6 (1.6) 8.7 (0.7) 7.3 (0.4) 6.3 (0.4) 5.2 (0.2) 4.8 (0.3) 3.4 (0.3)
Pm Ω09 Pm Ωoe [0,0,1] 12.3 (1.4) 9.7 (0.8) 9.2 (1.5) 9.0 (0.8) 8.7 (1.3) 7.4 (1.0) 6.6 (0.7) 5.6 (0.4)
Pm Ω09 Pm Ωoe [0,1,1] 11.3 (1.7) 9.0 (0.7) 8.1 (1.2) 7.8 (0.9) 6.7 (0.9) 5.6 (0.6) 5.3 (0.4) 3.9 (0.4)
Pm Ω09 Pm Ωoe [1,1,1] 11.3 (1.5) 8.6 (0.6) 7.6 (0.9) 6.9 (0.9) 5.7 (0.3) 5.0 (0.4) 4.7 (0.5) 3.4 (0.2)
Pu Ωoe 17.3 (0.7) 8.7 (0.5) 7.1 (0.5) 6.3 (0.5) 5.2 (0.3) 4.8 (0.2) 4.6 (0.3) 3.4 (0.2)
Pu Ωoe Pu Ω09 [0,0,1] 9.4 (1.2) 7.5 (0.7) 6.9 (0.7) 6.8 (0.9) 6.1 (0.4) 7.6 (1.4) 5.6 (0.5) 6.4 (0.9)
Pu Ωoe Pu Ω09 [0,1,1] 8.5 (1.0) 5.6 (0.8) 4.7 (0.4) 4.3 (0.3) 4.2 (0.4) 3.8 (0.3) 3.6 (0.2) 3.1 (0.2)
Pu Ωoe Pu Ω09 [1,1,1] 9.2 (1.0) 6.0 (0.9) 4.9 (0.2) 4.6 (0.5) 4.2 (0.2) 3.8 (0.1) 3.7 (0.2) 3.0 (0.2)
Pm Ωoe 10.3 (0.0) 8.7 (0.6) 7.3 (1.4) 5.5 (0.6) 3.8 (0.2) 3.5 (0.4) 3.1 (0.3) 2.1 (0.2)
Pm Ωoe Pm Ω09 [0,0,1] 6.5 (1.9) 4.7 (1.0) 3.5 (0.9) 3.0 (0.5) 2.8 (0.4) 2.9 (0.3) 2.7 (0.3) 3.2 (0.6)
Pm Ωoe Pm Ω09 [0,1,1] 6.4 (2.2) 4.6 (0.8) 3.4 (0.6) 2.7 (0.3) 2.3 (0.3) 2.4 (0.3) 2.3 (0.3) 1.8 (0.4)
Pm Ωoe Pm Ω09 [1,1,1] 6.6 (2.0) 4.5 (0.6) 3.4 (0.6) 2.7 (0.3) 2.4 (0.3) 2.3 (0.3) 2.2 (0.3) 1.7 (0.2)
Pn Ω01 22.5 (3.1) 15.3 (5.1) 15.0 (7.9) 7.9 (3.5) 9.8 (4.8) 9.2 (6.5) 8.4 (5.1) 4.5 (4.0)
Pn Ω01 Pn Ω02 [0,0,0,1] 5.9 (3.0) 5.7 (2.9) 5.4 (3.6) 5.4 (3.7) 4.8 (2.6) 4.8 (2.6) 4.6 (2.5) 4.5 (2.4)
Pn Ω01 Pn Ω02 [0,0,1,1] 5.7 (3.0) 5.2 (2.7) 5.3 (3.8) 5.3 (4.1) 4.4 (2.5) 4.3 (2.3) 4.0 (2.2) 3.5 (1.7)
Pn Ω01 Pn Ω02 [0,1,1,1] 5.4 (2.9) 5.3 (2.8) 5.5 (4.0) 5.5 (4.2) 4.5 (2.6) 4.6 (2.8) 4.2 (2.5) 3.5 (1.8)
Pn Ω01 Pn Ω02 [1,1,1,1] 5.4 (3.7) 5.2 (3.3) 4.4 (3.3) 4.4 (2.8) 4.8 (2.9) 4.5 (3.3) 3.7 (2.3) 3.0 (2.3)

inherited from the source were (re)used as initial values for
the fine-tuning performed on the target. In addition, all target
networks were obtained by reusing the same source network,
trained using all the training and validation data available for
the source problem.

