
Transfer Learning Using Rotated Image Data to
Improve Deep Neural Network Performance

Telmo Amaral¹, Luís M. Silva¹², Luís A. Alexandre³, Chetak Kandaswamy¹,
Joaquim Marques de Sá¹4, and Jorge M. Santos¹5

¹Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Portugal
²Departamento de Matemática, Universidade de Aveiro, Portugal (lmas@ua.pt)

³Instituto de Telecomunicações, Universidade da Beira Interior, Portugal
4Dep. de Eng. Electrotécnica e de Computadores, Fac. de Eng. da Univ. do Porto, Portugal

5Dep. de Matemática, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Portugal

Abstract In this work we explore the idea that, in the presence of a
small training set of images, it could be beneficial to use that set itself
to obtain a transformed training set (by performing a random rotation
on each sample), train a source network using the transformed data,
then retrain the source network using the original data. Applying this
transfer learning technique to three different types of character data, we
achieve average relative improvements between 6% and 16% in the clas-
sification test error. Furthermore, we show that it is possible to achieve
relative improvements between 8% and 42% in cases where the amount
of original training samples is very limited (30 samples per class), by in-
troducing not just one rotation but several random rotations per sample.

Keywords: Transfer Learning; Deep Learning; Stacked Auto-Encoders.

1 Introduction

Deep architectures, such as neural networks with two or more hidden layers,
are a class of networks that comprise several levels of non-linear operations,
each expressed in terms of parameters that can be learned [1]. Until 2006, at-
tempts to train deep architectures generally resulted in poorer performance but
a breakthrough took place with the introduction by Hinton et al. [7] of the deep
belief network, whose hidden layers are initially treated as restricted Boltzmann
machines (RBMs) and pre-trained, one at a time, in an unsupervised greedy
approach. This pre-training procedure was soon generalised to rely on machines
easier to train than RBMs, such as auto-encoders [8].

The goal of transfer learning (TL) is to reuse knowledge associated with a
source problem to improve the learning required by a target problem [9]. The
source and target problems may be, for example, classification tasks that differ
as to the data distributions, or that involve different sets of classes. A common
approach to TL is that of transferring representations that were learned from
one problem to another problem.



2

In this paper we investigate if, in the presence of a small training set, it
is possible to use that set itself to obtain a transformed training set (by per-
forming for example a random rotation on each sample), train a source network
using the transformed data, then retrain that network using the original data,
to achieve lower classification errors than would be possible by using only the
original data. We explore this idea using three types of character image data.
We achieved significant improvements in the classification error by fully training
a source network using slightly rotated versions of the original training samples,
then fine-tuning that network again using the original samples. For very small
amounts of training data, it was possible to further improve performance by
introducing more than one rotation per sample.

Deep architectures have been used recently in TL settings, as discussed in
reviews by Bengio et al. [2, Sec. 2.4] and Deng and Yu [5, Ch. 11]. For example,
Glorot et al. [6] pre-trained stacked denoising auto-encoders using unlabelled
data from multiple domains, thus learning a generic representation that could be
used to train SVMs for sentiment classification on a specific domain. This differs
from our work, as the target network was not obtained by fully retraining a source
network and no data transformations (in fact no image data) were involved. In
the field of character recognition, Ciresan et al. [4] trained convolutional neural
networks (CNNs) on either digits or Chinese characters and retrained them to
recognise uppercase Latin letters. Again, no data transformations were involved.

Affine and elastic transformations have been used extensively to increase the
amount data available to train neural networks, as in the work of Ciresan et al.
[3] with very large (but shallow) multi-layer perceptrons trained through paral-
lelisation. Simard et al. [10] suggest the use of distorted data as good practice in
the supervised training of CNNs. These two works did not involve networks pre-
trained without supervision, or transfer learning. More generally, existing work
with deep architectures does not address the use of transformed image data as
a means to obtain an artificial problem from which knowledge can be gathered
and transferred to the original problem, to improve performance.

