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Abstract

State-of-the-art Active Speaker Detection (ASD) ap-
proaches mainly use audio and facial features as in-
put. However, the main hypothesis in this paper is
that body dynamics is also highly correlated to “speak-
ing” (and “listening”) actions and should be particu-
larly useful in wild conditions (e.g., surveillance settings),
where face cannot be reliably accessed. We propose
ASDnB, a model that singularly integrates face with body
information by merging the inputs at different steps of
feature extraction. Our approach splits 3D convolu-
tion into 2D and 1D to reduce computation cost with-
out loss of performance, and is trained with adaptive
weight feature importance for improved complement of
face with body data. Our experiments show that ASDnB
achieves state-of-the-art results in the benchmark dataset
(AVA-ActiveSpeaker), in the challenging data of WASD,
and in cross-domain settings using Columbia. This way,
ASDnB can perform in multiple settings, which is positively
regarded as a strong baseline for robust ASD models (code
available at https://github.com/anonymized).

1. Introduction

Active Speaker Detection (ASD) aims to identify, from
a set of potential candidates, active speakers on a given
visual scene [33], with application in several topics such
as speaker diarization [15, 10, 9], human-robot interac-
tion [20, 40], automatic video editing [26, 14], and speaker
tracking [30, 31]. State-of-the-art ASD models typically
perform at the video frame level using face data and sound
information. Using only facial cues as visual input is a
viable strategy due to the correlation of mouth movement
and speaking activity, but this approach is only reliable
in cooperative and controlled settings. This widely used
strategy is motivated by the benchmark ASD dataset AVA-
ActiveSpeaker, composed of movies with good audio and
face quality.

Another approach that has not been widely explored for
ASD is the use of body information. When people speak
or listen they typically use other forms of non-verbal be-

Figure 1. State-of-the-art ASD models solely rely on facial cues as
visual input to perform. This approach is only reliable with coop-
erative (subjects) conditions, increasing uncertainty in model pre-
diction in more challenging settings. Our approach aims to com-
plement face with body cues to create more robust models that are
able to perform in cooperative and unconstrained scenarios.

haviors such as head nodding, hand and body movements,
which are not considered by current ASD models. This in-
formation increases in importance when face can not be re-
liably accessed (e.g., face occlusion) or in wilder conditions
such as surveillance-like settings [35], as shown in Figure 1.
As such, complementing body information with facial cues
could improve model robustness to perform in cooperative
conditions as well as more challenging settings.

This paper proposes a model that brings Active Speaker
Detection and Body (ASDnB) together. In particular,
ASDnB has the novelty of efficiently combining body with
face data using a single visual encoder, merging them at
different steps of the extraction, and outputting combined
visual features for robust ASD. We modified the visual en-
coder by splitting the 3D convolution into 2D and 1D to
reduce computation cost without loss of performance, and
we train ASDnB using adaptive weight feature importance,
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which results in improved visual encoder extraction and fea-
ture complement. Finally, we include temporal modeling
in the classifier of ASDnB using bidirectional Gated Re-
current Unit (GRU) layers to maintain the temporal notion
for speaker label prediction. Our experiments show that
ASDnB achieves state-of-the-art results in the benchmark
ASD dataset AVA-ActiveSpeaker, as well as in chal-
lenging data with degraded audio and face data quality
(WASD [36]) and cross-domain settings (Columbia [6]),
making it a baseline for robust ASD models. To summa-
rize, the main contributions are:

• We announce the first effective combination of body
and face data for visual input in ASD, which is a novel
approach to create robust models to perform in more
challenging settings;

• We propose a intra visual encoder combination of
dual inputs (face and body) and training with adaptive
weight feature importance to effectively combine rele-
vant features for robust ASD;

• Ablation studies, experimental evaluation, and perfor-
mance analysis demonstrate ASDnB state-of-the-art
results in the benchmark dataset, AVA-ActiveSpeaker,
in the challenging data of WASD, and in cross-domain
settings using Columbia.