Fig. 1 also shows the average total time (t) taken to train
each target network. In the case of baseline networks trained
from scratch (thick black line), this total time corresponds to
pre-training and fine-tuning. In the case of networks obtained
through reuse, the total time corresponds only to the time taken
to fine-tune the layers that we chose to retrain.

In a second set of experiments, we repeated the pro-
cedure described above, but using samples from synthetic
machine-printed digits (Pm) instead of handwritten digits.
The obtained results are shown in the second group of four
rows in Table II. Finally, we repeated the two whole sets
of experiments, but reversing the roles of the Ω09 and Ωoe

class label sets. In other words, we now aimed to classify
only into two classes by reusing source networks trained for
ten classes. The obtained results are shown in the third and
fourth groups of four rows in Table II. The evolution of total
training times shown in Fig. 1 for the first set of experiments
is representative of what happened also in the subsequent three
sets of experiments with digits.

A final set of experiments involved shape data, the target
problem being that of classifying non-canonical shapes as
either “rounded” or “with corners”, and the source problem
being that of classifying the same non-canonical shapes as
ellipses, rectangles, or triangles.

Fig. 2 (left) shows the average relative improvement in
the test error (∆εr) obtained when transfer learning was
used instead of training a network from scratch, along with
standard deviation bars. This measure is plotted for different
values of N , for the five sets of transfer learning experiment
addressed in this section. For experiments with digit data, the
shown results are for the case denoted as [0,1,1] in Table II.
For experiments with shape data, the considered case is that
denoted as [1,1,1,1].

E. Changing the Data Distribution
In this section we address experiments whose source and

target problems differed (only) in terms of the data distri-
butions. In a first set of experiments, we defined the target
problem as that of classifying samples of handwritten rotated
digits (Pr) into ten classes (Ω09) and started by training a
number of target networks from scratch for different values
of N . The average classification test error ε obtained over 20
repetitions is shown in the first row of Table III.

We then trained another set of target networks for the
same values of N , this time reusing a source network trained
to classify samples of upright digits (Pu) into the same ten
classes. In other words, we aimed to classify data associated
with a higher generalisation error (as shown in the third row of
Table I) by reusing a network trained on data associated with
a lower error (first row in Table I). We first tried retraining
only the first hidden layer, then also the second hidden layer,
then all layers. The results are shown in the second, third
and fourth rows of Table III. Our purpose was to assess if
retraining only the layer closest to the network’s input would
be sufficient to successfully adapt the classification function to
the new data distribution, then try retraining increasingly more
layers towards the output.

In a second set of experiments, we aimed to classify
handwritten digits (Pu) by reusing a network trained for ma-
chine-printed digits (Pm), thus preserving the idea of tackling
data associated with a higher error (see the first row in Table
I) by reusing network trained on data associated with a lower
error (fourth row in Table I). The obtained results are shown
in the second group of rows in Table III. Finally, we repeated
the two whole sets of experiments, but reversing the roles of
the data distributions associated with the source and target
problems in each experiment. In other words, we now aimed to
classify data associated with a lower error by reusing networks
trained on data associated with a higher error. The obtained
results are shown in the third and fourth groups of rows
in Table III. The results corresponding to the third set of
experiments are also plotted in Fig. 3. The evolution of total
training times shown in this figure is representative of what
happened also in the other three sets of experiments.

A final set of experiments involved shape data, the target



Figure 2. Relative improvement in the average classification test error (∆εr), for different amounts N of data available for training the target network, for
transfer learning experiments where the class label set changed (left) and the data distribution changed (right).

