
Towards AGV Optimization using ROS and Stage
Simulator

Bruno Carneiro da Silva
Universidade da Beira Interior
Instituto de Telecomunicações

Covilhã, Portugal
bruno.carneiro.silva@ubi.pt

Luı́s A. Alexandre
Universidade da Beira Interior
Instituto de Telecomunicações

Covilhã, Portugal
luis.alexandre@ubi.pt

Abstract—Autonomous Guided Vehicles (AGV) are currently
being used in industry to move materials efficiently. Simulators
may be used to help calculate the right number of AGVs
needed for a particular task and also which types better suit the
necessity of a company. This paper analyzes the characteristics
of many of the most used simulators and focus on evaluating an
environment using Stage and Robot Operating System (ROS),
to find experimentally if one AGV may complete a specific task
taking into account eventual path blockages by random events.

Index Terms—Simulation, Autonomous Guided Vehicles.

I. INTRODUCTION

There are numerous applications in which robots are used
in the real world and several researches throughout distinct
fields. The benefits from areas such as medicine [1], bionic
movements [2], military applications [3], industrial operations
[4], [5] and domestic use [6]. These robots may be used to
meet the requirements of flexible production and improve the
production efficiency [5].

Specifically in the industry field, Autonomous Guided Ve-
hicles (AGVs) provide self-guided navigation system to find
their routes to get to target workstations and move products
and materials with no pre-defined routes [7]. They are cur-
rently being used in several areas. Many operational activities
may benefit from AGVs such as the ones related to moving raw
materials from and into warehouses or container terminals and
other generic transportation activities [5], which are important
tasks inside a factory. The interaction with delicate objects
and human employees must be considered in this scenario.
For this reason, there is a necessity of thoroughly evaluate
these vehicles before they are deployed in the real world.
However, using a real environment to evaluate robots may be
a complicated assignment and also may present several risks.
Therefore, a viable option to perform these evaluations is to
use simulated environments.

The robot simulators are essential tools because they may
complement traditional experimental approaches and enable
tests in controlled and secure environments. Hence, choosing
a suitable simulator may reduce the costs, possible damages to
expensive equipment are avoided [7]. There are several types
of simulators, some are used only for specific types of robots,
other may be generic and open source or proprietary systems

Identify applicable funding agency here. If none, delete this.

[5], [8], [9], In this work, several open source simulators
were analyzed, based on the objectives they were built for, as
well as their technical features. The Stage simulator working
with Robot Operating System (ROS) was chosen to present
a simulation of an AGV performing a task in an industrial
environment. The main idea is to analyze the time in which the
AGV could complete one task cycle, when obstacles appear.

This article is divided as follows: section II contains an
overview of several simulators that are being used for different
purposes, divided by fields of activity. Section III provides the
tests and results of a preliminary experiment used to determine
if a single AGV is sufficient to complete a task, when random
obstacles may block the AGVs’ path. The final section presents
the conclusions and future work.

II. AN OVERVIEW OF OPEN SOURCE ROBOTIC
SIMULATORS

In this section, open source robot simulators are briefly
described focusing on their main features, which vary from
academic purposes, industrial usability and service operations
and other goals. Also, several technical features of the simu-
lators are disclosed and a comparison is presented in Table I.
When choosing which simulator to use, the technical features
such as supported programming languages, default resources
provided by the simulator and the amount of robots inside
its default library, must be considered. The physics engine
and mesh manipulation should be considered when the main
focus is the reality customization level of the constructed
environment and robots. The output format refers to the type of
data which will be analyzed after the simulation is completed.

A. Open Source Simulators focused on Academic Purposes

In principle, all the open source simulators may be used
for academic purposes since their code is available online, but
some of them evolved, becoming more robust to the point
that companies started to use them to simulate usability at
an industrial-scale. Others remained with its focus towards
the academic field such as Morse, SimSpark, V-REP, Stage,
Simbad and STDR, which are discussed below.

Modular Open Robots Simulation Engine (MORSE) [10] is
used to develop and implement service robots and focuses
on different environments. It allows the adjustment of the



realism level and the integration into several open source
middlewares such as ROS and YARP. The SimSpark sim-
ulator targets multi-agents and supports the development of
physical simulation for research related to artificial intelligence
and robotics. These agents communicate between themselves
with the simulation server through UDP and TCP protocols.
Therefore, they allow implementations using any programming
language that supports these sockets. SimSpark is the official
simulator used in the Robocup Simulation League [11]. As
for V-REP [12], the software offers support for a variety of
programming languages and for the development of algorithms
used in simulated environments where automation is applied.
The software has a professional version which is used by
engineers for monitor and security purposes. However, it also
has an educational version, which is limited but it is free and
targets researches goals.