2 Stacked Auto-encoders

The auto-encoder (AE) is a simple network that tries to produce at its output
what is presented at the input. The basic AE is in fact a simple neural network
with one hidden layer and one output layer, subject to two restrictions: the
number of output neurons is equal to the number of inputs; and the weight
matrix of the output layer is the transposed of the weight matrix of the hidden
layer (that is, the weights are clamped). The values of the hidden layer neurons
are called the encoding, whereas the values of the output neurons are called the
decoding. Unsupervised learning of the weights and biases of AEs can be achieved
by gradient descent, based on a training set of input vectors.

Consider a network designed for classification, with a layer of inputs, two or
more hidden layers, and a softmax output layer with as many units as classes.
The hidden layers of such a network can be pre-trained one at a time in an



3

Algorithm 1 Transfer Learning approach.
Given design sets Xds.tra and Xds.ori, and test set Xts.ori,

1. Randomly initialise a classifier network;
2. Pre-train the network using Xds.tra (ignoring labels);
3. Fine-tune the network using Xds.tra;
4. Fine-tune the network using Xds.ori;
5. Test the network using Xts.ori, obtaining classification error ε.

unsupervised way. Each hidden layer is “unfolded” to form an AE. Once that AE
has learned to reconstruct its own input, its output layer is no longer needed and
its hidden layer becomes the input to the next hidden layer of the network. The
next hidden layer is in turn pre-trained as an individual AE and the process is
repeated until there are no more hidden layers. A deep network pre-trained in
this fashion is termed a stacked auto-encoder (SAE).

The goal of unsupervised pre-training is to bring the network’s hidden weights
and biases to a region of the parameter space that constitutes a better starting
point than random initialisation, for a subsequent supervised training stage. In
this context, the supervised training stage is usually called fine-tuning and can
be achieved by conventional gradient descent, based on a training set of input
vectors paired with class labels. The output layer weights are randomly initialised
and learned only in the fine-tuning stage.

3 Transfer Learning Based Approach

We used a TL approach where the involved problems differed only in terms of
the data distribution. Let Xds.ori be an original design set containing nds.ori
data samples. We assume that each data sample contains not only an input
vector (representing for example an image) but also the corresponding class
label, and the design set contains both training and validation data. Let Xds.tra

be a design set containing nds.ori transformed data samples, obtained by doing
a transformation (such as a random rotation, in the case of image data) on each
data sample from Xds.ori. Let Xts.ori be a test set containing nts.ori original data
samples.

Given Xds.tra, Xds.ori and Xts.ori, we can use TL to design and test a clas-
sifier, by applying Algorithm 1. Specifically, in steps 2 and 3 the initialised
network is trained (first without supervision, then with supervision) to classify
transformed data and, in step 4, the resulting network is retrained (with su-
pervision) to classify original data. The idea is to transfer knowledge from an
artificially created source problem to the original target problem. Algorithm 1
can be trivially modified by omitting step 3, so that the source network is only
pre-trained, instead pre-trained and fine-tuned.

We compared the performance of classifiers obtained via the TL approach
described above with the performance of classifiers obtained via the baseline (BL)
method defined in Algorithm 2. In this BL approach, a classifier is pre-trained



4

Algorithm 2 Baseline approach.
Given design set Xds and test set Xts.ori,

1. Randomly initialise a classifier network;
2. Pre-train the network using Xds (ignoring labels);
3. Fine-tune the network using Xds;
4. Test the network using Xts.ori, obtaining classification error ε.

and fine-tuned in a conventional way, using data from a single distribution, then
tested on original data. When design setXds is the original design setXds.ori, the
last two steps of the BL approach perform the same operations as the last two
steps of the TL approach: fine-tuning and testing using only original data. This
yields a test error that can be directly compared with the test error obtained
with TL. Alternatively, when Xds is a transformed design set Xds.tra, the BL
approach is equivalent to TL without step 4: pre-training and fine-tuning using
transformed data and testing directly on original data, without retraining on
original data. As seen later in Section 5, this helped us to determine whether
TL was really beneficial, or if simply transforming design data was enough to
improve performance on original test data.

