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Abstract—Current Active Speaker Detection (ASD) models
achieve good results on cooperative settings with reliable face
access using only sound and facial features, which is not suited
for less constrained conditions. To demonstrate this limitation of
current datasets, we propose a Wilder Active Speaker Detection
(WASD) dataset, with increased difficulty by targeting the key
components of current ASD: audio and face. Grouped into 5
categories, WASD contains incremental challenges for ASD with
tactical impairment of audio and face data, and provides a new
source for ASD via subject body annotations. To highlight the new
challenges of WASD, we divide it into Easy (cooperative settings)
and Hard (audio and/or face are specifically degraded) groups,
and assess state-of-the-art models performance in WASD and in
the most challenging available ASD dataset: AVA-ActiveSpeaker.
The results show that: 1) AVA-ActiveSpeaker prepares models
for cooperative settings but not wilder ones (surveillance); and
2) current ASD approaches can not reliably perform in wilder
settings, even if trained with challenging data. To prove the
importance of body for wild ASD, we propose a baseline that
complements body with face and audio information that surpass
state-of-the-art models in WASD and Columbia. All contributions
are available at https://github.com/Tiago-Roxo/WASD.

Index Terms—Active speaker detection, body-based analysis,
dataset, visual surveillance, wild conditions.

I. INTRODUCTION

ACTIVE Speaker Detection (ASD) aims to identify, from
a set of potential candidates, active speakers on a given

visual scene [44]. Currently, this assessment is done at the
video frame level using facial cues and sound information.
Despite its application in several topics such as speaker di-
arization [12], [14], [25], human-robot interaction, or speaker
tracking [40], [41], its applicability in wild conditions is still
an open issue.

The state-of-the-art dataset for ASD is AVA-
ActiveSpeaker [44], composed of several Hollywood movies,
with diversity in languages, recording conditions, and speaker
demographics, totalling in 38 hours and over 3 million face
images. Although AVA-ActiveSpeaker has some challenging
aspects, it still is not a perfect representation of in-the-wild
data [44], since it assesses ASD in movies, a setup with
controlled (scripted) action and speaking, with adequate audio
and image quality. This motivates state-of-the-art models to
identify active speakers solely based on audio and face data,
disregarding other informations such as speaking context or
body expressions. This is particularly problematic since ASD
in wild conditions can not assume face availability, subject
cooperation, and good audio quality, as shown in Figure 1.
To overcome these limitations, we propose a Wilder Active
Speaker Detection (WASD) Dataset.
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Fig. 1: AVA-ActiveSpeaker (AVA) state-of-the-art models
achieve over 94% mean Average Precision (mAP) in active
speaker detection, solely based on face and audio data.
However, this approach may not be suited for uncooperative
poses, non-guaranteed face access, or unreliable image/audio
quality. How well do these models perform in such scenarios?
And can body information aid in this task? To answer these
questions (and more), we propose WASD, a Wilder Active
Speaker Detection dataset.

WASD aims to preserve the challenging characteristics of
AVA-ActiveSpeaker while increasing the difficulty of ASD
by targeting the two key components state-of-the-art models
use: face and audio. We select videos from YouTube and
group them into 5 categories, based on a set of features
targeted at face and audio impairment. The categories range
from optimal conditions (face availability and good audio
quality), to surveillance settings (non-guaranteed face access,
subject cooperation, or sound quality). The increasing scale
of ASD challenges can be useful for: 1) assess the ability of
current models to deal with wild conditions and specific aspect
impairment (audio, face, or a combination of both); 2) evaluate
the limitations of AVA-ActiveSpeaker to prepare models for
wild conditions; and 3) show the limitations of face and audio
dependency for wild ASD, easing the identification of model
improvements towards this goal. By selecting YouTube videos
from real interactions, WASD also contains expressions, sud-
den interruptions, and interactions that movies hardly contain.
These additional challenges, enhanced by the variability of
demographics in WASD, contribute to a challenging ASD
dataset where state-of-the-art models can not easily perform.
Furthermore, WASD provides body data annotations and a
body-based approach to motivate the development of models
using body information to complement face and audio data in
(wild) ASD. Finally, the importance of WASD can be extended
to other tasks, aside ASD, namely: speech recognition (what is
the person saying), speech diarization (segment the audio per
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TABLE I: Feature comparison of ASD datasets. AVA-ActiveSpeaker is represented as AVA. If datasets contain information
regarding a feature, its absence is presented with ×, while its presence with ✓. WASD has a high number of hours, with increased
number of faces and reduced face tracks (culminating in higher average video duration), Frames Per Second (FPS) variability,
and increased talking percentage. The most disciminative factors are demographic representation, surveillance conditions, and
body data annotations.

