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Abstract

In this paper we present a new approach to the automatic deter-
mination of the bandwidth for kernel based density estimation in the
1-D case. The approach is based on the used of the plug-in estima-
tor in the optimal AMISE estimator and an iterative algorithm. We
present comparisons of our proposal on both artificial and real data
sets against some of the more common bandwidth estimators. The
values obtained are usually smaller than the ones obtained with other
methods, yielding higher peaks and deeper troughs in the estimated
densities.

1 Introduction

The problem of density estimation is fundamental for many applications [8].
In the class of non-parametric methods, kernel based ones are probably the
most used. A central issue when using kernel based approaches to density
estimation is the bandwidth value to use. Several methods have been pro-
posed for the optimal kernel bandwidth, and following [8], we can divide the
approaches into: rules of thumb, cross-validation and plug-in based methods.
Our proposal fits in the plug-in methods.

In our case, the need for density estimation came when searching for the
good estimates of the entropy of an error variable while using neural networks
trained with the Error Entropy Minimization principle [1, 5, 10].
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The optimal h from the point of view of minimizing the asymptotic mean
integrated square error (AMISE) is [11]

hopt = k
−2/5
2

[∫
K(t)2dt

]1/5 [∫
(f ′′(x))2dx

]−1/5

n−1/5 (1)

where f(x) is the density, K(t) is the kernel used and

k2 =

∫
t2K(t)dt. (2)

The problem with expression (1) is that it depends on the unknown density.
The idea in this work is to first replace the unknown density with its

kernel based plug-in estimator and then use an iterative algorithm to provide
automatic estimates of hopt.

The difference between this approach and, e.g., the one by Sheather and
Jones [9], which is one of the most used methods, lies in the fact that we do
not assume that f is sufficiently smooth so that

R(f ′′) =

∫
(f ′′(x))2dx

is approximated by

−
∫
f (4)(x)f(x)dx.

Instead, we use the plug-in estimator for the f ′′ directly and solve the
R(f ′′) for the case of a Gaussian kernel.

The rest of the paper is organized as follows: the next section contains our
proposal for the kernel bandwidth estimator; section 3 presents the iterative
algorithm used; the experiments are in section 4 and the final section contains
the conclusions.

2 The proposed estimator

Let X1, X2, . . . , Xn be a sample of size n from a random variable with density
f . Our density estimator is

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(3)

where K(x) is the kernel used. We use the Gaussian kernel

K(t) =
1√
2π

exp

(
−t

2

2

)
. (4)
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The estimator of the i-th derivative of the density is

f̂ (i)(x) =
1

nhi+1

n∑
j=1

K(i)

(
x−Xj

h

)
(5)

where K(i) is the i-th derivative of the kernel.

Since the kernel used is the Gaussian (4), k2 is given by

k2 =

∫ ∞
−∞

t2√
2π

exp

(
−t

2

2

)
dt = 1. (6)

The second term on the rhs of expression (1) is

k3 =

[∫ ∞
−∞

K(t)2dt

]1/5

=

(
1

2
√
π

)1/5

. (7)

The integral of the squared second derivative of f (R(f ′′)) will be estimated
by

R(f ′′) ≈
∫

(f̂ ′′(x))2dx

=
1

(nh3)2

∫ ( n∑
i=1

K ′′
(
x−Xi

h

))2

dx

=
1

2π(nh3)2

∫ ( n∑
i=1

(Y 2
i − 1) exp

(
−Y

2
i

2

))2

dx

(8)

where

Yi =
x−Xi

h
. (9)

Since (
n∑
i=1

ai

)2

= 2
n∑
i=1

∑
j<i

aiaj +
n∑
i=1

a2
i (10)

we have (
n∑
i=1

(Y 2
i − 1) exp

(
−Y

2
i

2

))2

=

(
n∑
i=1

Zi

)2

= 2
n∑
i=1

∑
j<i

ZiZj +
n∑
i=1

Z2
i

(11)
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where

Zi = (Y 2
i − 1) exp

(
−Y

2
i

2

)
. (12)

The integral of expression (11) can be written as

2
n∑
i=1

∑
j<i

∫
ZiZjdx+

n∑
i=1

∫
Z2
i dx. (13)

The first integral in this expression is∫
ZiZjdx =

√
π

16h3

[(
(Xi −Xj)

2 − 6h2
)2 − 24h4

]
exp

(
−
(
Xi −Xj

2h

)2
)
(14)

and the second is ∫
Z2
i dx =

3h

4

√
π. (15)

So, expression (13) becomes
√
π

4
k4 where

k4 = 3nh+

1

2h3

n∑
i=1

∑
j<i

[(
(Xi −Xj)

2 − 6h2
)2 − 24h4

]
exp

(
−
(
Xi −Xj

2h

)2
)
. (16)

Finally, our estimate of the best h is given by

ĥopt =

(
4nh6

k4

)1/5

(17)

Note that it still depends on the value of h, as the original expression.
What we did was basically adapt it to the discrete case so that we can
estimate its value from a sample. To solve this dependency we will use an
iterative algorithm: see section 3 bellow.

3 An iterative algorithm for ĥopt

We use the following algorithm to determine ĥopt.

1. Initialize ε and set h0=S1, h1 = h0 + ε

2. While (|h1 − h0| > ε) do
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(a) Set h0=h1

(b) Find h1 using expression (17) with h = h0

(c) Set h1 = (h0 + h1)/2

3. Return ĥopt = h1

The difference between consecutive estimates is compared against ε and is
used to stop the iteration once a given precision is achieved. The ĥopt estimate
is initialized to the value of one of the estimators proposed by Silverman in
[11], S1 (see below), plus ε.

