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DeepGabor: A Learning-Based Framework to
Augment IrisCodes Permanence

Hugo Proença, Senior Member, IEEE

Abstract—For over three decades, the Gabor-based IrisCode
approach has been acknowledged as the gold standard for iris
recognition, mainly due to the high entropy and binary nature
of its signatures. This method is highly effective in large scale
environments (e.g., national ID applications), where millions of
comparisons per second are required. However, it is known
that non-linear deformations in the iris texture, with fibers
vanishing/appearing in response to pupil dilation/contraction,
often flip the signature coefficients, being the main cause for the
increase of false rejections. This paper addresses this problem,
describing a customised Deep Learning (DL) framework that: 1)
virtually emulates the IrisCode feature encoding phase; while also
2) detects the deformations in the iris texture that may lead to
bit flipping, and autonomously adapts the filter configurations for
such cases. The proposed DL architecture seamlessly integrates
the Gabor kernels that extract the IrisCode and a multi-scale
texture analyzer, from where the biometric signatures yield. In
this sense, it can be seen as an adaptive encoder that is fully com-
patible to the IrisCode approach, while increasing the permanence
of the signatures. The experiments were conducted in two well
known datasets (CASIA-Iris-Lamp and CASIA-Iris-Thousand)
and showed a notorious decrease of the mean/standard deviation
values of the genuines distribution, at expenses of only a marginal
deterioration in the impostors scores. The resulting decision
environments consistently reduce the levels of false rejections
with respect to the baseline for most operating levels (e.g., over
50% at 1e−3 FAR values). The source code of the DeepGabor
encoder is available at: https://github.com/hugomcp/DeepGabor.

Index Terms—Iris recognition, Biometrics, Feature extraction.

I. INTRODUCTION

OVer 30 years have passed since the appearance of the
pioneering method [6] for iris recognition. During this

time, the Gabor-based IrisCode approach has been acknowl-
edged as the primary method for this technology, mainly due
to the possibility of being used in large scale environments.
When compared to competitor techniques, the main strength
of this approach is its ability to effectively search in massive
databases with a minimal probability of false matches, at
extreme time performance. By considering binary words, pairs
of signatures are matched using XOR parallel-bit logic at
lightening speed, enabling millions of comparisons/second per
processing core.

Even though various subsequent approaches have claimed to
improve the recognition accuracy with respect to the baseline
(e.g., [30], [25] or [18]), such methods do not work under
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Fig. 1. Top plot: bit flipping of IrisCode coefficients. For a pair of images of
the ith subject Ii1/Ii2, non-linear deformations of the iris tissues may flip the
sign of some convolution coefficients, increasing the probability of false non-
matches. Bottom plot: this paper describes a deep learning framework that
replicates the IrisCode bits for most cases, but also detects non-linear defor-
mations in the iris patches and corrects (flip) the corresponding bits. As main
result, the DeepGabor decision environments reduce the average/standard
deviation values of the genuines distribution, at a residual deterioration of
the impostor scores, which enables to reduce the false rejections over 50%
for small FAR values (≈ 1e−3).

the one-shot learning paradigm, assume multiple observations
of each class to obtain appropriate decision boundaries, and
- most importantly - have encoding/matching steps with time
complexity that forbid their use in large environments (in par-
ticular, for all-against-all settings). This way, the handcrafted
design of a set of Gabor filters that are further convolved
to a dimensionless representation of the iris, remains as the
mainstream solution.

The IrisCode method comprises the segmentation and nor-
malisation phases [8] that compensate for differences in trans-
lation, scale and perspective of the acquired irises. Also, partial
invariance to pupil dilation is obtained, assuming that iris
deformations are linear and limited to the radial direction.
However, the actual deformations in the iris texture are known
to be non-linear, both radial and angular, with fibers vanish-
ing/appearing for different levels of pupillary dilation [36]. As
illustrated in the top plot of Fig. 1, such deformations often
lead to changes in the sign of the convolution coefficients,
flipping some bits of the biometric signature with respect to the
gallery data. Essentially, this spread the scores of the genuines
distribution, and increases the number of false non-matches,
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with a corresponding degradation in users’ convenience.
Aiming at increase the permanence of the signatures ex-

tracted, the main hypothesis in this paper is that the iris texture
deformations that lead to bit flipping are distinguishable at the
data level. Accordingly, we describe a DL-based framework
that virtually emulates the IrisCode encoding phase and, for
the large majority of the bits, reproduces the IrisCode coeffi-
cients. Additionally, it has the ability to detect patterns in the
iris texture that lead to bit flipping, autonomously correcting
the resulting coefficients for such cases.

The proposed framework can be seen as a feature encoding
method that generates signatures fully compatible to the
IrisCode, which can be matched under the same lighting
speed XOR procedure, but are more permanent, in the sense
that it attenuates the bit flipping problem with respect to
the IrisCode baseline. As illustrated in the bottom-right
plot of Fig. 1, when comparing the decision environments
of our solution to the baseline, we notoriously reduce
the mean/standard deviation of the genuines distribution,
at expenses of a marginal deterioration of the impostors
distribution. Overall, we consistently augment the separability
between both classes and reduce the levels of false rejections
for most FAR levels (e.g., over 50% at 1e−3 FAR values).

The remainder of this paper is organized as follows: Sec-
tion II summarizes the most relevant research in the scope of
DL-based iris recognition. Section III describes the proposed
framework. In Section IV we discuss the obtained results and
the conclusions are given in Section V.

II. RELATED WORK

A. Iris Recognition
Considering the maturity of the iris recognition technology,

most recent strides have been concentrated in improving only
particular features of the recognition process: i) extend the
data acquisition volume; ii) improve the robustness to less
constrained conditions; iii) augment the human interpretability
of results; iv) develop cancellable signatures; and v) provide
inter-sensor operability.