Dataset Total Number of Face Video FPS Talking % Demographic Surveillance Body
Hours Faces (M) Tracks (m) Duration (s) Variability Representation Conditions Data

Columbia [9] 1.5 0.2 - - × - × × ✓
Talkies [5] 4.2 0.8 23.5 1.5 - - - × ×

EasyCom [21] 6.0 - - - × - × × ×
ASW [32] 30.9 - 11.5 ∼10 - 57.9 - × ×
AVA [44] 37.9 3.7 38.5 ≤10 ✓ 24.2 - × ×

WASD 30.0 7.4 9.8 ∼28 ✓ 84.6 ✓ ✓ ✓

speaker), specific action recognition (dancing, talking, raising
hand, social interactions), among others. To summarize, the
main contributions are:

• We propose WASD, a ASD dataset divided into 5 cate-
gories with incremental ASD challenges, targeting audio
quality and face availability, ranging from optimal condi-
tions to surveillance settings. WASD is also innovative by
providing ASD body annotations for various challenging
conditions to motivate the development of body-based
approaches;

• We show the limitations of AVA-ActiveSpeaker to prepare
state-of-the-art ASD approaches for wilder conditions,
and show that current ASD models can not reliably
perform in such settings, even if trained in WASD data,
in particular for audio impairment, facial occlusion, and
surveillance settings;

• To prove the importance of body information for wild
ASD, we propose a baseline that complements body
with face and audio data, surpassing all state-of-the-art
models, in particular for uncooperative and challenging
sets (surveillance conditions) of WASD, and outperforms
face-based implementations in Columbia.

II. RELATED WORK

Active Speaker Detection. Works on ASD have evolved
from facial visual cues [23], [38], [45] to audio as primary
source [8], [20], to multi-modal data combination [4], [5], [33],
[44], [49]. Since the introduction of AVA-ActiveSpeaker [44],
combining audio with facial features is the de facto way to
predict active speakers. Large 3D architectures [11], hybrid
2D-3D models [57], and large-scale pretraining [17], [19] for
audio-visual combination are amongst some of the following
works. Despite the viability of these approaches, feature em-
bedding improvement [28] or attention approaches [3], [10],
[50] were necessary to improve ASD. Creating two-step mod-
els, where the first focuses on short-term analysis (audio with
face combination) and the second on multi-speaker analysis,
is the approach from various recent works [4], [5], [33],
[56]. ASC [4] focused on long-term multi-speaker analysis via
temporal refinement, ASDNet [33] used a similar approach for
inter-speaker relations, with improved visual backbones, and
UniCon [56] relied on audio-visual relational contexts with
various backbones. Improving speaker relation representation

via Graph Convolutional Networks (GCN) [53] is also a viable
approach to assess context information [5], [36]. Diverging
from two-step training, end-to-end models have also emerged
for ASD [6], [31], [35], [36], [49]. TalkNet [49] focused on
improving long-term temporal context with audio-visual syn-
chronization, TS-Talknet [31] considered pre-enrolled speaker
embedding to complement this synchronization, EASEE [6]
included GCN to complement spatial and temporal speaker
relations, and Light-ASD [35] proposed a lightweight model
by splitting 2D and 3D convolutions for audio-visual feature
extraction, and applied Bidirectional Gated Recurrent Units
(BGRU) for cross-modal modeling.