4 Data and Hyper-parameters

The data used in this work consisted of grey-level images of handwritten digits,
typewritten (synthesised) digits, and lowercase letters, all containing 28×28=784
pixels. For each data type, we prepared a test set Xts.ori containing nts.ori orig-
inal samples and a design set Xds.ori.full containing nds.ori.full original samples.
We use the subscript full because, in practice, only randomly picked subsets of
Xds.ori.full were used in the experiments. Table 1 shows the numbers of samples
available from each data type, as well as the number of classes involved, c. All
data originated from the MNIST-basic set prepared by the LISA lab1 and the
Chars74K set prepared by Microsoft Research India2.

Table 1. Numbers of design and test samples available from each data type.

Data type c nds.ori.full nts.ori

Handwritten digits 10 3000 50000
Typewritten digits 10 3000 7160
Typewritten letters 26 7800 18616

All the deep networks we used had an architecture with two hidden layers
composed of 100 units each and an output layer appropriate to the number
of classes being considered. Using an additional hidden layer did not have a
significant effect on the observed validation errors.
1 See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations.
2 See http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/.



5

Algorithm 3 Experimental procedure.
Given Xds.ori.full, Xds.tra and an integer k ≥ 1,
For each data type (handwritten digits, typewritten digits, and typewritten letters),

1. For each nds.ori such that nds.ori
c
∈[30, 60, 90, 120, 150],

(a) Obtain Xds.ori by randomly picking nds.ori samples from Xds.ori.full;
(b) Obtain Xds.tra by creating k random rotations of each sample from Xds.ori;
(c) Run baseline approach using Xds.ori and Xts.ori;
(d) Run baseline approach using Xds.tra and Xts.ori;
(e) Run transfer learning approach using Xds.tra, Xds.ori and Xts.ori.

Hidden layers were pre-trained via online gradient descent, the cross-entropy
cost function and a learning rate of 0.001, for a minimum of 15 epochs and
then until the relative improvement in the validation error fell below 1%. Whole
networks were fine-tuned via online gradient descent, the cross-entropy cost func-
tion and a learning rate of 0.1, until the validation error did not decrease for 50
epochs. These hyper-parameter values did not result from a thorough selection
procedure, but we believe they yielded validation errors that were sufficiently
low to enable the comparisons done in this work.

Our code was based on an implementation of SAEs originally developed
by Hugo Larochelle3. All experiments ran on an Intel Core i7-950 and enough
physical memory to prevent swapping. A pool of five parallel processes was used.

5 Experiments and Results

We followed the procedure shown in Algorithm 3. In step 1a, two thirds of the
randomly picked nds.ori design samples are assigned to training and one third
is assigned to validation. The transformed Xds.tra obtained in step 1b contains
k×nds.ori samples, since it is generated by creating k distinct randomly rotated
versions of each sample from the original design set. In practice, actually two vari-
ants of Xds.tra were obtained in this step: Xds.tra.030, by doing random rotations
in the interval [−30◦, 30◦]; and Xds.tra.180, by using the interval [−180◦, 180◦]
instead. In addition, in step 1e two variants of TL are tried: one using Xds.tra

only for pre-training (this is later denoted as PT); the other using Xds.tra for
both pre-training and fine-tuning (denoted as PT+FT).

5.1 Using a single rotation (k=1)

In a first series of experiments we set k to 1 in Algorithm 3. The experimental
procedure was repeated 20 times. At each repetition, a new random number
generator seed was used to pick nds.ori design samples in step 1a, to rotate
samples in step 1b, and to initialise the networks trained in steps 1c, 1d and 1e.

3 See http://www.dmi.usherb.ca/~larocheh/mlpython/.



6

Table 2 shows the average classification error ε obtained using Xts.ori, for the
three data types and for different numbers nds.ori/c of design samples per class.
For each data type and value of nds.ori/c, the lowest mean error is underlined.
The p-value for the Student’s t-test is also reported in square brackets, to help
assess if the errors obtained in that experiment were significantly lower than
those obtained with the BL approach using Xds.ori.

Table 2. Percent average classification test error ε (standard deviation) [p-value] ob-
tained for different data types, approaches, design sets, and numbers nds.ori/c of design
samples per class.