In terms of the data acquisition volume, a good exam-
ple is the iris-on-the-move system [22], that acquires data
from subjects walking through a portal. For similar purposes,
Hsieh et al. [15] used wavefront coding and super-resolution
techniques. In terms of the recognition robustness, Dong et
al. [10] proposed an adaptive personalized matching scheme
to highlight the most discriminating features. Pillai et al. [28]
used sparse representations for classification in randomly
projected iris patches, claiming to increase the robustness
against acquisition artefacts. Yang et al. [37] relied in high-
order information to perform iris matching, while Alonzo-
Fernandez et al. [1] focused in the image enhancement phase,
proposing a super-resolution method based on PCA and eigen-
transformations of local iris patches. Bit consistency is also
a concern, with various approaches selecting only parts of
the biometric signatures for the matching step (e.g. [16], [32]
and [21]).

Under complementary perspectives, the lack of interpretabil-
ity hinders the application of iris recognition to forensics

domains [3]. Inter-sensor recognition provided the motivation
for Pillai et al. [29], that learned transformations between data
acquired by different sensors. Also, cancellable biometrics
is a privacy-preserving solution that requires to find hardly
invertible transfer functions of the biometric data between
different domains: Zhao et al. [39] proposed the concept of
negative recognition, using only complementary information
(p-hidden algorithm) for matching. Finally, according to the
growing popularity of CNNs, various approaches based on this
paradigm appeared recently in the literature, either for specific
phases of the recognition chain (e.g., segmentation [19] or
spoofing detection [23]) or for the whole process [11]).

B. Deep Learning-Based Iris Recognition
It has been reported that general purpose DL-based features

apply well to iris recognition: Boyd et al. [2] concluded that
fine tuning popular models such as ResNet-50 consistently
improves performance, even over models that are learned from
scratch for the iris recognition problem. Similar conclusions
were reported by Minaee et al. [24] and Nguyen et al. [26].

Yang et al. [38] generated multi-level spatially corre-
sponding feature representations by means of an encoder-
decoder structure, obtaining dual feature representations with
complementary discriminative information. Chen et al. [4]
addressed the large-scale recognition problem and described
a loss function (tight center) that attenuates the insufficient
discriminating power of the cross-entropy function. Zhao et
al. [40] used a capsule network, with dynamic routing between
layers, and three pre-trained models (VGG16, InceptionV3,
and ResNet50) extracting the primary iris features. Wang and
Kumar [35] introduced the concept of residual feature for
iris recognition, describing a learning procedure with offline
triplets selection and dilated convolutional kernels.

Another family of works has been concerned about the
extraction of appropriate feature representations for multi-
biometrics settings. Damer et al. [5] jointly extracted multi-
biometric representations within a single DNN, creating these
representations from multi-modality (face and iris), multi-
instance (iris left and right), and multi-presentation (two face
samples) settings. Concerned about the difficulty of perform-
ing reliable recognition in hand-held devices, Odinokikh et
al. [27] described a lightweight CNN model that combines the
advantages of handcrafted feature extractors to DL techniques.
The model fuses shallow and deep feature representations to
environmental features, reducing the within-subject variability.

Finally, attention mechanisms should also be highlighted:
Luo et al. [20] used spatial and channel attention mechanisms,
along with a co-attention module to obtain representative
iris/periocular features. Hafner et al. [12] adapted the classical
Daugman’s pipeline, using CNNs as feature extractors and
reporting performance improvements over the state-of-the-art.

III. DEEPGABOR CODES EXTRACTION

A. IrisCode: Gabor-based Feature Extraction
Gabor filters, named after Dennis Gabor1, are linear filters

used for texture analysis, that describe the frequencies content

1https://en.wikipedia.org/wiki/Dennis Gabor
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in specific directions of image patches. Their impulse response
is defined by a sinusoidal plane wave of some spatial frequency
and orientation within a Gaussian envelope. Gabor filters have
real and an imaginary components that represent orthogonal
directions and form complex numbers:

g(x, y, λ, θ, ψ, σ, γ) = exp
(x′2 + γy′2

−2σ2

)
.

exp
(
i
(
2π
x′

λ
+ ψ

))
, (1)

where x′ = x cos(θ)+y sin(θ) and y′ = −x sin(θ)+y cos(θ),
λ is the wavelength of the sinusoidal component, θ is the
orientation of the normal to the parallel stripes of the Gabor
function, ψ is the phase offset of the sinusoidal function, σ
the standard deviation of the Gaussian envelope and γ is the
spatial ratio that controls the ellipticity of the Gabor function.

In the iris recognition context, the convolution ”∗” between
the dimensionless representation of the iris I(ρ, φ) and a
Gabor filter yields a complex-valued bit:

hRe,Im(ρ, φ) = I(ρ, φ) ∗ g(ρ, φ, λ, θ, ψ, σ, γ), (2)

whose real and imaginary parts are quantized into 0/1 values,
according to the sgn(.) function:

sgn(x) =

 −1 if x < 0,
0 if x = 0,
1 if x > 0.

(3)

Ignoring the coefficients with too small amplitude (consid-
ered unreliable), this process enables to encode each signature
coefficient into a single bit. Note that it exclusively analyses
phase information, being considered that amplitude values
depend upon extraneous factors such as imaging contrast,
illumination, and camera gain [7]. Even assuming that sign
variations in pairs of genuines signatures (bit flipping) are
more frequent for small magnitude coefficients, it should be
noted that this phenomenon also occurs for medium/large
amplitude values. Evidence about this problem is shown in
Fig. 2, that provides the probability of bit blipping in the
CASIA-Iris-Lamp and CASIA-Iris-Thousand for the selected
2,048 IrisCode bits, with respect to their magnitude. It can be
confirmed that a slightly higher probability of flipping occurs
for low magnitude values, but there are flipping bits across the
whole interval (the higher probabilities for magnitude higher
than 1 were justified to the reduced number of bits with these
magnitudes).

In opposition, phase angles are invariant with respect to
image contrast and focus. This way, even in cases where
the phase bits are set largely on the basis of random CCD
noise, this encoding strategy produces only random colli-
sions, preventing different poorly focused irises from be-
ing confused with each other. At the end, a binary signa-
ture b = [sgn

(
h1(ρ1, φ1)

)
, . . . , sgn

(
hn(ρn, φn)

)
] (typically

n=2.048) is created, with an equal number of masking bits
also computed to discriminate iris regions obscured by eyelids,
eyelashes, specular reflections, boundary artefacts of hard
contact lenses, or poor signal-to-noise ratios.
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Fig. 2. Probability of bit flipping in the CASIA-Iris-Lamp (left plot) and
CASIA-Iris-Thousand (right plot), with respect to the amplitude of the
IrisCide bits. It can be seen that flipping occurs mostly - but not only -
for small amplitude coefficients. The extreme probability values for large
magnitude values were justified by the small sample problem.