Datasets. There is a variety of available datasets suited for
ASD, such as frontal speaker data, designed for speech recog-
nition [29], [39], voice activity detection [48], and diariza-
tion [25] datasets. However, these are limited in subject diver-
sity and talking scenarios, diminishing their relevance. With
increased talking variability, datasets derived from movies and
TV shows have also been reported [22], [26], [30], [43],
limited by the low number of annotated hours. Other related
setups are lip reading datasets [2], [15], [16], [18], [37], [47],
whose purpose diverges from ASD since their goal is to infer
the words pronounced from a given speaker. Recently there is
a greater focus on specific ASD datasets [5], [9], [21], [32],
[44], whose task is to determine the talking speaker from a set
of admissible candidates. Columbia [9] contains 87 minutes of
a panel discussion, with up to 3 visible speakers. Talkies [5]
focuses on low duration videos, totalling 4 hours, with an
average of 2.3 speakers and off-screen speaking. Easycom [21]
is designed for multiple tasks related with augmented reality,
composed of various sessions of speakers sat at a table, with
background noise. AVA-ActiveSpeaker [44] is the state-of-the-
art dataset, with over 150 Hollywood videos, totalling almost
38 hours, with demographic diversity and dubbed dialogues.
ASW [32] was proposed with over 30 hours, from 212 videos
randomly selected from the VoxConverse [13], containing var-
ious sets of interviews. The proposed dataset, WASD, brings
challenging sets, in-the-wild videos, demographic diversity,
and body data annotations. The main characteristics of our
dataset relative to others are presented in Table I.
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Fig. 2: Considered categories of WASD, with relative audio and face quality represented. Categories range from low (Optimal
Conditions) to high (Surveillance Settings) ASD difficulty by varying audio and face quality. Easier categories contain similar
characteristics to AVA-ActiveSpeaker (AVA-like), while harder ones are the novelty of WASD.

III. DATASET

We propose WASD, a dataset that aims to show the limita-
tions of current state-of-the-art models by compiling a set of
videos from real interactions with varying accessibility of the
two key components for ASD: audio and face. By dividing our
dataset into 5 categories with varying degrees of audio and face
quality, we can assess how models adapt to these scenarios and
which factors are more relevant for ASD. We create a balanced
demographics dataset (regarding language, race, and gender),
with several challenging factors, complemented with body
annotations data. We discuss the process of dataset creation
in the following sections.

A. Video and Category Selection

We select videos from YouTube and group them into 5
categories based on a set of features, whose values were
attributed by human assessment. The main features used for
category division are shown in Table II, with the complete list
in the supplementary materials. In sum, videos are grouped as
follows:

• Optimal Conditions: People talking in an alternate man-
ner, with minor interruptions, cooperative poses, and face
availability;

• Speech Impairment: Frontal pose subjects either talking
via video conference call (Delayed Speech) or in a
heated discussion, with potential talking overlap (Speech
Overlap), but ensuring face availability;

• Face Occlusion: People talking with at least one of the
subjects having partial facial occlusion, while keeping
good speech quality (no delayed speech and minor com-
munication overlap);

• Human Voice Noise: Communication between speakers
where another human voice is playing in the background,
with face availability and subject cooperation ensured;

• Surveillance Settings: Speaker communication in scenar-
ios of video surveillance, with varying audio and image

TABLE II: Category feature matrix. Feature description: FA,
Face Availability; SO, Speech Overlap; DS, Delayed Speech;
FO, Facial Occlusion; HVB, Human Voice as Background
Noise; SS, Surveillance Settings. The absence of a certain
feature is presented with ×, while its presence with ✓.
Features containing ? refer to non-guarantee of its presence
or absence. Green cells refer to features favorable for ASD,
while red ones are unfavorable.

Category FA SO DS FO HVB SS
Optimal Conditions ✓ × × × × ×
Speech Impairment ✓ ✓ ✓ × × ×

Face Occlusion ✓ × × ✓ × ×
Human Voice Noise ✓ × × × ✓ ×
Surveillance Settings ? ? ? ? ? ✓

quality, without any guarantee of face access, speech
quality, or subject cooperation.

Some important aspects to consider from Table II: 1) all
categories, aside Surveillance Settings, guarantee face avail-
ability, which corresponds to cooperative scenarios and close-
up faces; 2) we consider speech delay and overlap as variations
of slight speech impairment, thus their grouping in the same
category; and 3) Surveillance Settings does not have any guar-
antee regarding the analyzed features, corresponding to wild
conditions. These considerations support the range of ASD
difficulty between Optimal Conditions (easier) and Surveil-
lance Settings (harder), since the impairment of audio and
face is incremental and controlled throughout the categories.
Figure 2 displays representative images of each category and
the relative variation of audio and face quality. For a detailed
list of all the considered features per video in WASD, we
refer to the supplementary materials and the metadata Comma-
Separated Values (CSV) containing this information, available
on GitHub.