D
at
a Approach and design sets nds.ori/c

30 60 90 120 150

H
an

dw
ri
tt
en

di
gi
ts BL Xds.ori 27.2 (02.4) 16.3 (01.6) 12.8 (01.0) 11.1 (00.7) 10.3 (00.6)

BL Xds.tra.030 33.5 (02.5) [<0.01] 18.3 (01.3) [<0.01] 13.9 (00.6) [<0.01] 12.4 (00.5) [<0.01] 11.2 (00.5) [<0.01]
BL Xds.tra.180 66.0 (04.7) [<0.01] 57.5 (03.3) [<0.01] 45.9 (03.6) [<0.01] 39.3 (02.4) [<0.01] 36.0 (02.2) [<0.01]
TL Xds.ori after Xds.tra.030 PT 31.5 (03.4) [<0.01] 16.4 (01.4) [<0.40] 12.5 (00.7) [<0.15] 11.1 (00.5) [<0.47] 10.2 (00.5) [<0.33]
TL Xds.ori after Xds.tra.180 PT 32.8 (03.8) [<0.01] 19.2 (01.4) [<0.01] 12.8 (00.7) [<0.45] 11.0 (00.4) [<0.45] 10.4 (00.6) [<0.34]
TL Xds.ori after Xds.tra.030 PT+FT 22.7 (02.0) [<0.01] 13.5 (00.9) [<0.01] 10.8 (00.5) [<0.01] 09.9 (00.5) [<0.01] 09.1 (00.4) [<0.01]
TL Xds.ori after Xds.tra.180 PT+FT 27.9 (02.4) [<0.20] 17.2 (01.2) [<0.02] 12.6 (00.6) [<0.19] 11.0 (00.4) [<0.33] 10.1 (00.5) [<0.11]

T
yp

ew
ri
tt
en

di
gi
ts BL Xds.ori 12.4 (01.5) 08.6 (00.7) 07.1 (00.4) 06.1 (00.3) 05.5 (00.4)

BL Xds.tra.030 18.4 (02.9) [<0.01] 09.9 (00.8) [<0.01] 07.8 (00.6) [<0.01] 07.0 (00.4) [<0.01] 06.4 (00.4) [<0.01]
BL Xds.tra.180 55.7 (06.0) [<0.01] 36.3 (07.1) [<0.01] 27.6 (03.6) [<0.01] 23.5 (02.9) [<0.01] 21.3 (02.5) [<0.01]
TL Xds.ori after Xds.tra.030 PT 14.1 (01.4) [<0.01] 08.8 (00.7) [<0.17] 07.1 (00.6) [<0.47] 06.1 (00.4) [<0.44] 05.3 (00.4) [<0.04]
TL Xds.ori after Xds.tra.180 PT 15.8 (01.7) [<0.01] 09.2 (00.9) [<0.02] 06.9 (00.4) [<0.13] 06.1 (00.5) [<0.47] 05.6 (00.5) [<0.37]
TL Xds.ori after Xds.tra.030 PT+FT 11.0 (01.0) [<0.01] 07.4 (00.4) [<0.01] 05.9 (00.6) [<0.01] 05.3 (00.4) [<0.01] 04.8 (00.3) [<0.01]
TL Xds.ori after Xds.tra.180 PT+FT 14.8 (01.4) [<0.01] 09.2 (00.7) [<0.01] 07.1 (00.4) [<0.48] 06.2 (00.4) [<0.08] 05.6 (00.4) [<0.32]

T
yp

ew
ri
tt
en

le
tt
er
s BL Xds.ori 21.6 (00.7) 16.4 (00.7) 14.6 (00.4) 13.4 (00.3) 12.8 (00.3)

