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Abstract. The aim of this paper is to examine a multiclassifier approach
to the classification of the lung nodules in X-ray chest radiographs. The
approach investigated here is based on an image region-based classifi-
cation whose output is the information of the presence or absence of
a nodule in an image region. The classification was made, essentially,
in two steps: firstly, a set of rotation invariant features was extracted
from the responses of a multi-scale and multi-orientation filter bank;
secondly, different classifiers (multi-layer perceptrons) are designed us-
ing different features sets and trained in different data. These classifiers
are further combined in order to improve the classification performance.
The obtained results are promising and can be used for reducing the
false-positives nodules detected in a computer-aided diagnosis system.

1 Introduction

In the United States, lung and bronchus cancer is the second most common can-
cer and it is the leading cause for the estimated number of deaths [1]. Survival
from lung cancer is directly related to early detection of suspicious lesions and
treatment and successful results can be increased to 50% if the tumor is detected
at an early stage. Posterior-anterior chest radiographs have been used by radiol-
ogists to make their diagnosis for some diseases, as pulmonary nodules, during
a long time. However, studies show that radiologists detect pulmonary nodules
in radiographs in about only 70-80% of actually positive cases [2].

Many computerized schemes have been developed for detection of pulmonary
nodules in chest radiography, one of most studied problems in X-ray computer
analysis. Most of the proposed computer-aided diagnosis (CAD) systems adopt
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a pattern recognition approach, combining a feature extraction phase with a
classification step. The performance of the classifier depends directly on the dis-
criminatory power of the feature set. Other systems follow a two-step approach
that includes, first the selection of an initial set of lung nodule candidates and,
second, reduction of false-positive candidates.

There is a vast amount of literature related with this subject. In 2001, Gin-
neken et al. [3], in a survey paper, distinguish three main areas, including general
processing, segmentation of anatomical structures, and image analysis. The se-
lection and classification of lung nodules is included in this last group, with
references to 36 papers. The research on this topic continues, and the endeavor
to propose new solutions to this difficult problem continues. In the following we
briefly review some of the recent approaches.

Wei et al. [4] evaluated 210 features to look for the optimum feature set on
247 chest X-ray images. This CAD system consists of four processing steps:
1) location of tumor candidates by using adaptive ring filter, 2) extraction of
the boundaries of tumor candidates, 3) extraction of feature parameters, and
4) discrimination between normal and abnormal regions. The authors report an
average number of false-positives per image of 5.4 for a true positive detection
rate of 80%.

Keserci et al. [2] describes an approach for the detection of lung nodules based
on a combination of morphological features with an edge-guided wavelet snake
model. With this combination the authors are able to largely reduce the number
of false positives.

Ginneken et al. [5] presented a method to detect abnormalities in chest ra-
diographs, using texture features, as the moments of responses to a multiscale
filter bank. The authors report good results on a database of chest radiographs
with interstitial diseases.

Schilham et al. [6] follow a multi-step approach for nodule detection. After
lung segmentation the pre-candidate nodules are detected using a multiscale
blob detector followed by a classifier to provide an initial reduction of nodule
candidates. These candidates are further analyzed and a probability to represent
a nodule is assigned to each blob, by using a k nearest neighbor classifier. The
methodology was tested in JRST database [7] giving promising results.

Yoshida et al. [8] developed a method oriented to the reduction of false posi-
tives, exploring the symmetry between the two lungs and assuming that a nodule
candidate region in one lung would correspond to a normal region in the other.
These two regions are matched and difference in structure is evaluated. With
this approach the authors are able to reduce the number of false-positives.

Suzuki et al. [9] report a reduction of false-positives, by using the so-called
multiple massive-training neural network. The reported reduction is from 4.5
false positives to 1.4 per image, while maintaining the sensitivity. The input
images are submitted to a background-trend-correction technique followed by
contrast normalization.

In this paper is proposed a system for the classification of lung regions as
nodular and non-nodular regions. The feature vector includes the original pixel
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intensity and rotation invariant features extracted from the responses of a multi-
scale and multi-orientation filtering process.

The layout of the rest of the paper is as follows: in Section 2, a brief description
of the methodology is presented; Section 3 is dedicated to the filter bank used
for feature extraction and the description of the feature vector; the different
topologies and combinations of the classifiers are covered in Section 4, while
Section 5 presents the experimental results of the training/testing phases of the
classifiers. Finally, the conclusions are presented in Section 6.