WASD Groups. Aside category division, we also form
two groups of videos for our experiments: Easy and Hard.
The easy group contains the categories that more closely
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Fig. 3: Gender, language, race, speaking activity, and number of speakers distribution of WASD. Afro refers to African and
Afro-American people. On the right, distribution of head-body and body-image proportions of WASD categories. WASD is
a balanced demographics dataset, with talking being the predominant speaking activity, mainly composed of few people
conversations, where audio impaired categories (Speech Impairment and Human Voice Noise) have speakers closer to the
camera, and Surveillance Settings has speakers further from it.

resemble AVA-ActiveSpeaker (Optimal Conditions and Speech
Impairment) while the hard group has categories where one
or both factors (face and audio) are specifically degraded
(remaining 3 categories of WASD). The inclusion of Speech
Impairment in the easy group relates to how speech overlap is
admissible in AVA-ActiveSpeaker (as recurrent from normal
conversations) and speech delay as a result of dubbed movies
(existent in AVA-ActiveSpeaker).

B. Main Characteristics

One focus of the proposed dataset is ensuring that each
category is balanced regarding language, race, and gender
distribution to mitigate any potential bias in future experi-
ments. The languages are grouped into English, European,
and Asian, while races are grouped into Caucasian, Afro, and
Asian. The considered languages and races, their grouping,
and other related considerations are discussed in the supple-
mentary material. The distribution of demographics, number
of speakers, and head-body proportions of WASD is presented
in Figure 3. WASD only considers two admissible labels,
with talking being the dominant speaking activity (contrary to
AVA-ActiveSpeaker), and is mainly composed of few people
conversations. Surveillance Settings is the one with lesser
camera proximity to speakers while Speech Impairment and
Human Voice Noise have speakers closer to the camera.

Following the AVA-ActiveSpeaker approach, the maximum
length considered for each video is 15 minutes. Contrary to
AVA-ActiveSpeaker, where each subvideo duration ranges up
to 10 seconds, we segment each subvideo up to 30, with
varying video FPS, mainly ranging from 24 to 30. Regarding
the number of videos, WASD is composed of 164 videos
(vs. 153 of AVA-ActiveSpeaker), totalling 30 hours of video
annotations, divided into train and test with a similar propor-
tion to AVA-ActiveSpeaker (80/20), with each category having
the same amount of hours, (i.e., 6 hours) and demographics
balance.

C. WASD Annotations

Body bounding boxes drawing and tracking are obtained
using YOLOv5 [42] and DeepSort [54], serving as input to
Alphapose [24], [34], [55], which outputs pose information
for each subject per frame. Then, we obtain face bounding
boxes [7] from pose data, using eyes, ears, and nose key-
points as reference for bounding box drawing. The size of
face bounding boxes is based on body bounding box height,
which is adjusted manually per video to ensure adequate face
capture. All face and body annotations are manually revised
by a human and adjusted/fully annotated when necessary via
Computer Vision Annotation Tool (CVAT) [46]. For speaking
annotations, we design a custom Graphical User Interface
(GUI) program in Python for manual annotation, outputting
a file with the format used by AVA-ActiveSpeaker. Further
details regarding annotations can be seen in the supplementary
material.

IV. EXPERIMENTS

A. Datasets, Models, and Evaluation Metric

Datasets. The AVA-ActiveSpeaker dataset [44] is an audio-
visual active speaker dataset from Hollywood movies. With
262 15 minute videos, typically only train and validation
sets are used for experiments: 120 for training, and 33 for
validation, corresponding to 29,723 and 8,015 video utter-
ances, respectively, ranging from 1 to 10 seconds. The main
challenges of this dataset are related to language diversity,
FPS variation, the existence of faces with low pixel numbers,
blurry images, noisy audio, and dubbed dialogues. Similar
to other works, we report the obtained results on the AVA-
ActiveSpeaker validation subset. We also use the proposed
dataset, WASD, which is described in Section III. Unless ex-
plicitly stated, all models trained in WASD use the whole train-
ing split (with 5 categories). We also consider Columbia [9] for
cross-domain experiments with model modifications to include
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TABLE III: Comparison of AVA-ActiveSpeaker trained state-
of-the-art models on AVA-ActiveSpeaker and categories of
WASD, using the mAP metric. We train and evaluate each
model following the authors’ implementation. OC refers to
Optimal Conditions, SI to Speech Impairment, FO to Face Oc-
clusion, HVN to Human Voice Noise, and SS to Surveillance
Settings. AVA refers to AVA-ActiveSpeaker, Light refers to
Light-ASD, and TS-Talk to TS-TalkNet.

