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Abstract—Robotic events can provide notable amounts of
information regarding a robot’s status, which can be extrapo-
lated to detect productivity, anomalies, malfunctions and used
for monitorization. However, when problems occur in sensitive
environments like a factory, the logs of a machine may be
discarded because they are susceptible to chances and malicious
intents. In this paper we propose to use RobotChain for anomaly
detection. RobotChain is a method to securely register robotic
events, using a blockchain, which ensures that once an event
gets registered on it, it’s secured and cannot be tampered with.
We show how this system can be leveraged with the module for
anomaly detection, that uses the information contained on the
blockchain to detect anomalies on a UR3 robot.

I. INTRODUCTION

Registering robotic events with proof that they can’t be
tampered with is often disregarded because of the complexity
of such systems, which leads to slow adoption. Insecurity
breaches and file tampering can be done to protect robot
manufacturers when their robots have abnormal behavior and
jeopardize a factory production line. Blockchain is one answer
to this problem. Since it’s first idealization by Leslie Lamport
in 1998 [1], to the implementation of this technology to serve
as the base for Bitcoin [2], many have leveraged this technol-
ogy to have a secure and validated data storage in a decen-
tralized way. Many blockchain approaches have surfaced with
different characteristics, but the underlying idea is practically
the same: to have a way to store, share, distribute, compute
and to monitoring data. Despite the security guaranties that this
technology can bring to a system, it can also be very energy
and time consuming to validate the transactions and to be apart
of the consensus mechanism [3]. A naive implementation of
a blockchain in sensitive environments, like a factory, could
lead to stolen computation power from the robots resulting
in lower productivity, ultimately leading to a disbelief in the
technology.

Despite all the development conducted to improve
blockchain technology and to boost the underlying smart-
contract features, first introduced by Ethereum [4], there isn’t
much development in integrating robotics with it. Incipient
work has been presented by Castelló et al. [5], which presents
a framework for safe sharing of human-robot interactions.
Strobel and Dorigo on their paper [6] introduce how the
blockchain can be used to provide a mechanism to have a
shared knowledge system in a robotic swarm. Strobel et al.
also conducted promising research that can be used to integrate
the blockchain in real word environments to solve byzantine

fault problems [7] in robot swarms. Some companies have
also started working on robotics over blockchain, such as
Kambria [8], that is building a platform similar to Android but
with focus on robotics, in which high-level libraries, modular
hardware, and software are available in order to speed up
robotic development. Although there are many methods and
proposals using the blockchain technology, most of them are
just focused on the token that it contains to have a financial
interest, which leads to slow development of the technology
for other purposes. There are however approaches that try to
use blockchain within the robotics context and on a more
high-level, by defining standards to it [9], [10], [11], [12],
even though these are incipient works [13], we will see this
technology surfacing in new fields as it has potential to store
data, incorporate decentralized application among others.

The authors of [14] proposed RobotChain, a method that
integrates the blockchain with Robotics and that can have
extended use cases, like the usage of Artificial Intelligence
to detect anomalies in robots and machinery as we present in
this paper. They use the blockchain as a ledger to register all
robotic events and validate them. This is what we propose in
this paper: by having an oracle interacting with the smart-
contracts that use the information that is inserted into the
blockchain we will be able to detect anomalies. This method is
useful as it provides a ledger that can register information from
the robots in a way that it cannot be tampered with and a way
of leveraging Artificial Intelligence methods over it, as it can
have new modules integrated into the system without the need
to redesign it. Our proposal integrates three technologies that
are disrupting our daily life’s in a unique system, Robotics,
Artificial Intelligence, and Blockchain.

The document is structured as follows: section II does
an overview of the state-of-the-art. Section III describes
RobotChain. Section IV describes our proposal. Section V
presents the experiences conducted to validate the method,
and the last section, contains our conclusions.

II. RELATED WORK

In [15], a method to detect anomalies based on sum-
marization and data storage is proposed. By storing large
amounts of data in an organized way, by using metadata
to know the localization of the data and by compressing
it with summarization techniques, the authors were capable
of reducing the space required to store large amounts of
data and improve the efficiency when searching for specific



contents when compared to traditional methods. Then, by
using representations of the data, the authors cluster them
to detect anomalies. The clustering process is done in two
steps, the first one uses Clustream algorithm [16] in order to
obtain representations of the acquired data. The second step is
the application of X-means algorithm [17] to cluster the data
incoming from step one. Finally, a threshold is compared with
the results to define if they represent anomalies or not.

