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Abstract: Video-based person re-identification (re-identification) remains brittle in real-
world deployments, despite impressive benchmark performance. Most existing models
rely on superficial correlations—such as clothing, background, or lighting—that fail to
generalize across domains, viewpoints, and temporal variations. This survey examines the
emerging role of causal reasoning as a principled alternative to traditional correlation-based
approaches in video-based re-identification. We provide a structured and critical analysis of
methods that leverage Structural Causal Models (SCMs), interventions, and counterfactual
reasoning to isolate identity-specific features from confounding factors. The survey is orga-
nized around a novel taxonomy of causal re-identification methods, spanning generative
disentanglement, domain-invariant modeling, and causal transformers. We review current
evaluation metrics and introduce causal-specific robustness measures. In addition, we
assess the practical challenges—scalability, fairness, interpretability, and privacy—that
must be addressed for real-world adoption. Finally, we identify open problems and outline
future research directions that integrate causal modeling with efficient architectures and
self-supervised learning. This survey aims to establish a coherent foundation for causal
video-based person re-identification and to catalyze the next phase of research in this
rapidly evolving domain.

Keywords: video-based person re-identification; causal inference; structural causal models;
counterfactual reasoning; transformer architectures

1. Introduction
Video-based person re-identification (re-identification) is a critical task in computer

vision, with applications in surveillance, smart cities, and forensics [1]. Unlike image-based
re-identification, which relies on static appearance cues, video-based methods leverage tem-
poral sequences—capturing motion, gait, and behavioral dynamics—to match individuals
across non-overlapping camera views [2,3]. This added temporal dimension provides richer
identity signals, particularly in unconstrained environments where single-frame models
often fail. Here, ’in-the-wild’ refers to unconstrained, real-world surveillance scenarios that
exhibit large variations in illumination, viewpoint, occlusion, weather and attire.

Despite substantial progress, most video-based re-identification systems remain brittle
under real-world conditions. Benchmark-leading models degrade sharply when exposed
to domain shifts, occlusions, lighting changes, or clothing variations [4,5]. The root cause
is methodological: these models are correlation-driven, trained to optimize performance
on tightly curated datasets by exploiting superficial cues—such as clothing color or back-
ground texture—that do not generalize to real deployments [6–8]. This leads to fragile
identity representations that collapse under distribution shift [9].
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To overcome these limitations, causal inference offers a fundamentally different
paradigm. Rather than modeling statistical associations between visual input and identity,
causal methods aim to isolate the true generative factors of identity—such as body shape,
gait, and motion patterns—while explicitly controlling for confounding variables like
clothing, background, and viewpoint [10–12]. Structural Causal Models (SCMs), counter-
factual reasoning, and interventional training frameworks provide the tools to enforce this
separation, enabling models that are more robust, generalizable, and interpretable [5,13–
15]. Figure 2 highlights the practical benefits of causal disentanglement for deployment
robustness.

Figure 1. Why video-based person re-identification is hard. The same individual appears under
six nuisance factors—viewpoint, lighting, rain blur, pose, clothing change, and accessory occlu-
sion—illustrating the need for causal disentanglement rather than correlation-driven learning.

As illustrated in Figure 1, a robust re-identification system must ignore nuisance
variation and preserve consistent identity representations across dramatic appearance
shifts. Causal methods explicitly model this requirement by intervening on non-identity
attributes and learning representations invariant to them. This shift enables models to
resist shortcut learning and to focus on stable identity features that remain consistent across
environments.

This survey provides a structured and critical overview of causal approaches in video-
based person re-identification. Our contributions are:

• We provide a comprehensive taxonomy of causal methods in re-identification, cov-
ering structural modeling, interventional training, adversarial disentanglement, and
counterfactual evaluation;

• We review state-of-the-art causal re-identification models (e.g., DIR-ReID, IS-GAN,
UCT) and analyze their performance across real-world challenges such as clothing
change, domain shift, and multi-modality;

• We propose a unified causal framework for reasoning about identity, confounders,
and interventions in re-identification pipelines;
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• We discuss emerging causal evaluation metrics, interpretability tools, and benchmark
gaps that must be addressed for widespread adoption;

• We identify open problems and outline future research directions at the intersection of
causality, efficiency, privacy, and fairness in real-world re-identification systems.