B. DeepGabor: Learning Phase

Being learning-based, the framework proposed in this paper
relies in a supervised set of images, annotated for identity.
Assuming the availability of multiple signatures per subject, let
hijk(ρj , φj) denote the kth observation of the jth bit (extracted
from position (ρj , θj), using the kernel configuration gj) of the
signature of the ith subject. We start by obtaining the modal
values for all pairs subject/bit:

Iij1 hij1(ρ, θ) 0.4 -0.1 -0.7 -0.6 . . . -0.4

Iij2 h1j2(ρ, θ) 0.1 -0.6 0.3 -0.5 . . . 0.8

I1j3 h1j3(ρ, θ) -0.1 -0.2 0.4 0.2 . . . -0.5

I1j4 h1j4(ρ, θ) 0.2 -0.1 -0.2 0.7 . . . -0.2

*
j = 1 2 3 4 . . . n

Ground Truth
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∑
k 1{1}/{−1}

(
sgn
(
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))
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Fig. 3. Top row: cohesive idea for detecting inconsistent bits in the IrisCode.
Using the same Gabor kernels that extract the IrisCode, a supervised learning
set is created. Here, any code with sign different of the mode observed for a
subject/bit is deemed to be inconsistent (in case of multi-modal observations,
elements are disregarded from the learning set, in yellow). Such values are
flipped and the resulting data are used as the ground-truth for the DeepGabor
encoder E. Bottom row: statistics for the permanence of bits in each set.

hij∗ (ρj , θj) = arg max
q=
{
{−1},{1}

}∑
k

1q

(
sgn
(
hijk. (ρj , φj)

))
,

(4)
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with 1A : X → {0, 1} being the indicator function of a subset
A of a set X, defined as:

1A(x) :=

{
1 if x ∈ A,
0 if x /∈ A. (5)

The rationale for this formulation is that the modal value
hij∗ (ρ, θ) represents the natural value of that bit for a given
subject, i.e., the expected value when there were no particular
texture deformations in the region from where the bit was
extracted. Moreover, for that subject/bit, we assume that any
observations of a different value resulted from non-linear
angular deformations in the iris texture, that have led to bit flip-
ping. In these cases, the bit is considered inconsistent for that
subject. Formally, we define an inconsistent bit/observation as:

Definition III.1. Let hijk. (ρj , θj) represent the jth bit from
the kth signature of the ith subject. hijk. is inconsistent iff
hijk. (ρj , θj) 6= hij∗ (ρj , θj).

Next, when creating the supervised learning set, the incon-
sistent bits are flipped (i.e., ×−1) and the corrected values are
used in the supervised learning phase. This way, the DL-model
receives ground-truth information that enables to associate
the flipped/non-flipped values to specific patterns in the iris
texture. Then, relying in the remarkable ability of deep models
to distinguish between image patterns is the key for obtaining
the so-called adaptive encoder, able to emulate the IrisCode or
flipping some bits, depending of the texrural features. Fig. 3
illustrates the whole process, where the red cells in the bottom
right matrix denote the bits that were considered inconsistent
and flipped. The yellow cells represent the multimodal case,
where the positive/negative values have equal frequencies for a
subject/bit. In such circumstances, having no other information
about which is actually the true value, we simply disregard
that bit from the learning process. The bottom row provides a
statistics of the number of bits that are fully consistent (i.e.,
that provided constant sign for all examples/subject, in green),
in opposition to bits that had a proportion of values flipped (in
red), for the CASIA-Iris-Lamp and CASIA-Iris-Thousand sets.
The yellow bars correspond to the number of bits that had an
equal number of positive/negative values and were disregarded
from the learning phase.

The resulting data are used as ground-truth of the DL-based
encoder E, that receives a dimensionless representation of the
iris data and a set of Gabor kernels, returning the DeepGabor
codes:

b̂ = E(I, g1, . . . , gn). (6)

This encoder is in practice a CNN that is tuned according
to a weighted categorical hinge loss:

Lwh = 〈w,max(0,
−→
1 − 〈g, b̂〉)〉, (7)

where 〈., .〉 denotes the inner product between vectors,
−→
1

is a vector of ones, g denotes the ground-truth, b̂ are the
values predicted by the network and w is a binary weight
vector, where the 0 elements represent positions that should
be ignored in computing the loss value (i.e., corresponding to

multi-modal observations).

C. DeepGabor Classification: Encoding Architecture

When designing the encoder architecture, we started by
perceiving whether the COTS DL architectures, such as
ResNet [13] or Inception [31], are suitable for the desired
task, i.e., are able to extract in a single shot the n coefficients
of the binary signature, while also flipping the values of the
bits deemed inconsistent. Surprisingly, as illustrated in Fig. 4,
the observed performance was very poor, as both networks
invariably overfitted the feature space and completely failed
to generalize. In our view, both models were trapped in local
minima corresponding to spurious filter/pattern configurations
in the learning sets. We hypothesize that both networks would
demand a much larger amount of learning data to infer
appropriate feature configurations. Due to the non-availability
of such data, in practice we concluded about the non-suitability
of such networks for the DeepGabor extraction task.
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Iterations
L

w
h

Inception

Iterations

L
w

h

Fig. 4. Comparison between the loss values observed for the customized
DeepGabor network model (left plot) and the values obtained for the ResNet
and Inception architectures, under the learn-from-scratch paradigm. Results
regard the CASIA-Iris-Lamp learning set, with the confidence intervals
(shaded polygons) corresponding to 10 random initializations of each archi-
tecture.