BL Xds.tra.030 26.4 (01.4) [<0.01] 19.7 (00.6) [<0.01] 17.6 (00.4) [<0.01] 16.2 (00.4) [<0.01] 15.7 (00.4) [<0.01]
BL Xds.tra.180 63.7 (04.1) [<0.01] 50.5 (03.2) [<0.01] 46.6 (02.1) [<0.01] 43.2 (02.1) [<0.01] 41.1 (01.9) [<0.01]
TL Xds.ori after Xds.tra.030 PT 22.2 (01.1) [<0.03] 16.2 (00.7) [<0.19] 14.2 (00.4) [<0.01] 13.1 (00.4) [<0.01] 12.3 (00.3) [<0.01]
TL Xds.ori after Xds.tra.180 PT 20.9 (00.9) [<0.01] 15.7 (00.6) [<0.01] 13.8 (00.3) [<0.01] 12.7 (00.3) [<0.01] 12.1 (00.4) [<0.01]
TL Xds.ori after Xds.tra.030 PT+FT 19.4 (01.1) [<0.01] 15.3 (00.6) [<0.01] 13.6 (00.5) [<0.01] 12.5 (00.3) [<0.01] 11.9 (00.4) [<0.01]
TL Xds.ori after Xds.tra.180 PT+FT 21.4 (01.9) [<0.36] 16.0 (00.5) [<0.01] 14.1 (00.3) [<0.01] 13.1 (00.2) [<0.01] 12.5 (00.3) [<0.01]

As shown, for each data type, the BL approach was tried not only with
Xds.ori, but also with Xds.tra.030 and Xds.tra.180. The obtained results show that
training a model with transformed data and directly testing it on original data
invariably led to worse results than training and testing with original data.

For all data types, the results obtained with TL when transformed design
data were used for both pre-training and fine-tuning (PT+FT) were gener-
ally better than the results obtained when transformed data were used only
for pre-training (PT).

The average test error ε obtained with the BL approach and with TL when
using transformed data for PT+FT is plotted in Fig. 1, for handwritten digits
and typewritten letters. Training times were found to increase linearly with the
amount of design data. Partial and total average training times are reported in
Table 3, for the case of nds.ori/c=150 samples per class. Times are shown for
the BL approach and for TL, when slightly rotated data (Xds.tra.030) were used
both to pre-train and to fine-tune (PT+FT). The table rows corresponding to
k=5 and k=10 will be addressed later.

The results show that, for all data types and for all numbers of design sam-
ples per class, TL based on variant Xds.tra.030 of the transformed data led to
significantly lower errors than the BL approach. This improved accuracy had a
price in terms of time needed to design the classifiers: total training times needed



7

Figure 1. Average classification test error ε obtained with the BL and TL approaches,
for each data type, for different numbers nds.ori/c of original design samples per class.
Left: handwritten digits; right: typewritten letters.

Table 3. Average time in seconds (standard deviation) needed to pre-train and fine-
tune source and target models, for different data types, approaches, and values of k.

Data type Approach an design sets k Source Target Total
PT FT PT FT

Handwritten BL Xds.ori 097 (15) 053 (014) 0150 (0019)
digits TL Xds.ori after Xds.tra.030 PT+FT 1 0083 (10) 0064 (0012) 102 (032) 0248 (0038)

TL Xds.ori after Xds.tra.030 PT+FT 5 0302 (48) 0438 (0172) 084 (020) 0824 (0170)
TL Xds.ori after Xds.tra.030 PT+FT 10 0514 (58) 0770 (0473) 098 (018) 1382 (0491)

Typewritten BL Xds.ori 112 (12) 063 (026) 0175 (0028)
digits TL Xds.ori after Xds.tra.030 PT+FT 1 0088 (13) 0067 (0025) 097 (015) 0252 (0036)

TL Xds.ori after Xds.tra.030 PT+FT 5 0334 (51) 0420 (0229) 101 (022) 0855 (0245)
TL Xds.ori after Xds.tra.030 PT+FT 10 0581 (64) 0662 (0356) 124 (045) 1367 (0369)

Typewritten BL Xds.ori 260 (29) 197 (068) 0457 (0079)
letters TL Xds.ori after Xds.tra.030 PT+FT 1 0212 (24) 0217 (0084) 402 (165) 0832 (0193)

TL Xds.ori after Xds.tra.030 PT+FT 5 0786 (57) 1664 (0520) 352 (146) 2801 (0507)
TL Xds.ori after Xds.tra.030 PT+FT 10 1359 (94) 3558 (1288) 327 (123) 5243 (1274)

by TL were 50% to 100% longer than those needed by the BL approach. This
was not surprising, as TL involves unsupervised and supervised training stages
that yield a first classifier (steps 2 and 3 in Algorithm 1) followed by a supervised
training stage that yields a second classifier (step 4), whereas the BL approach
involves the unsupervised and supervised training of a single classifier (steps 2
and 3 in Algorithm 2).