2 Methodology

The proposed Pattern Recognition (PR) system is based on the following steps:
1) filtering of image regions using a multi-scale filter bank, 2) extraction of ro-
tation invariant features and selection of the best discriminatory features, and
3) using multiple classifiers based on different multiple-layer perceptrons (MLP)
receiving each one a different feature and combining the information from these
several sources using several combination strategies. Figure 1 shows the block di-
agram representation of the processing scheme delineated for lung nodule region
classification.

 

PR system

Filtering 

Feature extraction/selection

Multiclassifier 

Digital chest image

Classified image region 

Fig. 1. Block diagram of the processing sequence for lung nodules region classification

3 Feature Measurement

Several approaches have been proposed for the segmentation and classification
of texture contents in digital images. Chest radiographs are not an exception,
as textural analysis has already been applied to the detection of pulmonary
pathologies [3].

In this paper we propose a solution for the characterization of the texture of
lung nodules based on a set of features derived from a multi-scale processing
sequence that combines both spatial and frequency filters.
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The basic assumption for most filtering approaches is that the energy distrib-
ution in the frequency domain identifies a texture. Hence, if the frequency spec-
trum of a textured image is decomposed into a sufficient number of subbands,
the spectral energy signature of that texture is different from other distinct
textures [10].

In [11], a bank of Gabor filters was used for extracting local image features.
In the spatial domain, the Gabor function can be viewed as a sinusoidal plane of
a particular frequency and orientation modulated by a Gaussian function. The
Gabor function forms a complete but a non-orthogonal basis set and its impulse
response in the 2-D plane has the following general form shown in equation (1),
where u0 denotes the radial frequency of the Gabor function [12].
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The space constants σx and σy defines the Gaussian envelope along the x and y
axes. A Gabor filter is circularly symmetric when σx = σy and asymmetric when
σx �= σy. Each bank comprises a predefined number of Gabor filters that are the
result of using different preferred spatial frequencies and different equidistant
preferred orientations.

Another common approach for texture analysis is based on the processing of
images with a large number of filters at multiple orientations and scales (”Gabor-
like” filters) to extract features for classification purposes. However, constructing
and storing a high dimensional filter response space is not computationally feasi-
ble and therefore it is necessary to limit the dimensionality of the filter response
vector. This can be achieved if multiple oriented filters are used, but their out-
put space is combined to form a low dimensional, rotation invariant response
vector [13]. Leung and Malik filter set is a multi-scale, multi-orientation filter
bank with 48 filters [14]. In this work, first and second derivatives of a Gaussian
function are applied in 6 orientations and 3 scales making a total of 36 filters.
The remaining filters comprise 8 Laplacian of Gaussian and 4 Gaussian kernels.

Another filter set is the Maximum Response 8 (MR8) filter bank which is
composed by 38 filters. The MR8 bank contains an edge filter at 3 scales, and
a bar filter at the same 3 scales; each of these basic kernels is rotated in order
to generate 6 directional filters. The last 2 filters are a Gaussian filter and a
Laplacian of Gaussian filter.

The main difference between the results of the MR8 bank and the Leung-
Malik bank is rotational invariance, which is a unique characteristic of the former
set. This attribute is obtained through the combination of the 6 directional
responses associated with the 6 rotated versions the same basic filter into a single
response, which is the maximum value across all directions. As a consequence,
the responses of the 36 directional filters of the MR8 set are condensed into 6
single rotation invariant scale-dependent results.

Our proposal for lung nodule classification is also based on the use of a multi-
scale filter bank, which is essentially an extension of the MR8 set, with the
inclusion of two additional sets of scale-dependent Gaussian and Laplacian of
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Gaussian kernels. This filter bank contains 48 filters that are a mix of edge, bar
and spot kernels, at multiple scales and orientations, as shown in Fig. 2. The
individual filters can be divided into two different classes: the first class comprises
6 sets of directional filters, shown in the left part of Fig. 2, whose individual
results are combined to retain just the maximum absolute of the corresponding
6 directions; the second class consists of 12 isotropic filters, 6 Gaussian and 6
Laplacian of Gaussian, as depicted in the right part of the figure.