Upon this conclusion, we designed a customized network
architecture, tightly coupled to the requirements of this par-
ticular problem. The proposed model is depicted in Fig. 5:
it receives the dimensionless representation of the iris data,
along with the set of Gabor kernels (plus their position (ρj , θj)
information) used to extract the IrisCode. The model starts by
convolving the input data and the Gabor kernels, in Region I.
In all convolutional layers ”s × s, n, /i” denotes a convolution
with n filters of size s and stride i. In parallel, a multi-scale
feature encoding stage (Region II) uses kernels from [3 ×
3] to [49 × 49] to obtain a detailed representation of the
input data (”Dropout (d)” stands for a dropout layer with
erasing probability equal to d). Next, all data are concatenated
and feed the Deep feature encoder region (Region III), from
where a global representation of the iris data is obtained
(Region IV). Finally, for every bit to be extracted, the global
representation is fused to a patch representation, cropped
according to the (ρj , θj) position used in the IrisCode. Using
three densely connected layers, every stream in Region V
returns one DeepGabor bit, which are finally concatenated to
obtain the biometric signature.
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Region I: Gabor extraction (non-trainable)

Region II: Multiscale texture analyzer

Region III: Deep feature encoder

Region IV: Summarization

Region V: DeepGabor bits extraction

Gabor kernels (n)
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. . .
(ρn, θn)

k

k

Input: Polar representation
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Dropout (dr)
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. . .Dropout (dr)
[64, 256, n]

Dropout (dr)
[64, 256, n]

Concatenate 3D
[64, 256, (s+ 1)n]

3 × 3, 512, /2
[32, 128, 512]
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[32, 128, 512]

LeakyRelU
[32, 128, 512]

Dropout(dr)
[32, 128, 512]

3 × 3, 256, /2
[16, 64, 256]

BN
[16, 64, 256]

LeakyRelU
[16, 64, 256]
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[16, 64, 256]

3 × 3, 128, /2
[8, 32, 128]
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[8, 32, 128]

3 × 3, 64, /2
[4, 16, 64]
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[4, 16, 64]
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[4, 16, 64]

Dropout(dr)
[4, 16, 64]

GlobalAverage
Pooling 2D

[64]

Crop 2D (ρ1, θ1)
bit 1

[ k16 ,
k
16 , 64]

. . .Crop 2D (ρ2, θ2)
bit 2

[ k16 ,
k
16 , 64]

. . . Crop 2D (ρn, θn)
bit n

[ k16 ,
k
16 , 64]

Flatten
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2
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2
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Dense, 128
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[128]
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Dropout (dr)
[128]

. . .Dropout (dr)
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Dropout (dr)
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Dense, 64
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[64]
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[64]
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[1]

. . .Dense, 1
[1]

Dense, 1
[1]

Concatenate 1D
[n]

1 -1 1 -1 . . . -1DeepGabor codes (n):

Fig. 5. Customized DeepGabor encoder architecture. The network analyses the dimensionless representation of the iris and returns the n-length biometric
signature. Five important parts of the network are highlighted: Region I) a convolution layer which (non trainable) kernels extract the IrisCode; Region II) a
multi-scale global feature extractor; Region III) an encoder for deeper features over global data representations; Region IV); a heavily condenser representation
of the global data; and Region V) a set of local analysers, that return the DeepGabor codes. Notation: convolution layers appear in yellow, where s× s, n, /d
represents n kernels of size s, with stride d. Dropout layers appear in green, with the dropout rate between parentheses. ”BN” stands for batch normalization
layers. Bi-dimensional cropping layers are denoted by ”Crop 2D (x,y)”, centered at position (x, y). Finally, ”Dense, n” denotes a fully connected layer, with
n neurons.

IV. RESULTS AND DISCUSSION

A. Experimental Setting and Preprocessing

Our experiments were conducted in two datasets that are
well known in the iris recognition context: the CASIA-Iris-
Lamp and the CASIA-Iris-Thousand [33]: 1) The CASIA-
Iris-Lamp was collected using a hand-held sensor, with a
lamp turned on/off to augment the intra-class lighting vari-
ations. Elastic deformations of the iris texture due to pupil

dilation/contraction are present, which makes it suitable for
studying problems of non-linear iris normalization and robust
iris feature representation. Here, 16,212 images from 819
subjects were considered; and 2) the CASIA-Iris-Thousand,
that contains 20,000 images from 1,000 subjects, collected
with a IKEMB-100 camera from IrisKing2. In this set, the
main sources of intra-class variations are eyeglasses and

2http://www.irisking.com

http://www.irisking.com
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CASIA-Iris-Lamp: Occlusions 3; Off-angle 3; Lighting changes 3

CASIA-Iris-Thousand: Occlusions 3; Off-angle 3; Glasses 3

Fig. 6. Datasets used in our experiments: from top to bottom rows, images of
the CASIA-Iris-Lamp and CASIA-Iris-Thousand [33] are shown. The typical
data variation factors in each set are also highlighted.

specular reflections. Examples of the images in both sets are
given in Fig. 6, showing the main degradation factors: off-
angle and occluded irises, glasses, dilated/constricted pupils
and shadows.

All images used were successfully segmented [34] and
normalised into the pseudo polar domain [9], with the right
halves discarded (corresponding to the upper half of the irises).
The resulting data were resized to 256 × 64 pixels, and 10% of
the subjects in each set (82 for CASIA-Iris-Lamp and 100 for
CASIA-Iris-Thousand) randomly chosen for the Gabor feature
selection process, to obtain the 2,048 filter configurations that
extract the IrisCode signatures. The remaining subjects were
split into two parts, with 70% of the subjects included in the
learning data and the other 30% used as test subjects. In this
setting, note that the ”feature selection”, ”learning” and ”test”
sets not only have disjoint images, but also disjoint subjects,
which reduces the probability of overfitting.

We selected the IrisCode method as main baseline. Even
if there is not complete information available about the
actual parameters of the Gabor kernels that it uses, it is
known that two multi-scale 2-D wavelet size parameters
span an eight-fold range from 0.15 to 1.2 mm on the iris,
and the wavelet frequency spans three octaves in inverse
proportion to the size parameters [8]. Considering a set of
64 = {8 × 4 × 2 × 1 × 1} filter parameters combinations
(λ = {

√
2, 2, 2

√
2, 4, 4

√
2, 8, 8

√
2, 16} × θ = {0, π4 ,

π
2 ,

3π
4 } ×

ψ = {0, π2 }, σ = λ
2 , γ = {1}), at one of 32 × 128 positions

(ρ, φ) in the dimensionless representation of the iris, yields
262.144 possible features. Then, according to the sequential
forward floating selection algorithm [17], we iteratively added
one feature at a time to an empty set of features, until
the addition of extra features didn’t improve the decidability
criterium d′:

d′ =
|µG − µI |√
σ2
G + σ2

I

, (8)

being µG, µI the mean values of the genuines and impostors
distribution and σG, σI the corresponding standard deviation
values. For two-choice decision tasks, such as the pairwise
identity verification task that we assume in our experiments,

d’ measures how well separated the two distributions are and
reflects the degree to which any improvement in the false
match error rate augments the false non-match error rate. Also,
it is particularly suitable for working in unimodal (and roughly
Gaussian) distributions, as in our case.