Table III. CHANGING THE DATA DISTRIBUTION: PERCENT AVERAGE CLASSIFICATION TEST ERROR (ε), FOR DIFFERENT AMOUNTS (N ) OF DATA USED
TO TRAIN THE TARGET NETWORK AND FOR DIFFERENT COMBINATIONS OF: TARGET DATA DISTRIBUTION (PT ); TARGET LABEL SET (ΩT ); SOURCE

DISTRIBUTION (PS ); SOURCE LABEL SET (ΩS ); AND RETRAINED LAYERS. STANDARD DEVIATIONS SHOWN IN PARENTHESES.
PT ΩT PS ΩS Retrained N

layers 300 600 900 1200 1800 2400 3000 6000
Pr Ω09 63.8 (01.4) 55.2 (01.8) 46.0 (1.1) 38.4 (0.8) 31.1 (0.9) 28.4 (1.0) 25.9 (0.6) 20.8 (0.5)
Pr Ω09 Pu Ω09 [1,0,0] 60.3 (02.1) 52.9 (01.4) 48.0 (1.1) 45.3 (1.1) 42.4 (1.1) 39.2 (1.3) 36.8 (1.2) 30.8 (1.2)
Pr Ω09 Pu Ω09 [1,1,0] 56.8 (02.2) 49.1 (02.6) 43.1 (0.8) 40.4 (0.5) 36.6 (0.5) 33.9 (0.7) 31.5 (0.7) 25.5 (0.5)
Pr Ω09 Pu Ω09 [1,1,1] 57.7 (01.8) 48.0 (02.2) 40.7 (1.1) 36.5 (0.7) 32.5 (1.4) 30.1 (1.2) 27.5 (0.5) 21.8 (0.4)
Pu Ω09 27.3 (01.0) 18.9 (00.9) 13.3 (0.4) 11.6 (0.4) 9.3 (0.1) 8.7 (0.3) 7.8 (0.2) 5.9 (0.2)
Pu Ω09 Pm Ω09 [1,0,0] 25.8 (01.7) 19.3 (01.2) 15.5 (0.7) 13.9 (0.6) 11.9 (0.7) 10.7 (0.6) 9.7 (0.4) 7.6 (0.3)
Pu Ω09 Pm Ω09 [1,1,0] 23.4 (01.4) 17.9 (01.2) 14.5 (1.1) 12.7 (0.5) 10.4 (0.3) 9.6 (0.3) 8.7 (0.3) 6.7 (0.2)
Pu Ω09 Pm Ω09 [1,1,1] 22.4 (02.7) 18.2 (02.4) 14.6 (0.7) 12.9 (0.6) 10.5 (0.4) 9.7 (0.5) 8.6 (0.3) 6.5 (0.2)
Pu Ω09 27.3 (01.0) 18.9 (00.9) 13.3 (0.4) 11.6 (0.4) 9.3 (0.1) 8.7 (0.3) 7.8 (0.2) 5.9 (0.2)
Pu Ω09 Pr Ω09 [1,0,0] 28.7 (01.7) 21.2 (00.7) 18.1 (1.9) 15.3 (0.7) 13.2 (0.6) 11.8 (0.7) 10.8 (0.7) 8.5 (0.4)
Pu Ω09 Pr Ω09 [1,1,0] 21.5 (02.6) 16.0 (01.1) 14.0 (0.9) 12.5 (0.6) 10.5 (0.5) 9.7 (0.7) 8.9 (0.5) 6.9 (0.2)
Pu Ω09 Pr Ω09 [1,1,1] 16.4 (01.1) 14.1 (01.5) 13.1 (1.2) 11.3 (0.5) 9.5 (0.2) 9.1 (0.3) 8.3 (0.2) 6.4 (0.2)
Pm Ω09 11.9 (01.6) 7.6 (00.4) 6.3 (0.4) 5.2 (0.3) 4.7 (0.4) 3.9 (0.4) 3.5 (0.3) 2.3 (0.2)
Pm Ω09 Pu Ω09 [1,0,0] 11.9 (01.0) 8.8 (01.0) 7.4 (0.6) 6.0 (0.5) 4.9 (0.5) 4.6 (0.5) 4.0 (0.3) 2.5 (0.2)
Pm Ω09 Pu Ω09 [1,1,0] 11.4 (01.7) 7.3 (00.7) 6.4 (0.8) 5.3 (0.4) 4.4 (0.2) 4.1 (0.3) 3.7 (0.4) 2.3 (0.2)
Pm Ω09 Pu Ω09 [1,1,1] 10.5 (00.5) 7.3 (00.5) 6.8 (0.5) 5.5 (0.4) 4.6 (0.2) 4.1 (0.2) 3.6 (0.2) 2.3 (0.2)
Pc Ω02 18.5 (12.5) 13.2 (10.1) 9.6 (6.0) 09.1 (4.7) 10.5 (6.1) 7.7 (5.7) 8.1 (4.2) 5.7 (4.9)
Pc Ω02 Pn Ω02 [1,0,0,0] 4.9 (03.1) 4.6 (03.5) 3.6 (3.0) 3.6 (3.0) 2.8 (2.4) 2.7 (1.7) 2.0 (2.3) 1.8 (1.8)
Pc Ω02 Pn Ω02 [1,1,0,0] 4.6 (02.8) 4.4 (03.6) 4.0 (3.0) 4.0 (2.6) 3.6 (2.8) 3.2 (2.2) 3.7 (2.1) 1.7 (1.4)
Pc Ω02 Pn Ω02 [1,1,1,0] 4.7 (04.5) 3.9 (03.9) 4.7 (4.4) 4.3 (3.9) 4.1 (3.3) 3.8 (2.8) 4.6 (3.7) 2.9 (2.5)
Pc Ω02 Pn Ω02 [1,1,1,1] 4.3 (04.0) 4.6 (04.2) 5.3 (4.4) 4.4 (4.5) 4.4 (3.1) 3.9 (2.8) 4.4 (3.1) 3.1 (2.7)