Other simulators such as Stage, Simbad and Simple Two
Dimensional Robot (STDR) focus on delivering a small variety
of technical features compared to other simulators studied
throughout this work. Their goal is to be lightweight and
provide more automation through coding rather than realistic
world accuracy and multiple detailed 3D features. For exam-
ple, Simbad [13] targets Evolutionary Robots, offers support
for artificial intelligence and machine learning algorithms and
was built to create world features with some reality but it is
intentionally maintained with simple technical characteristics
such as own physics engine and small amount of default
resources. As for STDR [14], it provides the option for ex-
periments to be executed remotely and also, without a graphic
environment. This simulator was created to be totally compat-
ible with ROS, leaving the researchers free to use a traditional
robot framework and take advantage of ROS features. This
simulator provides distinct access to the STDR client graphical
interface and server, allowing them to be executed in different
computers. The Stage Project [15], provides open source tools
that simplify controller development, particularly for multiple
robot, distributed-robot, and sensor network systems. This
project aims to be efficient and configurable rather than highly
accurate.

B. Open Source Simulators used in Industry

Simulators are commonly used to evaluate robots in en-
vironments that may be considered sensitive due to product
handling, interaction with people and factory equipment. As
aforementioned, there are several types of simulators, a few
open source ones are used in the industry field such as
Webots and Gazebo. Webots [16] is used specially in industry
and service segments, where any robot may be modeled,
programmed and simulated using different programming lan-
guages. It has external libraries compatible with OpenCV and
other platforms. On the other hand, Gazebo [9] is a multi-
robot simulator which supports a large number of sensors and
objects. The software is also compatible with ROS, such as
many other platforms. It also provides realistic renderization
of environments and allows the generation of different sensor
data, such as lasers, contact sensors, lidars and 2D/3D cameras.

Another software that should be mentioned is Blender [17],
which is a powerful tool created to design and manipulate
service robots in complex environments. The platform offers
support for 3D contents and may be used to simulate virtual
worlds and robot behaviors. Blender also allows renderization,
modelling, animation, simulation, video editing and scripting.
Some simulators, such as MORSE, use physics engines which
are contained in Blender.

C. Open Source Simulators for other Goals

Some simulators focus on delivering efficient reproduction
of any type of swarm of robots, as the ARGoS platform [18],
which uses multi-physics concept. The software is designed to
help create applications for different types of contexts, such as
hostile environments, disaster recovery and construction and
large-scale medicine. ArGoS focuses on three components:
high precision, flexibility and efficiency. This tool also allows
the addition of new plugins to provide the users with bet-
ter customization according to their necessities. Autonomous
Navigation Virtual Environment Laboratory (ANVEL) [19] is
a system that provides modelling and interactive simulation
capabilities. It was built to assist in the design, testing and
evaluation specifically for intelligent ground vehicles. This
software allows the user to rapid and easy construct virtual
models, insert sensors on board these models, use control
algorithms, program plugins directly into the system and
perform tests in a large number of virtual environments with
scalable fidelity.

D. Technical Features of the Simulators

As aforementioned, each simulator is adapted to distinct
purposes.Below, several technical features are presented, as
well as a comparison table between the simulators based on
these features.

Supported Languages: Each simulator allows the use of
several different programming languages with C++ and Python
being the most common ones.

Physics Engine: It is a technology which allows the sim-
ulation of physic systems as close to reality as possible [17].
Velocity, mass and air systems are some of the real conditions
of which a physics engine simulates. This type of engine
basically works with real-time and high precision physics. This
is regarded as a crucial feature in robot simulation.

Mesh Manipulation: Mesh is a collection of vertices,
borders and surfaces which define the shape of an object
[20]. Specially used in computer graphics, 3D environment
and modelling, the meshes may assume different formats. In
the robot simulators, its function is the same and the simulators
allow different use and manipulation of the mesh.

Output Formats: This feature provides different types of
outputs such as video frames, text file, pictures and specific
formats based on which simulator is being used and even its
programming language options. The suitable output format is
important to know what type of file will be further analyzed
and used once the simulation finishes.



Robot Library: There are many options of robots on the
market and the simulators allow the construction of customized
robots or even have robot libraries with several pre-defined
robot and world models. Also, some of these platforms allow
that other models be imported.

Default Resources: The simulators also provide default
resources besides the robot models such as random objects and
sensors. Walls, doors, windows, trees and tracks are examples
of these objects. Default resources may also depend on the
framework that the simulator is able to use for integration, i.
e, ROS.

III. EXPERIMENTAL USE OF A SIMULATOR

In this section we illustrate the possible use of a simulator
for AGV placement. We will use the Stage simulator because
of its simplicity. Therefore, we focus on analyzing the results
of the accomplishment of the task rather than on great realism.