All our experiments were conducted according to a
bootstrapping-like strategy: having n test images available,
the bootstrap randomly selects (with replacement) 0.9 × n
images, obtaining samples composed of 90% of the whole
data. Ten test samples were created, with experiments con-
ducted independently on each trail, and obtaining the mean
and the standard deviation performance among the ten trails.
Obviously, classical statistical significance tests could have
been used instead. However, it is known that in extremely
large samples (as in our case), we’re more likely to obtain
statistically significant results, even if the effect is actually
small or negligible in the real world. This way, small effects
can be exaggerated if they meet the significance threshold,
while interesting results can also ignored when they fall short
of meeting the threshold.

As comparison terms, we provide the results for: 1)
IRINA [30], which is a DL-based method that analyses in
a non-holistic way the correspondences between iris patches
in the normalized irises; and 2) Yang et al. [37] (with FV-
iris, block size w = 2, h = 14, translation vector [6, 3]T and
neighbourhood 8 × 8). Regarding the performance obtained
by these methods, it should be noted that the direct comparison
to the DeepGabor and IrisCode methods is not fair, as their
time complexity constraints the possibility of being used in
large scale scenarios (in particular for duplication checks).
Even if both methods start from the segmented and normalized
representation of the iris data (as our solution), 1) IRINA is
extremely costly in terms of the matching phase, requiring a
registration map for every pairwise comparison to be carried
out; and 2) [37], that is not as timely costly as [30], but,
apart from a keypoint description phase, it also requires to
train a GMM for every iris region to be matched, followed by
Hamming + Euclidean distances calculus for every pairwise
comparison.

To illustrate this sensitive point, note that check duplication
among all the 1.2 billion people registered in India, requires
about 7.2 × 1017 matching operations. Even on a 600 million
people database, a duplication check on every three years,
would require a system capable of more than 1.9 billion
matches per second without interruption. For reference, Table I
compares the average number of comparisons per second for
our implementations of the four algorithms analysed (ten trials
of 100,000 comparisons were considered, from where the
mean ± the standard deviation values were taken). Note that
no particular attention was paid in optimizing the code, and
a high level programming language running in a single CPU
was used. Even though, these values provide broad evidence
of the dramatically higher temporal performance of [30] (and
also of [37]) with respect to DeepGabor/IrisCode baselines.
As such, we consider a requirement that the matching step of
a large scale recognition algorithm exclusively computes the
Hamming distance.

The DeepGabor networks used 10% of the learning data for
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TABLE I
AVERAGE NUMBER OF COMPARISONS PER SECOND, OBTAINED FOR OUR

IMPLEMENTATIONS OF THE DeepGabor, IrisCode, IRINA [30] AND YANG
et AL. [37] METHODS.

Method Comparisons/second

IrisCode, DeepGabor 3,842,307.02 ± 4,027.51

IRINA [30] 2.38 ± 0.94

Yang et al. [37] 404,381.15 ± 3,012.00

validation purposes and were initialized with random weights,
from zero-mean Gaussian distributions with standard deviation
1e−2 and bias 0.5. The initial learning rate was set to 1e−3,
with decay 1e−2 and momentum 0.8. The learning process was
stopped when no improvements in the validation loss occurred
for 10 consecutive epochs. We provide the Receiver Operating
Characteristic (ROC) curves, that relate the True Positive/False
Positive rates, at various thresholds. Based on these plots, we
provide the Area Under Curve (AUC) values, to summarize
the classifier performance in a single number, and the Equal
Error Rates (EER), that provide the error value when the type-
I/type-II errors are approximately equal. As a complement, the
decidability index values are also provided.

B. Within-Domain Recognition Performance

We considered two types of experiments. At first, the within-
domain setting, where the DeepGabor framework was trained
in images of the same dataset (yet of disjoint subjects) where
performance was later evaluated. This can be seen as the
easiest setting, where the model has access during the learning
phase to the typical deformations in the iris texture under a
specific environment and data acquisition protocol.

Fig. 7 compares the recognition effectiveness obtained for
the classical IrisCode approach and the proposed DeepGabor
method. Each row regards one dataset, with the left plots
showing the ROC curves (in linear and log scale), and the right
plots providing the density plots of the genuines/impostors
distributions.

A summary of the performance in this setting is provided
in the top rows of Table II, showing the AUC, decidabil-
ity (d’) and EER values for the four methods evaluated.
When analysing the values obtained, a noteworthy observation
is that the d’/AUC/EER metrics were not always perfectly
correlated, which we justified by the asymmetric shape of
the genuines distributions obtained (in particular, the right
tail of the genuines distributions). Anyway, we resorted to
provide the ensemble (d’, EER and AUC) metrics, that were
considered to provide a global perspective of the methods’
performance. Being obvious that [30] and [37] outperformed
the DeepGabor and IrisCode approaches, it should be noted
that - as above stated - both methods are not considered
suitable for being deployed in large scale scenarios. Regarding
the main techniques considered, a notorious improvement of
DeepGabor over the IrisCode was observed in both sets. Both
the DeepGabor and IrisCode approaches got better results
in the CASIA-Iris-Thousand than in the CASIA-Iris-Lamp,
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Fig. 7. Left plot: comparison between the ROC curves obtained for the
baseline IrisCode approach and the DeepGabor model proposed in this paper,
in the within-domain setting. The right plot illustrates the corresponding deci-
sion environments, where the red/green lines represent the impostors/genuines
distributions. The dotted lines corresponds to the IrisCode distribution, while
the solid lines represent the DeepGabor approach.

which did not happen for the IRINA and Yang et al. methods.
This was justified by the features of the latter set, with more
texture deformations in result of dynamic lighting conditions
than the CASIA-Iris-Thousand set. Under that assumption,
we concluded that IRINA and Yang et al. still provide more
robustness to non-linear deformations in the iris texture than
both the IrisCode and DeepGabor methods.