Figure 2. Benefits of Causal Disentanglement in Video-Based Person re-identification. Causal
reasoning improves cross-domain robustness, occlusion resilience, fairness, privacy, and interpretabil-
ity—key for real-world re-identification systems.

The lows:remainder of the paper is structured as fol Section 2 reviews the foundations
and limitations of conventional re-identification approaches. Section 3 introduces causal
inference and formalizes its role in disentangling identity from confounders. Section 4
presents a comprehensive taxonomy of causal video-based person re-identification methods.
Section 5 surveys state-of-the-art causal re-identification models. Section 6 details causal
disentanglement strategies in practice. Section 7 discusses the current state and practical
considerations of causal video-based person re-identification and open challenge. Section 8
presents future directions. Finally, Section 9 summarizes key insights and calls for a
paradigm shift from correlation to causation in video-based person re-identification.

2. Fundamentals of Person Re-Identification
2.1. Overview of Video-Based Person re-identification

Video-based person re-identification (re-identification) focuses on matching individu-
als across different camera views using sequences of video frames, called tracklets. Unlike
single-image re-identification, which relies on appearance cues, video-based methods lever-
age both spatial (appearance) and temporal (motion) information. This combination is
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crucial for distinguishing individuals, especially when appearance alone is unreliable due
to variations in viewpoint, illumination, or clothing [2,4]. Motion information, such as gait
and temporal dynamics, plays a significant role in video-based re-identification. While
appearance-based features like clothing color or body shape are useful, they can change
due to factors like lighting, posture, or occlusion. In contrast, motion patterns remain
relatively stable and can help maintain identity consistency across camera views.

The typical video-based person re-identification pipeline, as shown in Figure 3, in-
volves frame-level feature extraction, temporal modeling using RNNs or 3D CNNs, and
sequence aggregation to generate a fixed-length identity representation. These methods al-
low for the capture of both appearance and motion features, which is essential for matching
tracklets across non-overlapping camera views [3,16,17].

2.2. Challenges in Video-Based re-identification

Video-based person re-identification (re-identification) introduces several complexities
compared to single-image person re-identification due to the dynamic nature of video data.
Key challenges include:

Occlusions. In video sequences, individuals are often partially obscured by other
objects or people, causing missing identity features. These occlusions can significantly
hinder the model’s ability to match tracklets across non-overlapping camera views, leading
to errors in identity classification.

Viewpoint Variations. Viewpoint changes occur when individuals are captured by
cameras positioned at different angles. This results in variations in appearance, as features
like body shape and face may look different from different viewpoints. Video-based
methods need to account for these changes, typically by utilizing temporal information
such as gait and motion patterns, which remain stable across camera views [4,5].

Lighting Variations. Lighting shifts, such as day-to-night or artificial lighting changes,
can cause significant color and texture changes in appearance. This can distort visual
features like clothing or skin tone, leading to performance degradation in traditional
appearance-based methods. Temporal modeling and domain-invariant learning techniques
help mitigate these lighting-induced discrepancies [5,6].

Environmental Factors. Additional environmental factors, such as weather conditions
(e.g., rain or fog), background clutter, and scene distractions, can introduce noise into the
feature extraction process, further complicating identity matching. video-based person
re-identification systems must be robust to these variations, isolating true identity features
from contextual distractions [4,5].

These challenges—occlusions, viewpoint variations, lighting changes, and environ-
mental factors—necessitate video-based person re-identification systems that can robustly
handle dynamic conditions. Models must be designed to focus on identity-specific features
and incorporate temporal information to account for these complexities.