Model AVA WASD
OC SI FO HVN SS Avg

ASC [4] 83.6 86.4 84.8 69.9 66.4 51.1 74.6
MAAS [5] 82.0 83.3 81.3 68.6 65.6 46.0 70.7

ASDNet [33] 91.1 91.1 90.4 78.2 74.9 48.1 79.2
TalkNet [49] 91.8 91.6 93.0 86.4 77.2 64.6 85.0
TS-Talk [31] 92.7 91.1 93.7 88.6 79.2 64.0 85.7

Light [35] 93.4 93.1 93.8 88.7 80.1 65.2 86.2

body information. Columbia consists of an 87-minute panel
discussion video, with five speakers (Bell, Boll, Lieb, Long,
and Sick) taking turns speaking, with 2-3 speakers visible at
any given time.

Models. The considered models are the ones with state-
of-the-art results and publicly available implementations:
ASC [4], MAAS [5], TalkNet [49], ASDNet [33], TS-
TalkNet [31], and Light-ASD [35]. ASC, MAAS, and ASDNet
are trained in a two-step process, while TalkNet, TS-TalkNet,
and Light-ASD are trained end-to-end. MAAS did not provide
its Multi-modal Graph Network setup so we present the results
from the available implementation.

Evaluation Metric. For AVA-ActiveSpeaker and WASD,
we use the official ActivityNet evaluation tool [44] that com-
putes mean Average Precision (mAP), while for Columbia we
use F1 score.

B. Limitations of AVA-ActiveSpeaker Training

We start by training models in AVA-ActiveSpeaker and
evaluate their performance on AVA-ActiveSpeaker and WASD,
in Table III. The inverse cross-domain (WASD to AVA-
ActiveSpeaker) is included in the supplementary materials.

Similar to AVA-ActiveSpeaker. Regardless of the model,
their performance on Easy categories (Optimal Conditions
and Speech Impairment) is similar to the one displayed in
AVA-ActiveSpeaker, suggesting the presence of similar char-
acteristics between this group and AVA-ActiveSpeaker. This
highlights the importance of face and audio quality for current
ASD models, and shows that with high quality data and
reliable face access, simultaneous talk or slight speech delay
do not significantly hinder model performance. Furthermore,
the similar performance of models in AVA-ActiveSpeaker and
Easy categories support the quality of WASD annotations.

Face and Audio Importance. However, the cross-domain
performance is significantly worse in Hard categories. In Face
Occlusion, Human Voice Noise, and Surveillance Settings,
there is a decrease in performance relative to other categories,
suggesting that impairment of face access or audio quality
significantly impact models, with a cumulative degrade when
both are present (Surveillance Settings). Furthermore, facial

TABLE IV: Comparison of state-of-the-art models on the
different categories of WASD, using the mAP metric. OC
refers to Optimal Conditions, SI to Speech Impairment, FO
to Face Occlusion, HVN to Human Voice Noise, and SS to
Surveillance Settings. Light refers to Light-ASD, and TS-Talk
to TS-TalkNet.

Model Easy Hard AvgOC SI FO HVN SS
ASC [4] 91.2 92.3 87.1 66.8 72.2 85.7

MAAS [5] 90.7 92.6 87.0 67.0 76.5 86.4
ASDNet [33] 96.5 97.4 92.1 77.4 77.8 92.0
TalkNet [49] 95.8 97.5 93.1 81.4 77.5 92.3
TS-Talk [31] 96.8 97.9 94.4 84.0 79.3 93.1

Light [35] 97.8 98.3 95.4 84.7 77.9 93.7
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Fig. 4: Average performance (mAP) variation of the four mod-
els on WASD categories, when trained on AVA-ActiveSpeaker
and WASD. AVA-ActiveSpeaker is represented as AVA.

occlusion is not as impactful as audio impairment (Human
Voice Noise) in ASD, meaning that even when a model can
not assess the talking person via face, it can still deduct it
via audio analysis. The inverse is not as easily solved, since
the existence of audio impairment with human voices (Human
Voice Noise) leads to poorer performance relative to the Face
Occlusion.