We implemented another version based on the Newton-Raphson method,
but the results were similar and this is a simpler algorithm.

4 Experiments

4.1 Experiments on artificial data sets

We built two types of data sets to test the above approximations to the best
theoretical h given in expression (1), hopt. The data sets are created with the
same distribution but vary in the number of points from 10 to 280 in steps
of 30. Also, for a given size, 30 repetitions are made, where naturally the
data is different for each repetition. We compare the obtained ĥopt against
several common bandwidth estimators. Silverman’s empirical expression for
the case of a Gaussian kernel and assuming a Gaussian density is [11]

S0 = 1.06σn−1/5 (18)

where n is the number of data points and σ the data standard deviation. A
more general proposal from Silverman is [11]

S1 = 0.9An−1/5 (19)

where
A = min(σ, interquartile range/1.34)

We will also compare the obtained values against the ones produced by two
cross-validation approaches: biased cross-validation (BCV) [7] and unbiased
cross-validation (UCV) [3]. Finally we will compare against the Sheather and
Jones estimator (SJ) [9] as a member of the plug-in estimators. The label
‘Our’ represents the estimates produced with our proposal.

The data are generated from normal densities so it is possible to evaluate
hopt exactly.
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Figure 1: Average bandwidths for 30 repetitions and several sample sizes
produced with 6 estimators and the optimal value for the data set 1.

4.1.1 Data set 1

In this case we use data from f ∼ N(0, σ). Expression (1) becomes

hopt = k3

(
3n

8σ5
√
π

)−1/5

= 1.06σn−1/5 (20)

In this case, the optimal value is identical to expression (18), but since
the latter is an empirical expression the values will be different from the
theoretical ones due to the estimation of the standard deviation versus its
true value. We used σ = 0.5 in the experiments.

Table 1 contains the mean squared error of the average estimates regard-
ing the optimal value.

As would be expected, the best values are obtained with the S0 estimator.
In these experiments our proposal presents the second worst performance.
So if the densities to estimate are approximately normal, any of the other
estimators (with the exception of S1) will perform better.
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Figure 2: Average bandwidths for 30 repetitions and several sample sizes
produced with 6 estimators and the optimal value for the data set 2.

4.1.2 Data set 2

For this data set we use a mixture of two normal densities with equal vari-
ances:

f(x) = 0.5f1(x) + 0.5f2(x), f1 ∼ N(−2, 0.3), f2 ∼ N(1, 0.3)

Expression (1) becomes in this case

hopt = k3 (43.5331n)−1/5 (21)

Figure 2 presents the average for 30 repetitions of the estimated band-
width obtained with the six estimators referred previously.

Analysing the MSE results in table 1, we observe that our proposal gives
the smallest MSE followed closely by the UCV.

4.2 Experiments on real data sets

In this section we show the results of the proposed estimator and the re-
spective densities on two real data sets. The first data set contains the data
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Table 1: This table contains the mean squared error of the average estimates
to the optimal value, for data sets 1 and 2.

S0 S1 BCV UCV SJ Our
Data set 1 0.0019 0.1829 0.0276 0.0508 0.1187 0.1577
Data set 2 0.0278 0.0181 0.0099 0.0002 0.0004 0.0001

Table 2: Bandwidth values estimated with different approaches for real data
sets.

Data set S0 S1 BCV UCV SJ Our
Swiss bank notes 0.478 0.401 0.514 0.336 0.311 0.253
Buffalo snowfall 10.979 9.321 11.801 9.371 9.017 6.751

relative to the bottom margin, in millimeters, of 100 forged Swiss bank notes
[2]. The second data set is the Buffalo snowfall data. This data set contains
63 observations representing the annual snowfall, in inches, in Buffalo (New
York) from winter 1910/11 to 1972/73 [6].

Table 2 contains the kernel bandwidth estimates of the proposed estimator
on these data sets, along with estimates from different methods.

Figures 3 and 4 present the estimated densities using our approach and
the one by Sheather and Jones (SJ) on these two data sets.

We can see that since the values of the bandwidth obtained with our
method are smaller than the ones obtained with any of the other methods
tested, and in the case of the figures, smaller than the ones obtained with
the SJ method. The peaks of the estimated densities are higher than the
ones obtained by the SJ method and the troughs are deeper. This is an
improvement since it is considered that the kernel approaches to density
estimation usually produce flat peaks and insufficiently deep troughs [4].

5 Conclusions

In this paper we presented an approach to the determination of the optimal
bandwidth for one dimensional kernel density estimation. This approach is
based on the use of a plug-in estimator together with an iterative algorithm.
We presented simulation results on both artificial and real data and compared
these results against other common bandwidth estimators.
We concluded that our approach is appealing since it provides sharper peaks
and deeper troughs in the estimated densities due to the fact that it yields
smaller bandwidth estimates then the methods to which it was compared.
The asymptotic properties of the estimator are currently being studied and
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Figure 3: Swiss fraudulent bank notes (the bottom data only): the solid line
presents the density estimate with the bandwidth obtained with our method
and the dotted line using Sheather and Jones method.
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Figure 4: Buffalo snowfall data: the solid line presents the density estimate
with the bandwidth obtained with our method and the dotted line using
Sheather and Jones method.
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will be the subject of a future publication.
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