C. Cross-Domain Recognition Performance

Next, in a harder setting, we used the models learned in
CASIA-Iris-Lamp to detect bit inconsistencies in the CASIA-
Iris-Thousand (and vice-versa). This corresponds to a setting
where not only the optimal filter configurations were obtained
in a set of different type of the evaluation data, but also,
the DeepGabor model should generate codes and to detect
bit inconsistencies in a cross-domain setting. Fig. 8 compares
the results obtained by both methods, being still notorious the
advantages of DeepGabor with respect to the baseline. In this
case, when compared to the results provided in Fig. 8, the
gap in performance between the DeepGabor and the IrisCode
methods was naturally smaller, but remained consistent.

D. IrisCode ↔ DeepGabor Compatibility

In our final experiment we assessed the compatibility
between the DeepGabor and IrisCode signatures, which is
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TABLE II
PERFORMANCE COMPARISON BETWEEN THE DeepGabor CODES AND THE

IrisCode BASELINE APPROACH. ADDITIONALLY, FOR
CONTEXTUALISATION, THE PERFORMANCE OBTAINED BY THE
IRINA [30] AND YANG et AL. [37] METHODS IS ALSO SHOWN.

Method AUC d’ EER

Within-Domain Setting

CASIA-Iris-Lamp
DeepGabor 0.987 ± 5e−4 2.689 ± 0.308 0.033 ± 0.003

IrisCode 0.979 ± 4e−4 2.480 ± 0.300 0.039 ± 0.002

IRINA [30] 0.996 ± 8e−4 7.507 ± 0.457 0.016 ± 0.003

Yang et al. [37] 0.995 ± 5e−4 4.029 ± 0.385 0.021 ± 0.003

CASIA-Iris-Thousand
DeepGabor 0.990 ± 7e−4 3.206 ± 0.284 0.023 ± 0.004

IrisCode 0.988 ± 6e−4 2.952 ± 0.238 0.026 ± 0.003

IRINA [30] 0.994 ± 8e−4 6.179 ± 0.380 0.017 ± 0.004

Yang et al. [37] 0.992 ± 7e−4 3.995 ± 0.366 0.021 ± 0.004

Cross-Domain Setting

CASIA-Iris-Thousand → CASIA-Iris-Lamp
DeepGabor 0.983 ± 7e−4 2.401 ± 0.407 0.037 ± 0.003

IrisCode 0.969 ± 7e−4 2.350 ± 0.336 0.042 ± 0.003

IRINA [30] 0.991 ± 8e−4 3.800 ± 0.488 0.031 ± 0.004

Yang et al. [37] 0.988 ± 7e−4 3.659 ± 0.396 0.032 ± 0.004

CASIA-Iris-Lamp → CASIA-Iris-Thousand
DeepGabor 0.988 ± 5e−4 2.999 ± 0.390 0.036 ± 0.003

IrisCode 0.984 ± 4e−4 2.584 ± 0.374 0.040 ± 0.002

IRINA [30] 0.989 ± 7e−4 3.605 ± 0.457 0.033 ± 0.005

Yang et al. [37] 0.987 ± 6e−4 3.420 ± 0.405 0.033 ± 0.004

important, considering the already deployed COTS systems.
Such compatibility was tested by matching gallery and probes
elements of different kinds, i.e., extracted either using the
IrisCode approach or the DeepGabor networks. In practice,
we aim at perceive whether it is still advantageous to use the
DeepGabor signatures, even if they are matched against the
already deployed databases of IrisCodes. For realism purposes,
we adopted the identification setting in this section, and report
the accumulated Rank-n values for the test data.

We started by obtaining the mode signature per subject,
i.e., a virtual signature where each bit corresponds to the
most frequent value for that bit among all signatures of the
subject. Next, for each subject, the closest signature to the
mode was found, by obtaining the Hamming distance between
each signature and the corresponding mode, considering it
as the gallery element. All the remaining signatures of that
subject were used as probes.

Fig. 9 compares the accumulated Rank-n plots obtained
in four different configurations: 1) the ”Deployed Systems”
group, where it is assumed that gallery elements are of
IrisCode kind; and the ”Proposed Systems” group, where the
gallery elements are of DeepGabor kind. Inside each group,
we report the performance observed when either the IrisCode
or DeepGabor elements were used as the probes. Here, the
first group corresponds to the most realistic scenario, i.e., use
the already existing gallery data and not requiring to re-enrol
the millions of subjects registered in the current systems. The
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Fig. 8. Left plots: comparison between the ROC curves obtained for the
baseline IrisCode approach and the DeepGabor model proposed in this paper.
The right plot illustrates the corresponding decision environments, where the
red/green lines represent the impostors/genuines distributions. The dotted lines
corresponds to the IrisCode distribution, while the solid lines represent the
DeepGabor approach.

vertical axis provides the hit rate, while the horizontal axis
corresponds to the relative penetration ([0-1]), with respect
to the number of subjects in the gallery. The inner plot is
a zoomed-in region that provides the accumulated top-10 hit
rates. Values are provided for the CASIA-Iris-Lamp (upper
plot) and CASIA-Iris-Thousand (bottom plot) sets. It can be
seen that - for both sets - the outperforming performance
was observed for the ”Proposed System” setting, when using
DeepGabor elements both in the gallery and probe sets. Then,
the runner-up values were observed for the ”IrisCode ↔
IrisCode” setting. For both datasets, the ”DeepGabor probes
↔ IrisCode gallery” configurations attained similar results
to the ”IrisCode ↔ IrisCode” settings, which corresponds
to the currently deployed systems. This was considered a
positive indicator for the compatibility between the proposed
method and the already deployed systems. In this case, even
if the recognition robustness doesn’t improve evidently when
changing the probes from IrisCode to DeepGabor, it is at least
assured that no decreases in recognition rate happen.