2. Related Work

ASD Context. Active Speaker Detection is the task
to determine the talking speaker from a set of admissible
candidates. The benchmark dataset of this area is AVA-
ActiveSpeaker [33], which is based on Hollywood videos
totalling almost 38 hours, with demographic diversity and
FPS variation, with applications in other areas [34]. Several
other datasets [3, 13, 21] were announced since, guaran-
teeing face access and good audio quality, similar to AVA-
ActiveSpeaker, which is not an accurate representation of
wild conditions [33]. For ASD in more challenging data,
WASD [36] has been recently proposed containing differ-
ent categories, with varying audio and face quality, ranging
from cooperative conditions to surveillance settings. Based
on the available data for ASD, current state-of-the-art mod-
els heavily rely on face and audio data, combining them
using 3D architectures [8], hybrid 2D-3D models [48], and
attention mechanisms [43, 1, 7]. Earlier works are based
on a two-step process, where the first focuses on audio with
face combination and the second on multi-speaker analy-
sis [2, 22, 47, 3], while recently end-to-end models have
emerged [42, 4, 29, 25, 35]. Contrary to existing works,
where face is the only visual input for ASD, ASDnB is the
first to effectively combine face with body data for robust
ASD.

Model Enhancement. Strategies to improve ASD mod-
els are typically based on improved feature extraction and
combination. Works focus on temporal speech refine-
ment [2], inter-speaker and audio-visual relations [22, 47],
using Graph Convolutional Networks (GCN) [45] to im-
prove speaker relation representation [3, 29, 4], long-term
temporal context with audio-visual synchronization [42],
using a reference speech to improve ASD [19], and chang-
ing encoder architectures [25]. Despite the different strate-
gies, combining audio with visual features is usually done
post encoding using cross-attention approaches [42, 19] and
complemented by temporal modeling. ASDnB is the first
ASD model to combine different visual features (face and
body), intra encoding, making it more robust to perform in
challenging data where face can not be easily accessed.

Using Body Information. Current ASD state-of-the-
art models rely on facial cues for visual input given the
subject cooperation (face access guaranteed) of the main-
stream datasets. However, this is not a viable approach
in wilder conditions (such as surveillance settings), where
face is not reliably accessed. As such, one potential strat-
egy to improve ASD model robustness is using body in-
formation, as explored in other areas. Pedestrian Attribute
Recognition (PAR) datasets [12, 28, 24] are examples of
these scenarios, containing person cropped images from
surveillance settings, used to identify various attributes un-
der challenging covariates. Works in this area focus on dif-
ferent strategies ranging from different architecture combi-
nation [37, 49, 41], attention-based approaches [39, 17], as-
sessing model limitations [38], and attribute relation impor-
tance [23, 27, 18]. In ASDnB, we propose a modification
of standard ASD visual encoders, where face and body fea-
tures are combined at different steps of the extraction, intra
encoder, outputting combined visual features.

3. ASDnB
We propose ASDnB, an model that, for the first time, ef-

fectively combines face with body data to perform ASD in
cooperative and challenging conditions. We combine dual
visual inputs using a single encoder by complementing face
and body features at different steps of extraction, and train
with adaptive weight to improve feature extraction and com-
bination. The overall architecture of ASDnB is displayed in
Figure 2, with details of each model component in the fol-
lowing subsections.

3.1. Visual Encoder

Selecting Visual Encoding Approach. Several strate-
gies for visual encoding in ASD are based on 3D convolu-
tional neural networks, given their effectiveness in extract-
ing spatiotemporal information of face sequences [22, 4].
These approaches are typically computationally expensive
with increased number of parameters, which made other

2
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Figure 2. Overview of the ASDnB architecture. Body and face
data are fed into the visual encoder, allowing intra encoder fea-
ture fusion and complement, while audio is processed through its
respective encoder. Audio and visual features are combined to
predict subject speaking label, using an adaptive weighted loss for
combined and visual features (Lav and Lv , respectively).

works explore the use of a 3D convolution prior to inputting
to a 2D ResNet (typically 18), followed by visual tempo-
ral convolution networks [42, 19]. The key takeaway from
the state-of-the-art is that reducing the visual inputs to a 2D
context leads to good ASD performance, which can be fur-
ther extended by splitting the 3D convolution into 2D and
1D to extract the spatial and temporal information, respec-
tively [25]. We select this approach for our model since it
combines the key strategies of previous ASD works while
significantly reducing the number of parameters and com-
putational cost, and without loss of performance.