2.3. Traditional Approaches and Their Limitations

Traditional video-based person re-identification (re-identification) methods follow
a sequential pipeline: frame-level feature extraction using Convolutional Neural Net-
works (CNNs), temporal modeling via Recurrent Neural Networks (RNNs, including
Long Short-Term Memory networks, LSTMs) or 3D CNNs, and sequence aggregation
through pooling or attention mechanisms [2,3]. Frame features Ft = CNN(xt; θcnn) are tem-
porally aggregated using RNN updates ht = g(Whht−1 + WxFt + bh) and attention weights
αt =

exp(Waht)

∑T
t=1 exp(Waht)

to produce tracklet-level identity embeddings [16]. Recent methods

incorporate generative augmentation (Identity Shuffle Generative Adversarial Network,
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Figure 3. Traditional video-based person re-identification pipeline. The diagram summarises classi-
cal modules—frame-level Convolutional Neural Network (CNN), temporal modelling (Recurrent
Neural Network (RNN) / Long Short-Term Memory (LSTM)/ 3-D CNN), pooling–attention, gener-
ative augmentation, and domain-invariant learning— that transform a tracklet into a fixed-length
identity embedding.

IS-GAN) and domain-invariant learning (Domain-Invariant Representation Learning for
re-identification, DIR-re-identification) to improve robustness [5,17].

Critical Limitations vs. Causal Approaches: The fundamental weakness of traditional
methods lies in their correlation-driven learning paradigm. These approaches optimize
statistical associations between visual inputs and identity labels without distinguishing
between genuine identity characteristics and spurious environmental correlations [5,10].
This leads to three key failure modes that causal methods directly address:

(1) Spurious Correlation Dependence: Traditional models conflate identity-specific
features (gait, body structure) with confounding factors (clothing, background, lighting),
causing performance degradation under domain shifts [4,6]. Causal alternative: Struc-
tural Causal Models (SCMs) explicitly separate identity factors from confounders through
interventional training, ensuring robust identity representations [5,12].

(2) Lack of Invariance Guarantees: RNN-based temporal modeling and attention
mechanisms fail to provide theoretical guarantees about feature invariance across envi-
ronmental changes [18,19]. Causal alternative: Counterfactual reasoning enforces consis-
tency constraints, ensuring identity predictions remain stable under hypothetical attribute
changes [10,14].

(3) Limited Generalization Capability: Domain-invariant methods still rely on statis-
tical correlations that can be easily confounded by spurious factors, reducing cross-domain
robustness [5,17]. Causal alternative: Do-calculus and backdoor adjustment block con-
founding pathways, enabling reliable identity matching across dramatic environmental
variations [1,20].

This paradigmatic shift from correlation to causation represents the key advance-
ment in modern video-based person re-identification: while traditional methods ask "what
patterns correlate with identity?", causal methods ask "what factors causally determine
identity appearance?" [6,21]. The latter question enables robust, interpretable, and general-
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izable re-identification systems that perform reliably in unconstrained real-world environ-
ments [5,17].

2.4. The Role of Visual Attributes in Video-based Person Re-Identification

Visual attributes such as clothing color, body shape, gait, and texture are essential
in video-based person re-identification (re-identification) as they bridge low-level pixel
data and high-level identity features. These attributes provide human-interpretable cues,
improving video-based person re-identification robustness in challenging scenarios like
occlusions, pose variations, and domain shifts [22].

Attribute-Based Disentanglement is key to isolating identity-specific features from
non-identity variations like background clutter and clothing changes. Techniques like the
Identity Shuffle GAN (IS-GAN) [17] factorize images into identity-related and non-identity
features, enhancing model generalization. Frequency-based Extraction using 3D Discrete
Cosine Transform (3D DCT) [23] isolates discriminative patterns, while Causal-Based
Disentanglement with Structural Causal Models (SCMs) [5] removes domain-specific
biases, improving cross-domain generalization.