   

Fig. 2. Kernels of the proposed filter bank that comprises 36 filters at 6 different scales
and orientations (left part of the figure) and 12 isotropic filters, 6 Gaussian and 6
Laplacian of Gaussian (right part of the figure)

To achieve rotational invariance, only the maximum filter response across all
di-rections is kept. This means that although the filter bank is formed by 48
kernels, only 18 filters responses are finally used.

Each pixel of the image region under analysis is processed using the herein
proposed filter bank, and, for each image point, the 18 filtering results are ob-
tained. These results are combined with the pixel intensity, which is directly
measured from the image, to generate a feature vector used for image region
characterization. A graphical representation of the filtering sequence and fea-
ture measurement is depicted in Figure 3. Table 1 gives a brief description of
the complete feature vector components.

4 Multiclassifier Approach

There are two main approaches to improve the performance of a pattern recog-
nition system: the first is to consider features with high discriminatory power;
the second is to improve the classifications result. The motivation of the use of a
combination of classifiers is that classifiers with different methodologies, or that
use different features, can complement each other. In this work, we have used
multiple classifiers based on different multiple-layer perceptrons (MLP) receiving
each one a different feature, and the information from these several sources is
combined using arithmetic mean (or the sum), geometric mean (or the product),
as in Alexandre et al. [15], minimum, maximum, borda, and median combination
rules to produce the final classification decision.
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Feature vector 

Pixel intensity 

Laplacian of 
Gaussian filters Gaussian filters 

Kernels of the 
MR8 filters 

Image region 

Maximum absolute 
filter responses 

2 3 5 4 6 7 

Filtered image 

8 13 14 19 

Filtered image Filtered image 

1 

Fig. 3. Filtering sequence and feature measurement

Table 1. Description of the feature vector fields

Feature vector
Index Description

1 Pixel intensity at the original image
2-7 Edge and bar filter responses
8-13 Gaussian filter responses
14-19 Laplacian of Gaussian filter responses

The aim of the proposed image region-based nodule classification is producing
the information of the presence or absence of a nodule for an entire region. For
that, the following decisions are taken into account:

1. Each image region corresponds to a point in the data set;
2. Each data set corresponds to a MLP according to one of the features, with

a topology selected after experiments;
3. Six combinations of classifiers are applied to the previous isolated MLP out-

puts to improve the performance of the final classification.

Since the input layer has a large number of pixels, corresponding to the size
of the input image region, they are grouped into square regions of side X (each
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region contains X2 pixels). Every pixel in a group only has feed-forward connec-
tions to one pixel in the hidden layer. For instance, for 44×44 image regions and
X = 11, the hidden layer will have its neurons organized in a square with size
44/X = 4 elements, thus, the hidden layer will have 16 neurons.

Table 2 shows the number of weights in the neural network as a function of
the number of the neurons in the hidden layer (NNHL) for two cases: net1 (the
input layer fully connected to the hidden layer) and net2 (the input layer uses
pixel groups where all the pixels in each of these groups only have a connection
to one neuron in the hidden layer). The use of pixel groups in the input layer
(net2) reduces, significantly, the number of weights used in the neural network,
as shown in table 2.

Table 2. Number of weights in the neural network for different values of the number
of neurons in the hidden layer, for the two types of network

NNHL Net1 Net2
4 7757 1950
16 31025 1986
121 234620 2301

The results presented in table 3 shows that the network topology that yields
better results is [1936:16:2]. Each topology was submitted to 40 repetitions.

Table 3. Error obtained using pixel intensity feature and different network topologies

NNHL Error (std)
4 18.58 (2.49)
16 17.82 (2.16)
121 38.37 (16.75)

5 Experimental Results

Image regions of size 96×96 were automatically selected from chest radiographs
of the JRST image database [7]. The size of the regions was established based
on the maximum dimension of the nodules that are present in the database.
To avoid the consideration of border conditions that naturally result from the
filtering process, only the central 44×44 area (1936 pixels) was used for classifi-
cation purposes. Three different sets for training/testing were formed: the first
set contains regions centred in a true nodule area; the second set is composed
by regions with no nodules that were randomly cropped out from pathologic
images; finally, the third set holds re-gions with no nodules that were randomly
extracted from images without any kind of pathology. Examples of the three
image region sets are shown in Figure 4.
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b) a) c) 

Fig. 4. Examples of image regions: a) region with a nodule in its central part; b)
region without a nodule, extracted from a pathologic image; c) region without a nodule,
extracted from a non-pathological image

In this section, the experimental results of image-based nodule detection are
presented. As each image region will correspond to a point in the data set, a set
of 19 MLPs were created, corresponding each data set to an image according to
one of the features.