Combining Face and Body. Contrary to previous
works, which only take face as input to visual encoders, we
also consider body given its importance to complement fa-
cial cues for ASD in more challenging settings (e.g., surveil-
lance conditions). One possible approach is adding two vi-
sual encoders to extract face and body features, followed by
combining them with audio prior to model classification.
However, this does not force the model to consider face and
body information in conjunction on feature extraction, re-
sulting in ignoring information complement from the two
sources, leading to subpar performances, namely in coop-
erative settings where face data is reliable [35]. As such,
our motivation is to combine face and body data intra vi-
sual encoder to output combined visual feature, using an
approach inspired by UNet [32] where face and body fea-
tures are combined at different steps of the extraction, as
shown in Figure 3. We combine face features into body at
early extraction steps to make body data as a complement
to facial cues since these are the main features for ASD,

Figure 3. Overview of the flow of face and body combination
in ASDnB visual encoder. The first convolution for both inputs
downsamples via stride.

while recombining body data to face feature at latter stage to
reinforce data conjunction. Finally, to ensure spatiotempo-
ral feature extraction abundance at different receptive fields,
each convolutional block contains two paths, one with ker-
nel size of 3 and another of 5, given its superiority to other
kernel combinations [25].

3.2. Audio Encoder

For audio encoding, we adapt the audio signal to serve as
input to a 2D encoder by generating Mel-frequency cepstral
coefficients (MFCCs), with a sampling rate of 16 kHz, anal-
ysis window of 0.025 ms, step between successive windows
of 0.010, and a audio representation of 13 cepstrums. As au-
dio encoder we use ResNet34 with Squeeze-and-Excitation
(SE) blocks in its layers (SE-ResNet34), outputting a 128-
dimensional audio embedding for subsequent visual and au-
dio conjunction.

3.3. Temporal Modeling in Classifier

To improve ASD model performance we apply temporal
modeling to the combined multi-modal features from audio
and visual encoders. The key motivation is to provide a
temporal notion to the model to predict if a subject is talking
given that speaking is a continuous action in time, i.e. if
one subject is talking in a given frame it is more likely to be
talking in sequential frames, with a similar logic applying to
a non-talking subject. Our approach for ASDnB is shown
in Figure 4, where the combined multi-modal features are
obtained by summing visual and audio features, followed
by a bidirectional GRU, before passing to a Fully Connected
(FC) layer to predict if the candidate is talking.

3.4. Loss Function

Selecting Loss Strategy. Existing ASD approaches are
typically based on audio and face, with losses tending to
rely on the conjunction of both data to assess if a sub-
ject is talking. However, recent works [42, 25] explore
the inclusion of visual and audio features as sole inputs

3
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Figure 4. Bidirectional GRUs of visual and audio combination in
ASDnB classifier, before inputting to FC layers for speaker classi-
fication.

for losses to complement the cross-modal interaction, lead-
ing to improved feature extraction and model performance.
In our loss, we also consider visual features importance
into it, given that cooperative ASD settings (like AVA-
ActiveSpeaker) tend to benefit from assessing facial cues
to predict subject talking (i.e., mouth movement heavily re-
lates to talking).

Feature Importance and Combination. Unlike previ-
ous works, we include the notion of gradually increment the
importance of combined features (audio with visual) with
a relative decrease of visual feature importance throughout
training. The key motivation is that, although visual fea-
tures are important to improve feature combination, its rel-
evance is more crucial in earlier stages of training, with the
end goal of ASD models being to assess if a subject is talk-
ing via both audio and visual, and not solely based on fa-
cial cues. This is particularly important for ASD in more
challenging data (e.g., surveillance settings), where the im-
portance of visual features as sole input is not a reliable ap-
proach. Furthermore, since our visual encoder has to com-
bine face and body features to output visual embeddings,
we want the training to focus early on improving the visual
encoder and later at combining audio with visual features.

Formally, we define ASD as a frame-level classification,
where the predicted label sequence is compared with the
ground truth via Cross-Entropy:

L = − 1

T

T∑
i=1

(yi log(pi) + (1− yi) log(1− pi)), (1)

where T refers to the number of video frames, pi and yi are
the predicted and ground truth label for the ith frame, re-
spectively. Finally, the complete loss function is expressed
by:

LASDnB = α Lav + (1− α) Lv, (2)

where Lav and Lv refer to the losses of the combined
features (audio with visual) and of the visual feature classi-
fication, respectively. α refers to the weight coefficients for
combined features, with α starting at 0.5 and incrementing
to 1 throughout training, as follows:

α = α0 + δ(ε− 1), (3)

where α0 is set to 0.5 as the initial coefficient impor-

tance, δ is set to
1

60
as the coefficient decay degree, and ε

refers to the training epoch.