For all data types and for all amounts of design samples per class, variant
Xds.tra.030 of the transformed data used for PT+FT always led to better results
than variant Xds.tra.180, as illustrated in Fig. 1. This indicates that it was better
to restrict the random rotation of original images to a small range than to allow
it to assume any value.

Fig. 2 (left) shows the average relative improvement in the test error (∆εr)
obtained over 20 repetitions when TL was applied instead of the BL approach, in
experiments that used slightly rotated design data to pre-train and fine-tune the
source classifier. The relative improvement was computed as∆εr=(εBL−εTL)/εBL,
where εBL and εTL are the test errors yielded by the BL approach and TL, re-



8

spectively. For all data types, the observed improvements in the average error
were roughly constant across the different numbers of original design samples
per class.

Figure 2. Average relative improvement in the classification test error ∆εr yielded by
TL (using slightly rotated design data for pre-training and fine-tuning), for different
data types, for different amounts nds.ori/c of original design samples per class. Left:
for k=1. Right: for k=5.

5.2 Using several rotations (k>1)

In a second series of experiments, we used transformed design data obtained by
creating several rotated versions of each original design sample, by using first
k=5 and then k=10 in Algorithm 3. Steps 1c and 1d were skipped, because now
we were not concerned with comparing the TL and BL approaches. Rather we
wanted to compare TL results obtained using k>1 with the TL results previously
obtained using k=1. In addition, when applying TL, we considered only cases
where the transformed design data were obtained via small rotations (Xds.tra.030)
and used both to pre-train and to fine-tune the source model (PT+FT).

The experimental procedure was repeated 20 times for each value of k. The
obtained results are shown in Table 4, together with results for k=1 reproduced
from Table 2. For each data type and value of nds.ori/c, the two p-values shown
for k=5 and k=10 were computed in relation to the results obtained with k=1.
Some of the results shown in Table 4 are also plotted in Fig. 3.

For all data types, when only 30 original design samples per class were used,
the errors yielded by TL were significantly lower when the transformed design
set was formed by several rotations of each original sample (k=5 or k=10) than
when the transformed set was obtained via a single rotation (k=1). In the case
of typewritten digits, this benefit persisted for 60 samples per class and, in the
case of handwritten digits, it was visible for any number of samples per class.

For handwritten and typewritten digit data, regardless of the amount of
design data per class, the performances obtained with k=10 and k=5 were not
distinguishable. With typewritten letters, for more than 90 samples per class,



9

Table 4. Percent average classification test error ε (standard deviation) [p-value] ob-
tained for different data types, approaches, design sets, and numbers nds.ori/c of design
samples per class.

D
at
a Approach and design sets k nds.ori/c

30 60 90 120 150

H
.d

ig
it
s TL Xds.ori after Xds.tra.030 PT+FT 1 22.7 (02.0) 13.5 (00.9) 10.8 (00.5) 09.9 (00.5) 09.1 (00.4)

TL Xds.ori after Xds.tra.030 PT+FT 5 15.6 (01.4) [<0.01] 11.4 (00.8) [<0.01] 09.4 (00.6) [<0.01] 08.5 (00.5) [<0.01] 08.0 (00.4) [<0.01]
TL Xds.ori after Xds.tra.030 PT+FT 10 15.2 (02.0) [<0.01] 10.9 (00.5) [<0.01] 09.2 (00.5) [<0.01] 08.6 (00.5) [<0.01] 08.0 (00.4) [<0.01]

T
.d

ig
it
s TL Xds.ori after Xds.tra.030 PT+FT 1 11.0 (01.0) 07.4 (00.4) 05.9 (00.6) 05.3 (00.4) 04.8 (00.3)