problem being that of classifying canonical shapes (i.e. circles,
squares, and equilateral triangles) as either ellipses, rectangles,
or triangles, while the source problem was that of classifying
non-canonical shapes (i.e. generic ellipses, rectangles, and
triangles) using the same set of three classes.

Fig. 2 (right) shows the relative improvement in the average
test error (∆εr) obtained when transfer learning was used
instead of training a network from scratch. This error is plotted
for the five sets of transfer learning experiments addressed
in this section. For experiments with digit data, the shown
results are for the case denoted as [1,1,1] in Table III. For
experiments with shape data, the considered case is that
denoted as [1,0,0,0].

V. DISCUSSION AND CONCLUSIONS

In this work we explored the transfer of knowledge between
classification problems involving images of digits. In our ex-
periments, the source problem and the target problem differed
only in terms of the set of class labels or only in terms of the
data distribution. Our goal was to study how the performance
of transfer learning between such problems was affected by
simultaneously varying the number of layers being retrained
and the amount of data used to perform that retraining.

A comparison of Figs. 2 left and right shows that, in
general, reusing source networks trained for a different label
set led to higher improvements in the classification error than
reusing networks trained for a different data distribution. This
can also be observed by comparing the results shown in Figs.
1 and 3, as the sets of experiments they correspond to both
dealt with the same target problem of classifying handwritten
upright digits into ten classes (note how the baseline plots are
the same).

Retraining only one layer led to the worst performance
in all sets of experiments with digit data. So, even though
retraining the output layer is unavoidable when class labels
change and retraining the first hidden layer is (presumably)
important when the data distribution changes, in practice more
than one layer should be retrained for successful knowledge
transfer to occur. In contrast, with shape data and a change
in the data distribution, retraining only the input layer was
sufficient to yield the best or nearly best results.

In transfer learning experiments involving a change of
label set with digit data, retraining the second hidden layer
and the output layer of the source networks resulted in the
best performance while saving significant training time, in
relation to fully training the target networks from scratch, as



Figure 3. Results when classifying handwritten upright digits into ten classes
by reusing a network trained for rotated digits: average classification test error
(ε) and average total training time (t, in seconds), for different amounts (N )
of data used to train the target network and for different numbers of retrained
layers.

exemplified in Fig. 1. In the case of shape data, retraining
the whole network was often necessary to obtain the best
performance.