3.5. Obtaining Body Data

One of our key contributions relates to combining body
with facial cues to retrieve visual features relevant for
ASD in varying conditions. However, most ASD datasets
do not provide this type of data since current approaches
rely solely on face information as visual input. Regard-
ing AVA-ActiveSpeaker, we obtain body bounding box
annotations from AVA Actions Dataset [16] (groundwork
dataset) and complement them with speaking labels of
AVA-ActiveSpeaker, by matching entity id of the original
annotations. For Columbia, we use the S3FD face detec-
tor [46] based on previous works [25, 42], resizing its pre-
dictions to retrieve the body regions by using twice the
width and ending the bottom of the bounding box at three
times the predicted height. This approach is only viable for
this setting given that subjects in Columbia are cropped to
the upper body region (sitting). Regarding WASD [36], the
original dataset already contains body data annotations.

3.6. Implementation Details

ASDnB is trained for 30 epochs with an Adam optimizer,
with a initial learning rate of 10−4, decreasing 5% for each
epoch. All visual data is reshaped into 112 x 112, audio data
is represented by 13-dimensional MFCC, and both visual
and audio features have an encoding dimension of 128. For
visual augmentation, we perform random flip, rotate and
crop, while for audio augmentation, we use negative audio
sampling [42]. In sum, given a video data during training,
a audio track of a new one is randomly selected from the
same batch as noise, maintaining the same speaking label
of the original soundtrack.

4. Experiments
4.1. Datasets and Evaluation Metrics

AVA-ActiveSpeaker. The AVA-ActiveSpeaker
dataset [33] is an audio-visual active speaker dataset
from Hollywood movies, ranging from 1 to 10 seconds,
with 5.3 million face crops, where typically only train and
validation sets are used for experiments [42, 25, 22, 19, 35].

WASD. The WASD dataset [36] compiles a set of videos
from real interactions with varying accessibility of the two
components for ASD: audio and face. With 30 hours of
labelled data, WASD is divided into 5 categories ranging
from optimal conditions to surveillance settings. We re-
port the results on WASD and on each category, following
WASD experiments.

Columbia. We also consider Columbia [6] following the
methodology of Light-ASD [25] where models are trained

4
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Table 1. Comparison of ASDnB with state-of-the-art models in AVA-ActiveSpeaker.

Model Audio Encoder Visual Encoder Par(M) Pre-training End-to Body mAP
End Data

ASC [2] RN18 2D RN18 2D 23.3 ✓ × × 87.1
MAAS [3] RN18 2D RN18 2D 21.7 ✓ × × 88.8

UniCon [47] RN18 2D RN18 2D 23.8 ✓ × × 92.2
TalkNet [42] SE-RN34 RN18+V-TCN 15.0 × ✓ × 92.3
BIAS [35] SE-RN34 RN18+V-TCN 31.6 × ✓ ✓ 92.4

ASD-Trans [11] RN18 2D RN18+V-TCN 15.0 × ✓ × 93.0
ASDNet [22] SincDsNet RNx101 3D 49.7 ✓ × × 93.5

TS-TalkNet [19] SE-RN34 RN18+V-TCN 36.8 × ✓ × 93.9
EASEE-50 [5] RN50 RN50 3D 74.7 ✓ ✓ × 94.1

Light-ASD [25] Conv 1D Conv 2D-1D 1.0 × ✓ × 94.1
SPELL [29] RN18 2D RN18+TSM 22.5 ✓ × × 94.2

ASDnB SE-RN34 Conv 2D-1D 2.2 ✓ ✓ ✓ 94.6

in AVA-ActiveSpeaker, without any additional fine-tuning.
Columbia consists of an 87-minute panel discussion video,
with five speakers (Bell, Boll, Lieb, Long, and Sick) taking
turns speaking, with 2-3 speakers visible at any given time.

Evaluation Metrics. For AVA-ActiveSpeaker and
WASD, we use the official ActivityNet evaluation tool [33]
that computes mean Average Precision (mAP), while for
Columbia we use F1-Score.