Model Performance Variance. One particular aspect re-
garding the performance of models for the Easy group is
TalkNet and TS-TalkNet performing slightly better in Speech
Impairment than in Optimal Conditions. This is mainly due
to their long-term audio assessment approach, making the
models robust against local audio variations and resilient to
settings with slight audio impairment (Speech Impairment),
even when trained in AVA-ActiveSpeaker, partially due to
the existence of Speech Delay in AVA data (dubbed movies).
Given this context, for TalkNet(s), Speech Impairment and Op-
timal Conditions tend to be “similar” environments, suggesting
that the performance difference might be more related to the
background of the videos and not their ASD challenges (i.e.,
for TalkNet(s), Optimal Conditions and Speech Impairment
only represent different videos and the latter is not necessarily
harder). Additionally, Speech Impairment category has faces
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Fig. 5: ROC and PR curves for models trained in AVA-
ActiveSpeaker and WASD, and evaluated in Easy (left) and
Hard (right) groups of WASD. AVA-ActiveSpeaker is repre-
sented as AVA.

closer to the camera relative to Optimal Conditions (Figure 3,
head-body proportion bar), which further contributes to the
improvement of TalkNet(s) performance (i.e., Speech Impair-
ment is less challenging for TalkNet(s) than other models, and
the face being closer to the camera leads to a slightly easier
setting than Optimal Conditions).

Best Performers. Despite a performance degrade with
increasing category difficulty, TalkNet, TS-TalkNet, and Light-
ASD tend to perform better than the remaining models.
This could be linked to their end-to-end approach for ASD,
contrary to the other models, improving its generalization and
performance in cross-domain. Furthermore, TalkNet and TS-
TalkNet focus on long-term temporal context, benefiting from
longer videos which is the case of WASD, while the BGRU for
cross-modal modeling and lightweight model of Light-ASD
contribute to more robustness for unseen conditions.

C. Models Robustness in WASD

To evaluate the robustness of ASD models on challenging
data, we train them in WASD and compare their performance
with AVA-ActiveSpeaker training in Table IV and Figure 4.

Performance Increase. Relative to AVA-ActiveSpeaker
training, models trained in WASD tend to slightly improve
their performance in Easy setups (Optimal Conditions and
Speech Impairment), with higher increase in Face Occlusion
and Surveillance Settings scenarios. The increase in Face
Occlusion to closer values of those in Easy setups shows that,
if trained accordingly, current models can perform ASD in
such scenarios. This relates to how models can map different
speaker relations in a scene, allowing the inference of one
speaker relative to others, even if the face is occluded. Regard-
ing Surveillance Settings, it shows that AVA-ActiveSpeaker
does not contain data similar to these settings, but models can
perform better in such scenarios if given the proper training.

(a)

(b)

(c)

Fig. 6: Incorrect model inference in different scenarios. Source
of misconception: a) awe expression, with sudden and subtle
mouth movement, while having human voice in the back-
ground; b) partial facial occlusion from scene object; and c)
slight mouth occlusion from hand movement.

Similar to Face Occlusion, relating different speakers in a
scene may give models the tools to perform in such scenarios,
even when face access is not reliable.

Model Performance Differences. Regarding the perfor-
mance of Human Voice Noise and Surveillance Settings, some
models tend to perform better in the latter, even if said
category is expected to be more challenging. We can look at
the results considering two big groups: 1) ASDNet, TalkNet,
Light-ASD, and TS-TalkNet (where Surveillance Settings is
worse or equal to Human Voice Noise); and 2) MAAS and
ASC (where Surveillance Settings is clearly better than Human
Voice Noise). Older models (MAAS and ASC) are more
heavily based on combining audio and face without attention-
based approaches, and Human Voice Noise challenges an
assumption of these models (given their training data and
approaches): audio of a given scene/video is very likely to
come from ASD candidates (i.e., people in the scene). This
is not guaranteed in this category since the majority of its
videos have talking/singing audio from people not in the
scene, which is distinctive from all other categories, such as
Surveillance Settings (i.e., in Surveillance Settings all talking
audio comes from people in the scene), which might justify
the underperformance of older models and the resilience of
the most recent ones.
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Fig. 7: Incorrect model inference by mixing active speakers.
Hand and arm movement (from right speaker, better viewed
with zoom in) suggest a change in conversation between the
two speakers, whose analysis would aid understanding speaker
swap mid conversation.

Model Limitations. When trained in WASD, models
can not improve their performance in the presence of dis-
ruptive/distracting human voice background (Human Voice
Noise), which shows the limitations of current approaches. The
guaranteed face access may induce a false sense of security to
classify a person as talking when they do micro expressions in
the presence of (background) human voice. Furthermore, the
disparity between the results with human voice background or
surveillance settings and the other scenarios (77% vs >92%)
shows the limitations of current models to perform in wilder
ASD contexts, particularly in impaired audio conditions.