The main idea of the use case, is to determine if only one
AGV is sufficient to complete the exemplary task based on
the probability of the obstacle occurrence, i.e., human workers
walking through the robot path. For that, a simple simulation
model was created inspired on AGV networks inside factories.

A. Model Parameters

For the simulation we will need to define the following
parameters: the path that the AGV would go through, the AGV
velocity (in our case is a constant) and the total time in which
the AGV must complete a cycle.

In practice, there will be some probability of the AGV
finding obstacles in its path and hence, it will have to wait,
since it is following a magnetic band placed on the floor
to define the path. These obstacles will be modelled in the
simulation using a probability of obstacle occurrence (POO),
p, and a fixed duration of the presence of the obstacle. The
obstacles are commonly people that cross the path of the AGV
and once they realize the AGV is blocked because of their
presence, they move to allow the AGV to continue its work.
So we modelled the duration of the obstacle presence with the
fixed value of 10 seconds.

B. Environment Model

A snapshot of the simulation model can be seen in Fig. 1.
It shows factory walls, one AGV, and the magnetic band in
yellow. The total length of the path is 50 meters and the pre-
established AGV velocity was 1 m/s. The ideal total time for
the AGV to complete the cycle is 56 seconds (this is the cycle
time).

C. Tests and Results

We made a set of experiments where we varied the value
of p from 0.1 to 0.9. For each value we run 20 repetitions
and store the total time the AGV needed to complete the path.
The results are presented in Fig. 2. We see that, if the POO is
more than around p = 0.64, the AGV exceeds the cycle time
of 56 seconds and the further use of another AGV would be
required in order to complete the task inside the defined cycle
duration.

Fig. 1. A snapshot of the simulation model. The magnetic band is represented
in yellow, walls are in dark grey, the AGV model is displayed in blue and its
LiDAR scanning range is depicted in pink.

0.2 0.4 0.6 0.8 1.0
Probability of obstacle occurrence

48

50

52

54

56

58

60

62

To
ta

l c
yc

le
 ti

m
e 

(s
)

Fig. 2. Average and standard deviation, over the 20 repetitions, of the amount
of time a single AGV required to perform the cycle, when objects were
gradually appearing in its path, with probability of obstacle occurrence given
in the X-axis.

IV. CONCLUSIONS

This paper presented a brief overview of several common
robotic simulators and analyzed the possibility of a simulator
helping in the decision regarding AGV placement based on the
time per cycle when obstacles appear randomly along the path.
The results show that when more interference emerged and
the AGV stopped, the average time for one AGV to complete
the task would increase, as expected, eventually passing the
56 seconds defined time per cycle threshold. Therefore, we
concluded that, for the evaluated scenario, if the probability
of obstacle occurrence is above 0.64, one AGV would not



TABLE I
COMPARISON BETWEEN OPEN SOURCE SIMULATION TOOLS REGARDING THEIR TECHNICAL FEATURES AND CUSTOMIZATION LEVEL

Simulator Supported Languages Physics Engine Mesh Handling Output Formats Robot Library Default Resources

Webots C, Java, Python,
C++, Matlab

ODE Fixed Mesh Video, 3D images Small Diversity Avg Amount

Simbad Java Own Customized
Physics

Fixed Mesh N/A N/A Small Amount

V-REP C, Python, Matlab,
Octave, Lua, Java

Bullet, Vortex,
ODE, Newton

Allows Handling Video, text & other
data

Great Diversity Great Amount

Stage C, C++, Python Own Customized
Physics

Fixed Mesh Specific Stage File
& text

Small Diversity Small Amount

MORSE Python Based in Blender N/A N/A Moderate Diversity Avg Amount
ArGos Lua, C++ Own Customized

Physics
Fixed Mesh Video Frames and

text
Small Variety Small Amount

Anvel C, Java, Python,
C++, Matlab

Based in ODE Multiple Meshes N/A Small Variety Small Amount

STDR C++ N/A N/A N/A Small Variety Small Amount
Simspark Ruby ODE Multiple Meshes N/A Moderate Diversity Avg Amount
Gazebo Python ODE Fixed but allows

import
Log file, text &
video frames

Moderate Diversity,
Allows addition

Avg Amount

Blender Python Various Physics
Engine

Complete
Handling

Great Variety N/A Great Quantity

be enough to perform the task in time. For future work, it
is important to perform tests using the design of multiple
alternative paths and cycles as well as variations in the amount
of time which the AGV may stop in front of an obstacle. AGV
velocity and time to perform a cycle vary accordingly to the
type of vehicle used. Therefore, testing with an increased set
of parameters may also be significant.