4.2. ASDnB Performance in AVA-ActiveSpeaker

We compare ASDnB performance with state-of-the-art
models in AVA-ActiveSpeaker, in Table 1. ASDnB outper-
forms other models while being lightweight and trained
end-to-end. The increased number of parameters from
other ASD approaches derive from heavier extraction power
of visual inputs and model components (e.g., GCN) to con-
sider author relation which ASDnB simplifies by splitting
3D convolutions into 2D and 1D (lesser computation cost
without loss of performance) and using temporal modeling
in the classifier. However, the major contribution of ASDnB
relative to existing approaches is the first efficient combi-
nation of face with body data. The inclusion of body in-
formation for ASD is extremely important, in particular for
challenging data where face can not be reliably accessed,
which is a novel strategy that state-of-the-art models do not
yet consider. Only BIAS has previously considered comple-
menting body with face data, but their approach was to treat
body has another visual input rather than a complement to
face leading to subpar results in AVA-ActiveSpeaker, where
face is a reliable visual input for ASD. We are able to effi-
ciently include body for ASD by combining face and body
inputs intra encoder, outputting a single combined visual
feature that complements facial cues with relevant body
movements. Finally, our pretraining strategy is mainly to
prepare ASDnB for adequate body information extraction
by using WASD [36], a ASD dataset containing challenging
data such as surveillance settings where face is not reliably

Table 2. Comparison of ASDnB with state-of-the-art models on
the different categories of WASD, using the mAP metric. OC
refers to Optimal Conditions, SI to Speech Impairment, FO to Face
Occlusion, HVN to Human Voice Noise, and SS to Surveillance
Settings. Light refers to Light-ASD, and TS-Talk to TS-TalkNet.

Model Easy Hard Avg
OC SI FO HVN SS

ASC [2] 91.2 92.3 87.1 66.8 72.2 85.7
MAAS [3] 90.7 92.6 87.0 67.0 76.5 86.4

ASDNet [22] 96.5 97.4 92.1 77.4 77.8 92.0
TalkNet [42] 95.8 97.5 93.1 81.4 77.5 92.3
TS-Talk [19] 96.8 97.9 94.4 84.0 79.3 93.1

Light [25] 97.8 98.3 95.4 84.7 77.9 93.7
BIAS [35] 97.8 98.4 95.9 85.6 82.5 94.5
ASDnB 98.7 98.9 97.2 89.5 82.7 95.6

accessed. Although AVA-ActiveSpeaker is the benchmark
dataset, it is not a good representation of in-the-wild [33],
with mainly cooperative conditions. As such, for body to
have further importance in ASD we prepare the model to
perform in harder settings prior to assess ASDnB in more
cooperative conditions: AVA-ActiveSpeaker.

4.3. ASDnB Performance in Other Datasets

Challenging data of WASD. WASD is divided into
categories with incremental challenges to audio and face
data, with the most challenging data having face occlusion
(FO), audio impairment with background voices (HVN)
and surveillance settings (SS), where face access and au-
dio quality is not guaranteed. Table 2 shows that ASDnB
is superior to all models that only consider face as visual
input, in particular for the Hard categories where face and
audio quality is impacted, which rarely occurs in AVA-
ActiveSpeaker. The biggest performance discrepancy is in
surveillance settings (without reliable face input), where
only BIAS performance is similar to ASDnB, given its strat-
egy to also consider body data, highlighting the importance

5
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Table 3. Comparison of F1-Score (%) on the Columbia dataset.

Model Speaker
Bell Boll Lieb Long Sick Avg

TalkNet [42] 43.6 66.6 68.7 43.8 58.1 56.2
LoCoNet [44] 54.0 49.1 80.2 80.4 76.8 68.1

Light-ASD [25] 82.7 75.7 87.0 74.5 85.4 81.1
BIAS [35] 89.3 75.4 92.1 88.8 88.6 86.8
ASDnB 91.6 81.2 93.1 91.7 90.6 89.6

Table 4. Ablation studies on the effect of WASD pretraining, face
and body influence towards ASDnB performance (mAP) in AVA-
ActiveSpeaker.

Face Body Pretrain mAP

× ✓
× 83.9
✓ 86.5

✓ × × 93.7
✓ 94.2

✓ ✓
× 94.1
✓ 94.6

of including body information to create robust ASD models.
Robustness of ASDnB in Columbia. We also assess

the performance of ASDnB in Columbia, following the
methodology of Light-ASD [25] where models are trained
in AVA-ActiveSpeaker, without any additional fine-tuning,
and compare with the results reported on Light-ASD, in Ta-
ble 3. Although Columbia data contains cooperative sub-
jects, the cross-domain evaluation raises challenges for the
models. In this context, ASDnB approach to combine body
with face and audio information leads to a state-of-the-art
performance, and highlights the relevance of complement-
ing face with body data for model robustness to perform in
varying conditions such as cross-domain settings.