E. Why Does it Work?

Finally, we hypothesise about the reasons that sustain the
improvements in performance of the DeepGabor approach
with respect to the IrisCode. To obtain better signatures than
the baseline, the basic premise is that a positive balance
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Fig. 9. Comparison between the accumulated Rank-N plots (expressed
in terms of hit/penetration values), for the already deployed systems. i.e.,
considering the IrisCodes as gallery data and then using either the DeepGa-
bor/IrisCode as probes (”Deployed Systems” group). Also, the corresponding
values for systems with DeepGabor enrolled codes are shown (”Proposed
Systems” group). Results are given for the CASIA-Iris-Lamp (upper plot)
and CASIA-Iris-Thousand (bottom plot) sets.

between better/worse DeepGabor/IrisCode bits should be ob-
tained, i.e., more DeepGabor bits should be better than their
counterparts IrisCode, when compared to the opposite case
(IrisCode better than DeepGabor). To confirm this assumption,
we used the decidability index (8) and directly compared
the individual discriminability of DeepGabor/IrisCode bits.
This statistics enables to perceive the relative differences in
the distributions generated for the genuines/impostors scores.
Results are given in Fig. 10 for the CASIA-Iris-Lamp (left
plots) and CASIA-Iris-Thousand sets (right plots). The upper
figures provide the samples decidability values for the 2,048
bits selected per dataset, while the bottom plots provide the
corresponding density estimates, according to a kernel density
estimate [14]. In all plots, the horizontal axes correspond to
the IrisCode approach, whereas its vertical counterparts regard
the DeepGabor approach. The regions above the line y = x
denote bits that improved their decidability upon the correction
by the DeepGabor model, while the regions below that line
regard the opposite case, i.e., when the DeepGabor corrections
even decreased the overall bit decidability. In both datasets, it
is evident that the large majority of the bits improved their

decidability IrisCode → DeepGabor (1,475 bits (72%) in
the CASIA-Iris-Lamp and 1,778 bits (86.8%) in the CASIA-
Iris-Thousand sets were above the y = x line), which we
considered to be the main justification for the improvements
in the overall recognition performance.
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Fig. 10. Comparison between the individual decidability (8) of the 2,048 bits
in the IrisCode (horizontal axes) and DeepGabor (vertical axes) approaches.
Results are provided for the CASIA-Iris-Lamp (left plots) and CASIA-Iris-
Thousand (right plots) sets. The plots given in the bottom row are the corre-
sponding bivariate density estimates. The straight diagonal lines correspond
to regions where the IrisCode/DeepGabor bits have equal decidability, i.e.,
are no better than the other.

V. CONCLUSIONS

Considering the popularity of the IrisCode approach for iris
recognition and the evidence of being the de facto standard for
this kind of technology, this paper described a DL framework
to extract biometric signatures that emulate the IrisCode bits,
while also augmenting the robustness of the resulting codes
against bit flipping, as a consequence of non-linear angular
deformations in the iris texture. The resulting signatures are
fully compatible to their Iriscode counterparts, but provide
decision environments that consistently reduce the levels of
false rejections, with a corresponding increase in users’ con-
venience.

A customized CNN architecture that seamlessly integrates
the Gabor filters that extract the IrisCode was proposed, along
with a multi-scale texture analyzer and a regressor to obtain the
DeepGabor biometric codes. The experiments were conducted
in well known datasets (CASIA-Iris-Lamp and CASIA-Iris-
Thousand) and pointed for consistent improvements over the
baseline, both in the within-domain and cross-domain settings.

The observed improvements in performance were generally
due to an obvious decrease of the mean/standard deviation
values of the genuines distribution, at expenses of a marginal
deterioration of the impostors scores. Overall, this augmented
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the separability between both distributions and increased the
decidability of the resulting decision environments. On aver-
age, false rejections decreased over 50% with respect to the
baseline at most operating levels, and particularly for low FAR
values (≈ 1e−3).

ACKNOWLEDGEMENTS

This work is funded by FCT/MCTES through national
funds and co-funded by EU funds under the project
UIDB/50008/2020. The contribution from Caiyong Wang in
providing parts of the segmented data used in the experiments
is also acknowledged.

REFERENCES

[1] F. Alonso-Fernandez, R. A. Farrugia, and J. Bigun. Eigen-patch iris
super-resolution for iris recognition improvement. In 2015 23rd Eu-
ropean Signal Processing Conference (EUSIPCO), pages 76–80, 2015.
2

[2] A. Boyd, A. Czajka, and K. Bowyer. Deep learning-based feature
extraction in iris recognition: Use existing models, fine-tune or train from
scratch? In 2019 IEEE 10th International Conference on Biometrics
Theory, Applications and Systems (BTAS), pages 1–9, 2019. 2

[3] J. Chen, F. Shen, D. Z. Chen, and P. J. Flynn. Iris recognition based
on human-interpretable features. In IEEE International Conference on
Identity, Security and Behavior Analysis (ISBA 2015), pages 1–6, 2015.
2

[4] Y. Chen, C. Wu, and Y. Wang. Center: A novel feature extraction
approach towards large-scale iris recognition. IEEE Access, 8:32365–
32375, 2020. 2

[5] N. Damer, K. Dimitrov, A. Braun, and A. Kuijper. On learning
joint multi-biometric representations by deep fusion. In 2019 IEEE
10th International Conference on Biometrics Theory, Applications and
Systems (BTAS), pages 1–8, 2019. 2

[6] J. Daugman. High confidence visual recognition of persons by a test
of statistical independence. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(11):1148–1161, 1993. 1

[7] J. Daugman. How iris recognition works. In Proceedings of the
International Conference on Image Processing, volume 1, pages I–I,
2002. 3

[8] J. Daugman. How iris recognition works. IEEE Transactions on Circuits
and Systems for Video Technology, 14(1):21–30, 2004. 1, 6

[9] J. Daugman. New methods in iris recognition. IEEE Transactions on
Systems, Man and Cybernetics, 37:1167–1175, 2007. 6

[10] W. Dong, Z. Sun, and T. Tan. Iris matching based on personalized weight
map. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(9):1744–1757, 2011. 2

[11] A. Gangwar and A. Joshi. Deepirisnet: Deep iris representation with
applications in iris recognition and cross-sensor iris recognition. In
2016 IEEE International Conference on Image Processing (ICIP), pages
2301–2305, 2016. 2