ACKNOWLEDGMENTS

This work was partially supported by Instituto de
Telecomunicações under grant UID/EEA/50008/2019 and by
project 026653 (POCI-01-0247-FEDER-026653) ”INDTECH
4.0 New technologies for smart manufacturing”, co-financed
by the Portugal 2020 Program (PT 2020), Compete 2020 Pro-
gram and the European Union through the European Regional
Development Fund (ERDF).

REFERENCES

[1] P. Hamet and J. Tremblay, “Artificial Intelligence in Medicine,”
Metabolism, vol. 69, pp. S36–S40, April 2017.

[2] D. Liu, M. Sun and D. Qian, “Structural Design and Gait Simulation
of Bionic Quadruped Robot,” International Conference on Advanced
Mechatronic Systems (ICAMechS), August 2018.

[3] P. Sapaty, “Military robotics: Latest Trends and Spatial Grasp Solutions,”
International Journal of Advanced Research in Artificial Intelligence,
vol. 04, April 2015.

[4] H. Fazlollahtabar and S. Hassanli, “Hybrid cost and time path planning
for multiple autonomous guided vehicles,” Applied Intelligence, vol. 48,
pp. 482-498, February 2018.

[5] Y. Pan, X. Ma, C. Mu, H. An and J. Chen. “Design of Industrial Robot
Sorting System with Visual Guidance Based on Webots,” International
Conference on Computer and Communication Systems (ICCCS), vol. 3,
pp. 516–521, April 2018.

[6] M. M. A. de Graaf, S. B. Allouch and J. A. G. M. van Dijk, “Why would
i use this in my home? a model of domestic social robot acceptance,”
HumanComputer Interaction, vol. 34, pp. 115–173, 2019.

[7] Fengjia Yao et. al., “Optimizing the Scheduling of Autonomous Guided
Vehicle in a Manufacturing Process,” International Conference on In-
dustrial Informatics (INDIN), pp. 264–269, July 2018.

[8] G. A. Camacho M., C. H. Rodriguez and D. Alvarez-Martinez, “Mod-
elling the kinematic properties of an industrial manipulator in packing
applications,” 2018 IEEE 14th International Conference on Control and
Automation (ICCA), pp. 1028–1033, June 2018.

[9] L. Pitonakova, M. Giuliani, A. Pipe, and A. Winfield. “Feature and
Performance Comparison of the V-REP, Gazebo and ARGoS Robot
Simulators,” Towards Autonomous Robotic Systems, vol. 10965, pp.
357–368, July 2018.

[10] G. Echeverria, N. Lassabe, A. Degroote, S. Lemaignan. “Modular open
robots simulation engine: Morse,” IEEE International Conference on
Robotics and Automation, May 2011.

[11] O. Obst and M. Rollmann, “Spark A Generic Simulator for Physical
Multi-agent Simulations,” MATES 2004: Multiagent System Technolo-
gies. Lecture Notes in Computer Science, vol. 3187, pp. 243–257,
September 2004.

[12] E. Rohmer, S. P. N. Singh, M. Freese, “V-REP: A versatile and scalable
robot simulation framework,” International Conference on Intelligent
Robots and Systems, pp. 1321–1326, November 2013.

[13] L. Hugues and N. Bredeche, “Simbad: An Autonomous Robot Simula-
tion Package for Education and Research,” SAB 2006: From Animals
to Animats, vol. 9. Lecture Notes in Computer Science, vol 4095, pp.
831–842, September, 2006.

[14] “Simple two dimensional robot simulator.” Online at http://stdr-
simulator-ros-pkg.github.io/, Last accessed: April 2019.

[15] B. P. Gerkey, R. T. Vaughan and A. Howard, “The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems,” In Proceedings
of the International Conference on Advanced Robotics, pp. 317–323,
June 2003.

[16] Olivier Michel, “Cyberbotics ltd. WebotsTM: Professional mobile robot
simulation,” International Journal of Advanced Robotic Systems, vol. 1
pp. 39-42, March 20014.

[17] “Blender Project: Free and Open 3D Creation Software.” Online at
http://www.blender.org, Last accessed: April 2019.

[18] Carlo Pinciroli et. al. “Argos: a modular, parallel, multi-engine simulator
for multi-robot systems,” Swarm Intelligence, vol. 6, pp 271–295,
September 2012.

[19] Phillip J. Durst, “A Real-Time, Interactive Simulation Environment
for Unmanned Ground Vehicles: The Autonomous Navigation Virtual
Environment Laboratory (ANVEL),” International Conference on Infor-
mation and Computing Science, pp. 7–10, July 2012.

[20] H. Kato, Y. Ushiku and T. Harada, “Neural 3D Mesh Renderer,”
Computing Research Repository (CoRR), pp. 3907–3916, August 2018.