4.4. Ablation Studies

Feature Influence. Given the ASDnB novelty of body
inclusion for ASD, we explore the influence of different
features, and pretraining in WASD, in Table 4. The main
conclusions are: 1) the variant with only face as visual in-
put and pretraining does not achieves state-of-the-art perfor-
mances, meaning that body is a necessary feature; 2) pre-
training benefits more the ASDnB variant with body than
with only face (2.6% vs 0.5%), highlighting that pretrain-
ing in the challenges of WASD raises more importance to
body information relative to facial cues; 3) the combination
of body with face information, without pretraining, is the
ASDnB variant with best performing results meaning that
face with body complement is necessary for ASD but its
relevance increases in more challenging data given that the
best results require the WASD pretraining, which contains
challenges not seen in AVA-ActiveSpeaker.

Feature Extraction. We explored variations of audio
and visual encoders for ASDnB and summarized the re-

Table 5. Variation of audio and visual encoders regarding the num-
ber of parameters and model performance in AVA-ActiveSpeaker.

Visual Audio Par(M) mAP
Encoder Encoder

RN18+V-TCN Conv 1D 16.5 92.5
RN18+V-TCN SE-ResNet34 17.6 92.7
Conv 2D-1D Conv 1D 1.1 94.1
Conv 2D-1D SE-ResNet34 2.2 94.6

Table 6. Loss effect on ASDnB performance (mAP) in AVA-
ActiveSpeaker. Iv refers to the importance of visual features,
while Iav refers to the importance of combined audio and vi-
sual inputs towards ASD prediction. All approaches have Cross-
Entropy has the underlying training loss. τ refers to the tempera-
ture coefficient.

Approach Iv Iav Extra mAP
Standard 0 1 × 93.1
TalkNet 0.4 1 × 94.0

Light-ASD 0.5 1 τ 94.2
Our [0.5-0] [0.5-1] × 94.6

sults in Table 5. Regarding visual encoders, the approach
of splitting 3D convolution into 2D and 1D to extract the
spatial and temporal information, respectively, significantly
outperforms the standard approach of using a ResNet with
temporal convolutional network, while also having lower
number of parameters. For ASD visual inputs, facial and
body movements are the most relevant aspects, meaning
that simpler models capture these notions better, without
dispersion to other visual features. For audio encoder, the
most robust approach of SE-ResNet34 leads to improved
results when combined with the lightweight visual encoder.
This is mainly due to the pretraining on WASD, with vary-
ing audio quality, that requires more robust extraction of
audio features such as distinguish between relevant audio
and background voices to combine with adequate visual in-
formation.

Loss Function. We compare our loss with approaches
from other works in Table 6. Standard losses only consider
the combined audio and visual features as relevant for ASD,
while recent works [25, 42], focus on complementing this
combined loss with weight importance of individual fea-
tures. The latter strategies tend to perform better since they
motivate ASD models to improve visual feature extraction
such that visual cues are a reliable source to predict ASD.
Light-ASD further improves this aspect by including a tem-
perature coefficient to control feature importance through-
out training epochs. Our approach is based on similar con-
cepts but with two key changes: 1) our starting weight im-
portance for visual and combined features increases the rel-
ative importance of visual features to motivate a better con-
junction of face with body information in the earlier training
stages; and 2) we vary visual and combined features impor-
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Table 7. Performance of temporal modeling methods in ASDnB
classifier.

Method Par(M) mAP
None 2.02 89.8

Forward LSTM 2.15 93.7
Forward GRU 2.12 93.8

Bidirectional LSTM 2.28 94.4
Bidirectional GRU 2.22 94.6

tance through training, such that in later stages visual fea-
tures lose relevance and combining audio with visual fea-
tures is the strategy for ASD. Our loss translates into bet-
ter results relative to existing approaches, highlighting the
influence of adaptive weight importance for more reliable
ASD.

Temporal Modeling for ASD. We assess different tem-
poral modeling approaches for ASDnB classifier, in Table 7.
Given the ASD context, speaker prediction benefits from in-
cluding a temporal relation between frames as shown by
the results of not having temporal modeling. Increasing
this relation by bidirectional (vs. forward) temporal mod-
eling translates into better results, with GRU outperforming
LSTM. LSTM tends to be more reliable for long-term infor-
mation while the simplified version of GRU makes neigh-
boring frames more informative, which is a better approach
for ASD.