A method inspired in the Natural Immune System for
Robot Anomaly Detection, with focus in detecting failures in
autonomous robot systems is proposed in [18]. The system
was tested with the aid of the robot OSCAR [19], which has
6 legs with 3 motors per leg. In this method, the authors use
clonal selection, combined with fuzzy logic for representing
the information. Fuzzy logic allows the method to categorize
anomaly detection within a range of values. The method works
by defining two sets of rules, one set of rules defines all the
rules that detect when there is some anomaly present and
the other set defines the rules that represent a state where
an anomaly isn’t present. These rules also have a “weight”,
which is the part of the Artificial Immune System (AIS) in
the method. This weight serves to increment or decrement the
value of the anomaly presence by a constant. The authors were
capable of detecting anomalous situations in their experiments
against the normal behavior of the robot.

Huimin Lu et al. presented a method that based on rein-
forcement learning, that can detect motor anomalies in drones
[20]. The algorithm works by analyzing the information about
the temperature change and deciding if the change is critical
or not, indicating the presence of an anomaly. This analysis is
complemented by using the information about the speed within
the reinforcement learning algorithm to adjust the threshold
temperature. This threshold indicates whether the drone should
continue with the same speed or if it should decelerate or stop
to cool down and check if the anomaly persists.

Dong Zang et al. [21] present a method that uses Markov
Chain to extract an array of features, which they entitled
“Markov Feature”, which consists on a vector with all the
probabilities of state transitions. The state transition frequency
was extracted from the dataset, where the authors defined 4
regions of interest in order to detect abnormal occurrences. The
dataset used to build and test their method consists on time
series information of the pressure from experimental pipelines
over the time. From the data, the authors also extract the mean
and the variance and use them as features. With these features
and data, the authors used 4 different algorithms, k-Nearest
Neighbors, Decision Tree, Random Forest, and Support Vector
Machine. All of the algorithms surpassed the classic methods
of feature extraction, i.e., Statistic-based, Wavelet-based and
time and frequent domain method.

The work presented by Wallace Lawnson et al. [22] uses
Generative Adversarial Networks (GAN) [23] to identify
indoor environment anomalies. The GAN was trained by
teleoperating a robot within an indoor environment in which
the images were split into patches and then used to train the
algorithm. By doing so, the authors were able to create a

method capable of locating anomalies in indoor environments
without the need to store images for comparative analysis.

HuiKeng Lau et al. developed an immuno-engineering ap-
proach to detect anomalies in robotic swarms [24]. The work
focus on creating a simulation of a robotic swarm containing
8 robots in which their task is a collective work to pick food.
In this simulation, the authors induced anomalies and show
that the individual performance of the robots, in a swarm
environment, suffered when one robot had an anomaly and that
anomalies that influence the whole swarm can be detected.

In [25], the authors generated a dataset with the Mackey-
Glass equation and by numerically solving it using fourth-
order Runge-Kutta method. With this, the authors generated
1500 normal samples and discarded the first 1000 to eliminate
the “initial value effect” and did the same to generate abnormal
samples by changing one of the equation parameters within
100 of the final samples. Then, compared a simple Multi-layer
Perceptron approach against a Self-organizing Map trained
only on normal samples and concluded that both methods
achieve similar results in the detection of the abnormal sam-
ples.

III. ROBOTCHAIN

RobotChain is a system to register robotic events in a trust
and secure way [14]. By having a blockchain as a ledger,
it’s ensured that every event sent to the network is validated
and if inserted in the blockchain, it’s valid and secure. This
blockchain is based on the one developed by Tezos [26],
[27] as it incorporates characteristics that are important for
systems that are intended to work in sensitive environments
like RobotChain. The major properties of this blockchain
technology are the support for formal verification of the
code and the self-amending property that allow to perform
changes on the blockchain by voting on-chain, without the
need to conduct hard-forks when a core change needs to
be executed. Tezos developed a new smart-contract language
called Michelson, which is a stack-based and strongly typed
language that facilitates formal verification. The formal verifi-
cation of code ensures that it always does what it’s supposed
to do, regarding the specifications. This blockchain uses as
a consensus algorithm the Delegated Proof-of-Stake, which
is more energy efficient than Proof-of-Work and it also as
the important property that not everyone needs to be a baker
(miners are called bakers on Tezos), which is important when
we think on a heavily energy and time-dependent environment
like a production line. RobotChain also has modules upon it, as
it’s a modular approach, decentralized applications and other
systems can be built using the information that it’s on the
blockchain. In this paper, we propose a method for detecting
anomalies on robots illustrating the creation of a module on
top of RobotChain. This method leverages smart-contracts to
acquire information about a robot and by having an oracle
computing this data off the chain, it’s capable of detecting
when anomalies occurred in a specific robot.