Table 4. Error, sensitivity and specificity for each classifier using a different feature
as input, and their combinations

Classifier Error (std) Sensitivity (std) Specificity (std)

1 16.21 (1.59) 76.41 (3.35) 88.39 (2.07)
2 23.07 (1.08) 66.23 (2.56) 83.60 (1.81)
3 22.73 (2.15) 70.35 (2.78) 81.58 (2.47)
4 23.98 (1.31) 67.75 (4.36) 81.17 (1.22)
5 31.21 (0.58) 60.06 (2.00) 74.22 (0.91)
6 33.92 (1.44) 59.96 (2.84) 69.91 (2.06)
7 38.61 (1.60) 51.08 (3.52) 67.81 (2.61)
8 18.12 (1.12) 78.03 (2.26) 84.28 (0.74)
9 17.37 (0.99) 79.44 (2.49) 84.62 (0.85)
10 19.08 (1.01) 75.43 (3.00) 84.35 (2.14)
11 20.32 (1.93) 73.48 (2.51) 83.54 (3.41)
12 21.20 (1.54) 70.02 (2.19) 84.28 (1.24)
13 22.65 (2.00) 65.69 (2.86) 84.62 (2.47)
14 30.63 (2.52) 61.47 (4.42) 74.29 (2.20)
15 25.60 (0.89) 70.35 (2.89) 76.92 (1.38)
16 20.37 (0.78) 76.19 (3.30) 81.78 (1.97)
17 19.87 (1.03) 74.35 (2.93) 83.74 (1.80)
18 19.62 (1.22) 75.54 (3.04) 83.40 (1.76)
19 19.87 (1.26) 74.35 (2.62) 83.74 (1.41)

Mean 16.54 (1.02) 77.49 (2.04) 87.18 (1.08)
Product 16.50 (0.81) 77.71 (2.08) 87.11 (0.79)

Minimum 17.91 (0.87) 75.76 (1.46) 86.03 (1.27)
Maximum 17.91 (0.88) 75.87 (1.39) 85.96 (1.30)

Borda 43.72 (1.49) 97.40 (1.09) 30.63 (2.56)
Median 16.54 (1.46) 77.49 (2.68) 87.18 (1.39)
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Table 5. Confusion matrices for the experiments with 19 classifiers each one receiving
a different feature

Predicted values
Classifier True values Non-nodules With nodules

Non-nodules 218.33 (3.35) 28.67 (5.13)
1

With nodules 36.33 (5.16) 117.67 (5.16)
Non-nodules 206.50 (4.46) 40.50 (4.46)