Occlusion-Resilient Learning, like that in DRL-Net [19], uses transformer-based mod-
els to disentangle visible attributes from occlusions, ensuring accurate identity matching
despite partial visibility.

Matching and Filtering based on attribute similarity helps refine identity matches,
while Interpretability benefits from attribute-based models like ASA-Net, which clarifies
decision-making [22]. However, Bias and Fairness concerns arise as attributes like gender
and age may introduce discrimination if not handled carefully.

Table 1. Common semantic attributes in video-based person re-identification and representative
extraction pipelines.

Attribute Type Static /
Dynamic

Typical Extraction Method (key reference)

Clothing Colour Static Colour histograms, Retinex–LOMO
descriptor[24]

Clothing Category
(shirt / pants)

Static Part-based CNN multi-task attribute head
(APR-Net)[25]

Accessories (bags,
hats, and other
accessories)

Static Weakly-supervised multi-scale attribute
localisation[26]; mid-level attribute CNN[27]

Gait / Silhouette Dynamic Set-level silhouette sequence model
(GaitSet)[28]

Body Shape /
Height

Static 3-D skeleton key-point statistics[29]

Texture / Pattern Static Local Gaussian / SILTP texture blocks (HGD
+ LOMO)[24,30]

Gender / Age / Hair Static Multi-task mid-level attribute + identity
CNN[27]

Pose / Motion State Dynamic Pose-driven deep convolutional model with
RPN attention[31]

Carried Objects Dynamic Attribute-aware object detectors / semantic
parts[26,27]

2.5. Attribute-Specific Evaluation Metrics for Video-Based Person Re-Identification

Video-based person re-identification systems have traditionally used standard metrics
like Cumulative Matching Characteristic (CMC) and mean Average Precision (mAP) to
evaluate performance [32,33]. However, recent approaches have introduced attribute-
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specific metrics that capture more nuanced aspects of model behavior, including soft-
biometric consistency, occlusion robustness, and causal sensitivity [34].

Traditional Retrieval Metrics. CMC measures the probability of finding a correct
match within the top-k ranks, defined as CMC@k = 1

N ∑N
i=1 1(rank(i) ≤ k), where N is the

number of queries, and the indicator function 1(·) returns 1 if the rank is within the top
k [35,36]. While widely used in benchmarks like MARS and DukeMTMC-VideoReID, CMC
is limited by its single-match focus and sensitivity to gallery size. In contrast, mAP captures
both precision and recall, defined as mAP = 1

N ∑N
q=1 AP(q), where Average Precision

(AP) represents the area under the precision-recall curve for each query, offering a more
comprehensive assessment [37].

Attribute-Level Metrics. These metrics evaluate consistency across soft-biometric
attributes, including Attribute Consistency, which measures the fraction of matching at-
tributes in retrieved pairs, and Attribute-Aware Accuracy, which conditions retrieval
accuracy on attribute agreement [38,39]. Occlusion Robustness assesses accuracy under
partial occlusions, while Clothing-Change Robustness evaluates stability across different
outfits [40,41]. Identity Switch Rate (IDSR) or IDF1, adapted from multi-object tracking,
quantifies identity flips across frames, reflecting long-term tracking stability [42].

Causal Robustness Metrics. Causal-inspired metrics, such as Counterfactual Consis-
tency, test whether identity predictions remain stable under hypothetical attribute changes,
probing a model’s reliance on true causal signals [43]. Causal Saliency Ranking ranks
features by their causal influence on identity matching, while Intervention-Based Score
Shift measures the change in matching scores under controlled attribute interventions,
highlighting sensitivity to specific visual cues [44].

These advanced metrics provide deeper insights into model robustness, interpretabil-
ity, and generalization, moving beyond simple precision-recall evaluations to capture the
complex challenges of real-world re-identification [45,46].