Performance in WASD Groups. To complement model
performance assessment, we compute the Receiver Operat-
ing Characteristic (ROC) and Precision-Recall (PR) curves
of models in different experimental settings, in Figure 5.
The results show that: 1) in the Easy group, ASDNet and
TalkNet trained in AVA-ActiveSpeaker are competitive with
other models trained in WASD, showing the robustness of
the best performing models and the similarity between AVA-
ActiveSpeaker and Easy group of WASD; 2) for the Hard
group, all models trained in WASD have superior performance
relative to AVA-ActiveSpeaker training, suggesting the differ-
ence of data between this group and AVA-ActiveSpeaker; and
3) TalkNet trained in AVA-ActiveSpeaker displays a different
tendency relative to other models, expressed in both Easy
and Hard group, with higher predominance in PR curves.
TalkNet has a cautious and precise approach in determining
the active speaker (high precision), while not keeping a similar
performance in identifying all the active speakers as other
models (lower precision with higher recall). This is linked to
the lower talking percentage of AVA-ActiveSpeaker and the
end-to-end approach of TalkNet with emphasis on long term
context: identifying only active speakers with high confidence
is a good strategy in AVA-ActiveSpeaker but not as reliable
in WASD.

D. Qualitative Analysis

We analyze different scenarios where WASD is distinctive
from AVA-ActiveSpeaker and body data analysis is more
relevant for ASD, namely in Human Voice Noise, Face Oc-
clusion, and Surveillance Settings, represented in Figures 6a,
6b, 6c, and 7, respectively. Head boxes are colored with
models predictions, trained in WASD: green, person is talking;

Face Visual 
Temporal Encoder

Audio Temporal
Encoder

Body Visual 
Temporal Encoder

Face-Audio
Cross-Attention

Body-Audio
Cross-Attention

Feature Representation Speaker Detection Backend

Self-Attention

Face-Body-Audio
Cross-Attention

ASD Predictions

FvF

FvB

Fa

Fa,vF,vB

Fig. 8: Adaptation of TalkNet [49] architecture to include body
data and serve as our baseline: inclusion of a visual temporal
encoder for body data and cross-attention for audio and body.

red, not talking. Figures are accompanied with zoom ins
containing wrong and correct signs, displaying the correctness
of ASD prediction. By not using body information, state-
of-the-art models can not reliably deal with scenarios where
someone expresses slight lip movement (e.g., awe expression)
when another person (not in scene) is talking (Figure 6a),
or with facial occlusion (Figure 6b), even in the context of
speaker proximity and cooperation. In surveillance settings
(Figures 6c and 7) the benefits of body data evaluation is even
more pronounced. Accessing hand movement with slight face
occlusion helps understanding that the same person is talking
(Figure 6c), as well as inferring when one person is requesting
other to stop talking (Figure 7).

V. PROPOSED BASELINE

Given the superiority of TalkNet in WASD and its end-
to-end approach, we select it as our baseline, modifying its
architecture to include body information while maintaining its
key characteristics, as shown in Figure 8. In experiments with
only one visual data input (face or body), we use the original
TalkNet.

A. TalkNet Architecture Modifications

To ensure adequate body data encoding, we add a new
visual encoder for body data, with the same architecture as
the one used for face (V-TCN [49] with DS-Conv1D [1]).
For multi-modal cross-attention, we combine audio and body
features following the approach used for face and audio [51].
Feature combination was adapted to include body and self-
attention block input was updated to consider these changes.
Given that the original training loss function considers the
prediction of feature combination and each feature individually
with weighted factors, we include a body loss with the same
weight as face.

B. Body Importance Assessment

We assess the performance of the proposed Baseline and
TalkNet using face and body data, in Table V.

Body Data Alone. Although body data contains facial
cues, model attention to them diminishes when using body
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TABLE V: Comparison of TalkNet, using face and body
data, and proposed Baseline on WASD categories, using the
mAP metric. OC refers to Optimal Conditions, SI to Speech
Impairment, FO to Face Occlusion, HVN to Human Voice
Noise, and SS to Surveillance Settings.