TL Xds.ori after Xds.tra.030 PT+FT 5 08.8 (00.7) [<0.01] 06.7 (00.6) [<0.01] 05.7 (00.5) [=0.07] 05.1 (00.5) [=0.12] 04.7 (00.2) [=0.08]
TL Xds.ori after Xds.tra.030 PT+FT 10 08.9 (00.7) [<0.01] 06.8 (00.5) [<0.01] 06.0 (00.7) [=0.43] 05.3 (00.5) [=0.49] 04.8 (00.4) [=0.45]

T
.l
et
te
rs TL Xds.ori after Xds.tra.030 PT+FT 1 19.4 (01.1) 15.3 (00.6) 13.6 (00.5) 12.5 (00.3) 11.9 (00.4)

TL Xds.ori after Xds.tra.030 PT+FT 5 17.8 (00.7) [<0.01] 15.0 (00.5) [=0.06] 13.7 (00.4) [=0.33] 12.9 (00.2) [<0.01] 12.4 (00.3) [<0.01]
TL Xds.ori after Xds.tra.030 PT+FT 10 18.0 (00.7) [<0.01] 15.1 (00.5) [=0.22] 14.0 (00.4) [=0.01] 13.6 (00.4) [<0.01] 13.1 (00.3) [<0.01]

Figure 3. Average classification test error ε obtained with TL, for different values of k,
for each data type, for different numbers nds.ori/c of original design samples per class.
Left: handwritten digits; right: typewritten letters.

the errors obtained with k=10 were actually higher than those obtained with
k=5.

The effects discussed above can also be observed in Fig. 2 (right), which plots
the improvements that the average TL errors shown in Table 4 for k=5 achieved
in relation to the average BL errors shown in Table 2.

Average training times observed for nds.ori/c=150 are included in Table 3.
The benefits obtained by using k=5 rotations per original design sample had a
clear cost in terms of total training times, which were about three times longer
than the times observed when k=1.

6 Conclusions and Future Directions

In this work we explored the idea that, in the presence of a small design set of
image data, it could be beneficial to use that same set to obtain a transformed
design set (by performing a random rotation on each original sample), train a
source network using the transformed data, then retrain that network using the
original data. For the three data types involved in our experiments, networks



10

designed via this TL approach yielded significantly lower errors than networks
trained using only original (non-rotated) data. Relative improvements between
6% and 16% were observed in the average errors, at the expense of training times
50% to 100% longer.

In general, pre-training and fine-tuning a source network led to better results
than just pre-training it. Restricting the rotations performed on the original
design samples to a small range led to better results than freely rotating the
samples. It would be interesting to study in finer detail the relationship between
performance and the range of allowed rotation, and also try transformations
other than rotation.

For small amounts of original design data, it was possible to further improve
performance by including in the transformed data more than one randomly ro-
tated version of each original sample. With k=5 rotations per original sample,
relative improvements between 8% and 42% were observed in the average test
error. This implied training times about three times longer than those associated
with a single rotation.

References

[1] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine
Learning, 2(1):1–127, 2009.

[2] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 35(8):1798–1828, 2013.

[3] D. Ciresan, U. Meier, L. Gambardella, and J. Schmidhuber. Deep, big, simple
neural nets for handwritten digit recognition. Neural Computation, 22(12):3207–
3220, 2010.

[4] D. Ciresan, U. Meier, and J. Schmidhuber. Transfer learning for Latin and Chinese
characters with deep neural networks. In International Joint Conference on Neural
Networks (IJCNN), pages 1–6, 2012.

[5] Li Deng and Dong Yu. Deep learning for signal and information processing. Mi-
crosoft Research monograph, 2013.

[6] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment
classification: a deep learning approach. In International Conference on Machine
Learning (ICML), pages 513–520, 2011.

[7] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, 2006.

[8] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation. In
International Conference on Machine Learning (ICML), pages 473–480, 2007.

[9] S. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[10] P. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural
networks applied to visual document analysis. In International Conference on
Document Analysis and Recognition (ICDAR), volume 3, pages 958–962, 2003.