[12] A. Hafner, P. Peer, Z. Emersic, and M. Vitek. Deep iris feature
extraction. In 2021 International Conference on Artificial Intelligence
in Information and Communication (ICAIIC), pages 258–262, 2021. 2

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 4

[14] D. Hill Peter. Kernel estimation of a distribution function. Communi-
cations in Statistics - Theory and Methods, 14(3):605–620, 1985. 9

[15] S.-H. Hsieh, Y.-H. Li, C.-H. Tien, and C.-C. Chang. Extending the
capture volume of an iris recognition system using wavefront coding
and super-resolution. IEEE Transactions on Cybernetics, 46(12):3342–
3350, 2016. 2

[16] Y. Hu, K. Sirlantzis, and G. Howells. Exploiting stable and dis-
criminative iris weight map for iris recognition under less constrained
environment. In 2015 IEEE 7th International Conference on Biometrics
Theory, Applications and Systems (BTAS), pages 1–8, 2015. 2

[17] A. Jain and D. Zongker. Feature selection: Evaluation, application, and
small sample performance. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19:153 – 158, 03 1997. 6

[18] M. B. Lee, J. K. Kang, H. S. Yoon, and K. R. Park. Enhanced
iris recognition method by generative adversarial network-based image
reconstruction. IEEE Access, 9:10120–10135, 2021. 1

[19] N. Liu, H. Li, M. Zhang, J. Liu, Z. Sun, and T. Tan. Accurate iris
segmentation in non-cooperative environments using fully convolutional
networks. In 2016 International Conference on Biometrics (ICB), pages
1–8, 2016. 2

[20] Z. Luo, J. Li, and Y. Zhu. A deep feature fusion network based
on multiple attention mechanisms for joint iris-periocular biometric
recognition. IEEE Signal Processing Letters, 28:1060–1064, 2021. 2

[21] N. Mahadeo, A. Paplinski, and S. Ray. Optimization of iris codes for
improved recognition. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 48–55, 2014. 2

[22] J. R. Matey, O. Naroditsky, K. Hanna, R. Kolczynski, D. J. LoIacono,
S. Mangru, M. Tinker, T. M. Zappia, and W. Y. Zhao. Iris on the
move: Acquisition of images for iris recognition in less constrained
environments. Proceedings of the IEEE, 94(11):1936–1947, 2006. 2

[23] D. Menotti, G. Chiachia, A. Pinto, W. R. Schwartz, H. Pedrini, A. X.
Falcão, and A. Rocha. Deep representations for iris, face, and fingerprint
spoofing detection. IEEE Transactions on Information Forensics and
Security, 10(4):864–879, 2015. 2

[24] S. Minaee, A. Abdolrashidiy, and Y. Wang. An experimental study of
deep convolutional features for iris recognition. In 2016 IEEE Signal
Processing in Medicine and Biology Symposium (SPMB), pages 1–6,
2016. 2

[25] P. R. Nalla and A. Kumar. Toward more accurate iris recognition
using cross-spectral matching. IEEE Transactions on Image Processing,
26(1):208–221, 2017. 1

[26] K. Nguyen, C. Fookes, A. Ross, and S. Sridharan. Iris recognition with
Off-the-Shelf CNN Features: A deep learning perspective. IEEE Access,
6:18848–18855, 2017. Invited Paper. 2

[27] G. Odinokikh, M. Korobkin, I. Solomatin, I. Efimov, and A. Fartukov.
Iris feature extraction and matching method for mobile biometric appli-
cations. In 2019 International Conference on Biometrics (ICB), pages
1–6, 2019. 2

[28] J. K. Pillai, V. M. Patel, R. Chellappa, and N. K. Ratha. Secure and
robust iris recognition using random projections and sparse representa-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(9):1877–1893, 2011. 2

[29] J. K. Pillai, M. Puertas, and R. Chellappa. Cross-sensor iris recognition
through kernel learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(1):73–85, 2014. 2

[30] H. Proença and J. C. Neves. IRINA: iris recognition (even) in inaccu-
rately segmented data. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6747–6756, 2017. 1, 6, 7, 8

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826,
2016. 4

[32] C.-W. Tan and A. Kumar. Accurate iris recognition at a distance using
stabilized iris encoding and zernike moments phase features. IEEE
Transactions on Image Processing, 23(9):3962–3974, 2014. 2

[33] C. Wang, J. Muhammad, Y. Wang, Z. He, and Z. Sun. Towards complete
and accurate iris segmentation using deep multi-task attention network
for non-cooperative iris recognition. IEEE Transactions on Information
Forensics and Security, 15:2944–2959, 2020. 5, 6

[34] C. Wang, J. Muhammad, Y. Wang, Z. He, and Z. Sun. Towards complete
and accurate iris segmentation using deep multi-task attention network
for non-cooperative iris recognition. IEEE Transactions on Information
Forensics and Security, 15:2944–2959, 2020. 6

[35] K. Wang and A. Kumar. Toward more accurate iris recognition using
dilated residual features. IEEE Transactions on Information Forensics
and Security, 14(12):3233–3245, 2019. 2

[36] Z. Wei, T. Tan, and Z. Sun. Nonlinear iris deformation correction based
on gaussian model. In S.-W. Lee and S. Z. Li, editors, Advances in
Biometrics, volume 4642, pages 780–789. Springer Berlin Heidelberg,
08 2007. 1

[37] G. Yang, H. Zeng, P. Li, and L. Zhang. High-order information for
robust iris recognition under less controlled conditions. In 2015 IEEE
International Conference on Image Processing (ICIP), pages 4535–
4539, 2015. 2, 6, 7, 8

[38] K. Yang, Z. Xu, and J. Fei. Dualsanet: Dual spatial attention network
for iris recognition. In 2021 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 888–896, 2021. 2

[39] D. Zhao, W. Luo, R. Liu, and L. Yue. Negative iris recognition. IEEE
Transactions on Dependable and Secure Computing, 15(1):112–125,
2018. 2

[40] T. Zhao, Y. Liu, G. Huo, and X. Zhu. A deep learning iris recognition
method based on capsule network architecture. IEEE Access, 7:49691–
49701, 2019. 2