The blockchain in this system is a consortium blockchain
[28], which consists of a private blockchain where the



Fig. 1. Description of how the RobotChain works. Figure from [14].

nodes are from multiple manufacturers. This type of use for
blockchain also leverages from one important characteristic
present in Tezos’ blockchain, which is the self-amendment
process and the ability to change rules, like the consensus
algorithm, without the need for hard-forks, which ultimately
adds a layer of security [29].

The creation of the private blockchain was done by cloning
the main net of Tezos and conducted several changes to
it. These changes were made in an attempt to understand
inner workings and improve it in the context of a consortium
blockchain. The main changes were the addition of a trans-
action parameter named “Transaction Description”, providing
a field to document the transaction or a smart contract call,
allowing texts on transactions. The second change was the
parameters of smart-contracts storage, which were hard-coded
to have a small limit and were increased in order to store more
information on the smart contracts. The other modification
made to the network was the change of the genesis public
key, allowing the creation of a private network in a controlled
environment. A representation of how RobotChain works is
presented in Fig. 1, where a blockchain working over the
Local Area Network is shown, where Robots are coupled
to computing devices that insert values into it and it’s also
possible to query the blockchain to read the values it contains.

IV. OUR PROPOSAL

To register the robotic events we used the storage of a simple
smart contract, which is called by the computer coupled to a
robot that adds to the storage the new information about the
robot joints. The smart-contract used for this was written in
Liquidity, which is a high-level language that is compiled to
Michelson, the Tezos main smart-contract language. Liquidity
is useful as it’s statically-typed, which reduces the number of
induced errors by the programmer and as it has a compiler to
Michelson and a decompiler that translates Michelson to Liq-
uidity, it becomes easier to audit smart-contracts. The smart-
contract written had only a method and a storage variable.
The storage is a list that stores strings. The method serves
the function of receiving a string, checks if the caller of the
smart-contract is the owner of the smart-contract, and if so,
appends the new string to the storage.

Using RobotChain and a real UR3 robot [30], we created a
scenario where it’s possible to detect anomalies. The scenario

created was a pick and place task performed by the UR3,
where the robot has to pick the soap, place it in a different
position, return to the home position and then do the reverse
by putting the soap in the initial place and returning to the
home position. The main reason to illustrate this method on
such a task is due to the fact that this type of task is one of the
most common in factory environments, where robots are used
to transport materials from one place to another, e.g. pick a
door from a conveyor and place it on a car. The chain of events
of the described task is presented in Fig. 2, where the images
represent parts of the movement the robot does. We connected
the robot to the Robot Operating System (ROS) and with the
ur modern driver and the universal driver packages which are
compatible with ROS, we were able to receive information at
a rate of 125Hz regarding effort, velocity and position of the 6
joints the robot has. With this system, we acquired information
about the robot for 25 complete sequences tasks. In the last
one, we induced anomalies by holding the robot for brief
seconds, counteracting its movement, enforcing the need to
adjust the robot joints to correct its behavior. This enforced
anomaly is used to simulate when a robot suffers from some
internal failure, weather by faulty components or by power
issues, or by colliding with another object.

The acquired information consists of multiple signals that
contain noise, as it’s acquired using a real robot, so, to remove
part of the noise, we smoothed every point of the data with
the following filter:

g(i) =

{
1/3

∑i+1
k=i−1 f(k), i ∈ {2, . . . , n− 1}

f(i), otherwise
(1)

Where i = 1, ..., n, n is the number of samples on each signal,
f(i) represents sample i from one of the collected signals and
g(i) its smoothed version.

As the dataset contains multiple repetitions of the same task,
we used Autocorrelation to find the period of each signal in
order to create a model of it. We then divided the dataset into
two separate ones, the initial 80% of the data for the train
set and the rest for the validation set. Using the train set,
we created a model for each signal, where the model is the
mean of each point for the different periods. This ensures that
we have a representation of the signal that is robust and at
the same time it’s low computation cost approach. For each
point, we also determined the standard deviation. In the end,
the model to tackle the anomaly detection consisted of a new
signal for the type of signals contained in the dataset and a
vector with length equal to the period size that contains the
values of the standard deviation for each point of a period.
The creation of this model is an unsupervised task, as we
don’t label the data.