2
With nodules 52.00 (3.95) 102.00 (3.95)
Non-nodules 201.50 (6.09) 45.50 (6.09)

3
With nodules 45.67 (4.27) 108.33 (4.27)
Non-nodules 200.50 (3.02) 46.50 (3.02)

4
With nodules 49.67 (6.71) 104.33 (6.71)
Non-nodules 183.33 (2.25) 63.67 (2.25)

5
With nodules 61.50 (3.08) 92.50 (3.08)
Non-nodules 172.67 (5.09) 74.33 (5.09)

6
With nodules 61.67 (4.37) 92.33 (4.37)
Non-nodules 167.50 (6.44) 79.50 (6.44)

7
With nodules 75.33 (5.43) 78.67 (5.43)
Non-nodules 208.17 (1.83) 38.83 (1.83)

8
With nodules 33.83 (3.49) 120.17 (3.49)
Non-nodules 209.00 (2.10) 38.00 (2.10)

9
With nodules 31.67 (3.83) 122.33 (3.83)
Non-nodules 208.33 (5.28) 38.67 (5.28)

10
With nodules 37.83 (4.62) 116.17 (4.62)
Non-nodules 206.33 (8.43) 40.67 (8.43)

11
With nodules 40.83 (3.87) 113.17 (3.87)
Non-nodules 208.17 (3.06) 38.83 (3.06)

12
With nodules 46.17 (3.37) 107.83 (3.37)
Non-nodules 209.00 (6.10) 38.00 (6.10)

13
With nodules 52.83 (4.40) 101.17 (4.40)
Non-nodules 183.50 (5.43) 63.50 (5.43)

14
With nodules 59.33 (6.80) 94.67 (6.80)
Non-nodules 190.00 (3.41) 57.00 (3.41)

15
With nodules 45.67 (4.46) 108.33 (4.46)
Non-nodules 202.00 (4.86) 45.00 (4.86)

16
With nodules 36.67 (5.09) 117.33 (5.09)
Non-nodules 206.83 (4.45) 40.17 (4.45)

17
With nodules 39.50 (4.51) 114.50 (4.51)
Non-nodules 206.00 (4.34) 41.00 (4.34)

18
With nodules 37.67 (4.68) 116.33 (4.68)
Non-nodules 206.83 (3.49) 40.17 (3.49)

19
With nodules 39.50 (4.04) 114.50 (4.04)
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Table 6. Confusion matrices for the experiments with the combinations of the 19
classifiers

Predicted values
Classifier True values Non-nodules With nodules

Non-nodules 215.33 (2.66) 31.67 (2.66)
Mean

With nodules 34.67 (3.14) 119.33 (3.14)
Non-nodules 215.17 (1.94) 31.83 (1.94)

Product
With nodules 34.33 (3.20) 119.67 (3.20)
Non-nodules 212.50 (3.15) 34.50 (3.15)

Minimum
With nodules 37.33 (2.25) 116.67 (2.25)
Non-nodules 212.33 (3.20) 34.67 (3.20)

Maximum
With nodules 37.17 (2.14) 116.83 (2.14)
Non-nodules 75.67 (6.31) 171.33 (6.31)

Borda
With nodules 4.00 (1.67) 150.00 (1.67)
Non-nodules 215.33 (3.44) 31.67 (3.44)

Median
With nodules 34.67 (4.13) 119.33 (4.13)

The training and test procedure consists of 10 repetitions of the holdout: half
of the set was used for training and the other half for testing. Then the sets
were exchanged and the two errors on the test sets were averaged yielding one
experiment result. The networks were trained using resilient backpropagation.

Table 4 shows the error, sensitivity and specificity for each one of 19 MLPs,
with a [1936:16:2] topology, using a different feature as input, and their combi-
nations. Tables 5 and 6 present the results of experiments using the previous 19
classifiers and their combinations, respectively. Each topology was submitted to
10 repetitions.

6 Conclusions

For the image region-based lung nodules classification, the following conclusions
are drawn:

• The network topology that yields better results is [1936:16:2];
• The smallest error is always obtained using intensity as feature (classifier 1);
• The classifiers that present smallest error are, by decreasing error, those that

use features 1, 9, 8 and with an almost identical error 10, 18, 17 and 19;
• The combinations cannot obtain an error smaller than that obtained with

the best classifier (16.21%);
• All combinations, with the exception of the Borda, have better specificity

than all isolated classifiers (with the exception of classifier 1);
• All combinations, with the exception of the Borda, show less errors than all

classifiers, with the exception of classifiers 1 and 9;
• The Borda count combination method is the one that produces best values

in terms of the sensitivity (97%), although with a high overall error (43%).



622 C.S. Pereira et al.

If we had to choose one of these approaches the best would be the combination
using the product rule because although the error is higher than the best iso-
lated classifier (16.50 versus 16.21) its standard deviation is significantly smaller
(about one half: 0.81 versus 1.59). We would also like to point out one of the
reasons we believe the multiclassifiers did not show a greater improvement over
the isolated classifiers: we suspect that due to the large number of combined clas-
sifiers (19) the best possible fusion results were not achieved. We are currently
considering the idea of choosing subsets of the 19 classifiers where we believe
better results can be obtained.

As future work, the multi-classification approach proposed in this work will
be used in combination with an initial step of candidate region selection, aiming
at reducing the final number of false positives to be presented to the radiologist.
The initial stage of candidate region selection is already implemented and some
preliminary tests performed using the 154 nodular images of the JSRT database
allowed the conclusion that the selection of 3 candidate regions per image iden-
tifies 46% of the nodules, while for 5 candidates this value is increased to 60%;
an detection rate of 72% is achieved if 15 regions are initially selected.
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