4.5. ASDnB Performance Analysis

Face Size and Number of People. We assess the
robustness of ASDnB to deal with variations of AVA-
ActiveSpeaker data in Figure 5, similar to other works [25,
42, 3, 22]. The methodology considers a face as Small with
width under 64, Middle with width between 64 and 128,
and Large with width over 128, while for the number of
people in the scene the data is divided into three mutually
exclusive groups (1, 2, and 3) based on the number of faces
detected in a frame, totalling 90% of AVA-ActiveSpeaker
data. For all variations ASDnB performance is superior to
existing state-of-the-art models, with only a slight under-
performance in the smaller face size relative to Light-ASD
(76.8% vs. 77.5%). With smaller faces and no relevant body
information ASDnB is not as robust, meaning that there is
room for improvement in these settings, namely in back-
ground people of a scene. Aside this scenario, ASDnB is
an all-around model for ASD, outperforming existing ap-
proaches in varying conditions.

Relative Body Importance. To further explore the im-
portance of body for ASD, we compare the performance
of ASDnB and Light-ASD with varying head-body propor-
tion (HBP), in AVA-ActiveSpeaker, in Figure 7. We use all
the available testing data in the first pair of bars, and use
less data moving left to right on the x-axis, corresponding
to lower HBP values. For instance, in the pair of bars at

(a) Models performance by the number of faces on each frame

(b) Models performance by faces size
Figure 5. Comparison of ASDnB performance relative to ASD
state-of-the-art models for (a) number of faces per frame and (b)
various face sizes in AVA-ActiveSpeaker.

20%, we are using the data with the lowest 20% HBP mean-
ing that these are settings where the face is significantly
smaller than body. The results show that, with a decrease
of HBP, ASDnB performance is progressively better rela-
tive to Light-ASD, highlighting that the absence of reliable
face access raises importance in body information. This is
particularly predominant in wild conditions such as surveil-
lance settings, meaning that ASDnB strategy is a viable ap-
proach to increase ASD robustness to perform in such con-
ditions. Although ASDnB performs worse in smaller faces
than Light-ASD (Figure 5), this aspect is mitigated with rel-
evant body information meaning that the underperformance
of ASDnB in such conditions is mainly due to background
people without visible body. With relevant body informa-
tion ASDnB is able to outperform Light-ASD, which rein-
forces the notion that body data is a relevant feature to use in
challenging ASD data (WASD [36]), or when the subject is
not close to the camera (instances of AVA-ActiveSpeaker).

Qualitative Analysis. We complement our experiments
with a qualitative analysis of ASDnB and Light-ASD in
challenging scenarios of AVA-ActiveSpeaker and WASD,
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Figure 6. ASDnB and Light-ASD (Light) qualitative performance assessment in challenging scenarios of AVA-ActiveSpeaker and WASD.
Red bounding boxes denote model prediction of subject not talking, green to speaking, and predictions with red cross denote missclassi-
fication relative to the ground-truth. In both examples with subjects far from the camera, Light-ASD misclassified the switch of speakers
while ASDnB was more resilient by analysing the hand movement that preceded subject speaking.

Figure 7. Relative body importance of ASDnB and Light-
ASD with decremental head-body area proportion in AVA-
ActiveSpeaker.

in Figure 6. The considered scenarios contain subjects
far from the camera and in suboptimal cooperative settings
(top-down view) which makes it harder to predict who is
speaking using only facial cues. In both examples, Light-
ASD misclassified the switch of speakers while ASDnB
was more resilient by analysing the hand movement that
preceded subject speaking. The results support the impor-
tance of body analysis for ASD in wild conditions, where
face can not be reliably accessed, making ASDnB a viable
baseline for robust ASD models.

5. Conclusion
This paper describes ASDnB, a lightweight multi-modal

model that, for the first time, efficiently combines face

with body information for Active Speaker Detection. The
key contribution of our proposal relates to combining face
and body features at different feature extraction steps,
inspired by the UNet approach, yielding state-of-the-art
performance both on cooperative conditions (benchmark
dataset AVA-ActiveSpeaker) and on more challenging set-
tings (WASD and cross-domain of Columbia). The ob-
tained results show that complementing body information
with facial cues is of utmost importance for ASD robust-
ness, and is particularly important for wild conditions (i.e.,
surveillance settings), where state-of-the-art models do not
reliably perform.
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