To detect anomalies, we compare a period with the model
signals and we use the following equation for detection:

Aj,i =


1, if Sj,i > µi + kσi

1, if Sj,i < µi − kσi

0, otherwise
(2)



Fig. 2. Pick and place task. Robot start in the home position, picks the object of position 1, leaves it on position 2, returns to the home position and then
does the inverse, picking the object of position 2, dropping it on position 1 and returning to home position.

Where j represents the columns (different signals), i represents
the indexes (rows), A is a variable that stores the existence of
anomalies, S contains the values of the signal that is being
checked for anomalies, µ contains the model signals, k is a
constant and σ is a vector that contains the standard deviations
for each point.

Equation (2) considers as anomaly each point that deviates
from the mean k times. This constant is useful to fine-tune
the model to reduce the false-positives detected, as a higher
k defines that points are considered anomalous only if they
deviate from the mean with higher values than with a smaller
k. In the following section, we explain in detail the experiences
conducted to adjust the k and to validate the method.

V. EXPERIENCES

By using the equation (2) with the train set and by validating
it with the validation set, we concluded that k = 16 was
the best value to detect the anomalies and at the same time
assure the smallest number of false positives as possible, which
was done by evaluating the differences between the different
signals and experimenting different k values. By using the train
set we also perceived that some points on the model have a
standard deviation close to zero, which implies that a small
variation on a new signal in that point has a high chance of
being detected as anomalous. By focusing on the effort signals
of the joints, we can see an example of this problem occurring
in Fig. 3. To solve this problem, we defined that an anomaly
only occurs if there are more than 5 detections in a range
of 30 points. This is defined as so because the rate at which
the robot publishes the information 125Hz, so an appears in
multiple sequential points, as the robot adjusts to compensate
the occurrence.

Then, after adjusting the model, we used the validation set
to verify its efficiency. The validation set contains 20% of the
initial data, which translates into 5 periods of the signal, and
as the data acquired represents a time series data, none of the
points present in the validation set were used to create the
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Fig. 3. False-positive anomaly detection example by comparing effort signal
of joint 4 with the model signal for effort in joint 4. Anomalies are represented
as Xs.

model. In this set, the first periods contains no anomalies,
and the last one contains anomalies that were induced as
mentioned before. This can be seen in Table I, where each
one of the values represents the Mean Squared Error (MSE)
of the signal model against the signals in the validation set. In
this, we can see that the MSE is higher in the last period, where
the anomalies are located, except for the last joint, which has
similar MSE for all periods because this joint is the closest one
to the gripper and does not suffer from the anomalies induced.
By using equation 2 with k = 16, the method was capable of
detecting every anomaly present in the validation set and had
0 false-positive, which means that the method only detected
anomalies in the last period of the validation set, which is the
one containing anomalies. The detection of the anomalies is
shown in figure 4 for the joint 2.

To ensure that the method proposed is suitable for the



TABLE I
MSE OF THE DIFFERENT PERIODS CONTAINED IN THE VALIDATION SET

WITH THE MODEL SIGNAL. ONLY THE EFFORT FOR EACH JOINT SIGNAL IS
CONSIDERED.

Period Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

1 0.0018 0.0037 0.0039 0.0013 0.0008 0.0041

2 0.0023 0.0048 0.0045 0.0017 0.0013 0.0021

3 0.0022 0.0048 0.0043 0.0019 0.0014 0.0018

4 0.0026 0.0061 0.0053 0.0023 0.0013 0.0032

5 0.0181 0.2626 0.1470 0.0420 0.0036 0.0039
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Fig. 4. Detection of anomalies in the validation set where anomalies are
present. Anomalies are represented as Xs.

problem, we acquired two new datasets with the system afore-
mentioned and used it to test the model created for detecting
anomalies. The first test dataset contains no anomalies, while
the second one contains anomalies in every period. We used
cross-correlation to ensure that when comparing the signals,
we are comparing the right points. So, with the correlation
of both signals, we know how much data to remove at the
beginning of the new datasets so that every signal starts at
the same point as the signal models. In table II we present the
values of the MSE per period per test dataset, A represents the
test set with no anomalies and the dataset B represents the test
set with anomalies. The MSE value is useful to check if there
are anomalies in our experiments, but it’s not a robust method
and for other anomalies, it can dilute the anomalies becoming
impossible to perceive if there are any. Using equation 2 in
both these datasets, no anomalies were found in the first one
and in the second one the method was capable of detecting
the anomalies in all off the periods. An illustrative example
of this detection can be seen in Fig. 5.