When the target problem was that of classifying digits into
ten classes (first and second groups of rows in Table II) and
only a limited amount of data was available for training, it
was better to reuse a network trained for only two classes
than to train a network from scratch for ten classes. In the
case of machine-printed digits this advantage was only evident
for very low values of N (up to 300 samples), but in the
case of handwritten digits it was visible up to values around
2400 samples (Fig. 1). On the other hand, when the target
problem involved classifying digits into only two classes (third
and fourth groups in Table II), it was always better to reuse
a network trained for ten classes than to train a network
from scratch for two classes, regardless of the amount of data
available for training. These conclusions can also be drawn
from Fig. 2(left).

In experiments with shape data, which targeted three
classes by reusing networks trained for only two classes, a
relative improvement in the error was only clear for values of
N up to 900 samples.

In transfer learning experiments involving a change of data
distribution with digit data, no significant differences were
observed between the times taken to fully train the target
network from scratch and to retrain any number of layers from
the source network, as exemplified in Fig. 3.

In experiments involving handwritten digits and ma-
chine-printed digits (second and fourth in the legend of Fig. 2
on the right), transfer learning was beneficial only when the
data available for training the target network did not exceed

300 samples. In experiments involving only handwritten digits
(first and third in the legend), this advantage held for higher
values of N . Thus, when classifying upright digits reusing
networks trained for rotated digits, we observed pronounced
error improvements up to 600 samples; when classifying
rotated digits reusing networks trained for upright digits, the
improvements were more modest, but they persisted for higher
values of N (up to 1200 samples).

In experiments that targeted canonical shapes by reusing
networks trained with non-canonical shapes, the improvement
in the error showed a tendency to remain constant regardless
of the amount of data available for training. However, the
observed standard deviations are very large and do not allow
a definitive conclusion.

The results obtained when classifying handwritten upright
digits by reusing networks trained for rotated digits (third in
the legend of Fig. 2 on the right) are particularly interesting,
as they raise the hypothesis that, in classification problems
where only a small amount of labelled image data is available
for training, it may be possible to take advantage of transfer
learning to achieve improved performance. One possible ap-
proach would be to: a) perform random rotations (or another
transformation) on each instance of the original data, in order
to generate a larger amount of data; b) use the generated
data to train a source network; and c) retrain that source
network using the small amount of original images, to obtain
a better network than would be possible by using only the
original images. Future work should investigate this possibility,
and also involve a wider variety of data types and larger
architectures in experiments with digit data.

REFERENCES

[1] Y. Bengio. Learning deep architectures for AI. Foundations and Trends
in Machine Learning, 2(1):1–127, 2009.

[2] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1798–1828, 2013.

[3] Lorenzo Bruzzone and Mattia Marconcini. Domain adaptation problems:
a DASVM classification technique and a circular validation strategy.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):
770–787, 2010.

[4] Dan Claudiu Ciresan, Ueli Meier, and Jürgen Schmidhuber. Transfer
learning for Latin and Chinese characters with deep neural networks. In
International Joint Conference on Neural Networks (IJCNN), pages 1–6,
2012.

[5] Li Deng and Dong Yu. Deep learning for signal and information
processing. Microsoft Research monograph, 2013.

[6] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-
scale sentiment classification: A deep learning approach. In International
Conference on Machine Learning (ICML), pages 513–520, 2011.

[7] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin,
and J. Dean. Multilingual acoustic models using distributed deep neural
networks. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2013.

[8] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

[9] J.-T Huang, J. Li, D. Yu, L. Deng, and Y. Gong. Cross-language
knowledge transfer using multilingual deep neural network with shared
hidden layers. In International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2013.

[10] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An
empirical evaluation of deep architectures on problems with many factors
of variation. In International Conference on Machine Learning, pages
473–480, 2007.

[11] S. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, 2010.