Model Easy Hard
OC SI FO HVN SS

TalkNetFace 95.8 97.5 93.1 81.4 77.5
TalkNetBody 91.1 95.5 88.4 73.1 75.0

Baseline 96.9 98.1 95.4 83.8 81.5
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65

70
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95
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Fig. 9: WASD group training performance (mAP) influence on:
a) Proposed Baseline; and b) TalkNet with face as input. AVA
refers to TalkNet trained in AVA-ActiveSpeaker, and WASD
refers to training using all training data.

as sole input, leading to worse performance overall. The
categories less affected by this change are Speech Impairment
and Surveillance Settings, given the similarity of face and
body data (head body proportion in Table 3), and reduced
face importance due to its unreliable access, respectively. This
shows that current ASD approaches can not effectively process
body data as input and are more prepared to analyze closed-up
facial/mouth cues for ASD prediction.

Face Body Importance Discrepancy. Regarding the differ-
ence between using face or body alone, Human Voice Noise
is the category where this difference is maxed. Human Voice
Noise has videos with sporadic/involuntary body movements
that might suggest that a person is talking, while not actually
being (e.g., dancing, pointing at something, raising hand in
reaction to a given event). In these cases, considering only
body information as visual input in Human Voice Noise data
which contains movements that are rarely/never seen in other
categories, might be detrimental towards ASD and lead to false
positives based on sudden/abrupt body movements (i.e., when
looking at other categories, raising hands or similar actions are
heavily related to speaking, which is not guaranteed in Human
Voice Noise).

Face Body Complement. The combination of body with
face data translates into better results for all categories, with
the biggest improvement on Hard categories. This shows
that face-body complement is a viable strategy for current
models and body importance is emphasized in harder setups,
particularly when face can not be reliably accessed.

TABLE VI: Comparison of F1-Score (%) on the Columbia
dataset.

Model Speaker
Bell Boll Lieb Long Sick Avg

TalkNet [49] 43.6 66.6 68.7 43.8 58.1 56.2
LoCoNet [52] 54.0 49.1 80.2 80.4 76.8 68.1

Light-ASD [35] 82.7 75.7 87.0 74.5 85.4 81.1
Baseline 83.0 64.5 79.6 86.2 78.9 78.4

C. Training Influence in Model Performance

We explore the effect of training in WASD groups (Easy and
Hard, Section III-A) on the proposed Baseline and TalkNet
with face as visual input, in Figure 9.

Group Training on Baseline. For our Baseline, training
in Easy has similar performance to training in WASD for
cooperative setups, but significantly underperforms in unseen
challenging sets. In contrast, Hard training follows the trend
of WASD training (with only slightly worse performance),
showing the importance of training in challenging data for
robustness in within and cross-domain settings.

Training Influence on Face-based Models. Similar to
our Baseline, face-based models overall performance is better
when training in Hard than in Easy. However, while in
Baseline there is a gap between Hard and WASD training, in
face-based models the performance is more similar, showing
the importance of having additional training data for more
robust approaches (body-face models). Relative to TalkNet
training in AVA-ActiveSpeaker, its performance on WASD fol-
lows the same trend as Easy training, reinforcing that AVA-
ActiveSpeaker and Easy data are similar, and that neither
adequately prepare models to deal with challenging sets.

D. Body Importance in Columbia

We also assess the performance of the proposed baseline
in Columbia, following the procedure of Light-ASD [35]
where models are trained in AVA-ActiveSpeaker, without any
additional fine-tuning, and compare with the results reported
on Light-ASD, in Table VI. Since AVA-ActiveSpeaker does
not have body data annotations, we obtain body bounding box
annotations from AVA Actions Dataset [27] and complement
them with speaking labels of AVA-ActiveSpeaker to train
the proposed baseline. The results show that body inclusion
massively improves the proposed baseline performance rel-
ative to its initial architecture (TalkNet), showing that body
information leads to increased robustness to perform ASD
and can be useful in other settings other than the challenging
conditions of WASD.

VI. CONCLUSION

We propose WASD, a innovative challenging ASD dataset
with degraded audio quality, facial occlusions, surveillance
conditions, and body data annotations. We show that current
datasets do not prepare models for wild ASD, and state-of-
the-art models underperform in such conditions, particularly in
audio impairment and surveillance settings. We also propose
a baseline that complements body data with audio and face to
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prove the importance of body for wild ASD and support the
development of subsequent approaches, given the unreliability
of audio quality and subject cooperation in wilder settings.
Given the challenges of the surveillance data relative to exist-
ing datasets, future directions should be centered on increasing
the amount of challenging data available to prepare models to
perform in wilder conditions.
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