VI. CONCLUSION

This paper describes the creation of a module of
RobotChain, a novel method to store robotic events in a secure

TABLE II
MSE FOR THE DIFFERENT PERIOD OF THE TWO TEST DATASETS

REGARDING THE EFFORT SIGNAL. THE DATASET A REPRESENTS THE TEST
SET WITH NO ANOMALIES AND THE DATASET B REPRESENTS THE TEST

SET WITH ANOMALIES.

Dataset Period Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

1 0.0011 0.0020 0.0024 0.0013 0.0017 0.0011

2 0.0021 0.0030 0.0037 0.0017 0.0019 0.0023A

3 0.0040 0.0090 0.010 0.0047 0.0030 0.0071

1 0.0145 0.4037 0.1203 0.0034 0.0022 0.0043

2 0.0121 0.5355 0.1590 0.0044 0.0020 0.0021B

3 0.0236 0.6131 0.2180 0.0618 0.0056 0.0042
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Fig. 5. Detection of anomalies in effort signal of joint 2 in period 1 of the
test dataset that contains anomalies.

way. By using a blockchain, we increase the security of the
data that is registered in an environment that is susceptible to
human interaction. This ensures that if a robotic failure occurs,
it gets registered in the blockchain and once there, it can’t be
manually altered. By having such a system, we use smart-
contracts to store the information about a UR3 robot in the
blockchain and created four datasets, one train, one validation,
and two test sets to develop, validate and test a method that
can leverage the information acquired from the blockchain to
detect robotic anomalies. Our method for detecting anomalies
was capable of detecting anomalies induced by counteracting
the movement of the arm while performing a pick and place
repetitive task. This method shows that it’s possible to use
the blockchain with robotics and with such a modular system,
innovative methods for different purposes can be added by
using oracles.
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[19] B. Jakimovski, M. Litza, F. Mösch, and A. E. S. Auf, “Development of
an organic computing architecture for robot control,” in GI Jahrestagung,
2006.

[20] H. Lu, Y. Li, S. Mu, D. Wang, H. Kim, and S. Serikawa, “Motor anomaly
detection for unmanned aerial vehicles using reinforcement learning,”
IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2315–2322, Aug
2018.

[21] “Markov chain-based feature extraction for anomaly detection in time
series and its industrial application,” Proceedings of the 30th Chinese
Control and Decision Conference, CCDC 2018, pp. 1059–1063, 2018.

[22] W. Lawson, E. Bekele, and K. Sullivan, “Finding Anomalies with Gen-
erative Adversarial Networks for a Patrolbot,” IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops,
vol. 2017-July, pp. 484–485, 2017.

[23] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
CoRR, vol. abs/1511.06434, 2015.

[24] H. Lau, I. Bate, and J. Timmis, “An immuno-engineering approach for
anomaly detection in swarm robotics,” in ARTIFICIAL IMMUNE SYS-
TEMS, PROCEEDINGS, P. Andrews, J. Timmis, N. Owens, U. Aickelin,
E. Hart, A. Hone, and A. Tyrrell, Eds., vol. 5666 LNCS. SPRINGER-
VERLAG BERLIN, 2009, pp. 136–150.

[25] F. Gonzalez and D. Dasgupta, “Neuro-immune and self-organizing map
approaches to anomaly detection: a comparison,” Proceedings of the
First International Conference on Artificial Immune Systems, pp. 203–
211, 2002.

[26] L. M. Goodman, “Tezos - a self-amending crypto-ledger,” pp. 1–18,
August 2014.

[27] L. M˙ Goodman, “Tezos - white paper,” no. July 2016, pp. 1–17,
September 2014.

[28] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial internet of things,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3690–
3700, Aug 2018.

[29] C. Natoli and V. Gramoli, “The balance attack or why forkable
blockchains are ill-suited for consortium,” in 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), June 2017, pp. 579–590.

[30] “Ur3 robot,” https://www.universal-robots.com/products/ur3-robot/.