Table 2 summarizes a range of evaluation metrics for video-based person re-
identification, spanning traditional measures like CMC, Rank-1, and mAP, as well as
more specialized, attribute-specific metrics. While CMC and mAP capture overall retrieval
accuracy, attribute-level metrics like Attribute Consistency and Attribute-Aware Accuracy
focus on maintaining soft-biometric consistency, reflecting the stability of identity features
across views. Metrics like Occlusion Robustness and Clothing-Change Robustness assess
model resilience to partial occlusions and outfit variations, respectively. Emerging causal
metrics, such as Counterfactual Consistency and Causal Saliency Ranking, aim to evaluate
the impact of specific attributes on identity prediction, supporting more interpretable and
context-aware video-based person re-identification systems.
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Table 2. Attribute-Specific Evaluation Metrics for Video-Based Person Re-Identification.

Metric Measures Used In / Reports Advantages / Limita-
tions

CMC / Rank-k Accu-
racy [35]

Probability of correct
match within rank k
(precision at k).

Almost all re-identification
(image & video); e.g., MARS [47],
DukeMTMC-VideoReID [48],
SYSU [49].

Standard precision met-
ric; lacks recall informa-
tion.

Rank-1 Accuracy [32] Top-1 retrieval accuracy
(CMC@1).

Standard benchmark metric in
most re-identification works [50,
51].

Single-number sum-
mary; no recall informa-
tion.

Mean Average Precision
(mAP) [52]

Overall retrieval quality
(precision and recall aver-
aged).

Used in re-identification bench-
marks (Market-1501, MARS [47],
etc.)

Comprehensive metric,
but sensitive to outliers.

Attribute Consistency [38] Semantic consistency
across views.

Attribute-based re-identification
works [34,39].

Reveals stable cues, but
depends on attribute an-
notation quality.

Attribute-Aware Accu-
racy [38]

Retrieval accuracy with at-
tribute agreement.

Joint attribute/ID methods [22,
39].

Fine-grained measure,
but rarely reported.

Occlusion Robustness [19] Drop in performance un-
der occlusion.

Occluded-Duke, Occluded-
REID [53].

Useful for real-world sce-
narios; needs labeled oc-
clusions.

Clothing-Change Robust-
ness [40]

Sensitivity to apparel
changes.

Long-term re-identification (e.g.,
DeepChange [40]).

Reveals clothing cue re-
liance; needs paired out-
fits.

IDSR / IDF1 [42] ID switch frequency. Multi-camera tracking [42,48]. Consistency metric; re-
quires track-level GT.

Counterfactual Consis-
tency [44]

Invariance to manipulated
attributes.

Emerging causal re-
identification metrics [6,54].

Tests reliance on stable
ID features; challenging
to implement.

Causal Saliency Rank-
ing [14]

Importance of features for
ID matches.

Explainable re-identification
studies [5,41].

Reveals true causal
drivers, but lacks nu-
meric comparability.

Intervention-Based Score
Shift [12]

Effect of controlled at-
tribute interventions.

Causal evaluation studies [14,
55].

Quantifies sensitivity; re-
quires well-defined inter-
ventions.

2.6. Common Datasets for Video-Based Person Re-Identification

Video-based person re-identification datasets come in several forms, including visible-
spectrum, cross-modality, and synthetic datasets. These datasets vary in scale, diversity,
and complexity, offering distinct challenges for model evaluation. Table 3 provides a
comprehensive summary of these datasets, highlighting key attributes such as the number
of identities, sequence counts and camera setups.

Table 3 This table presents a comprehensive overview of widely used video-based
person re-identification datasets, covering various modalities such as RGB, RGB-Thermal,
Depth, and Synthetic RGB. It highlights critical characteristics like the number of identities,
sequences, and cameras, reflecting the diversity in data scales and environmental conditions.
For instance, PRID2011 captures moderate occlusions and viewpoint changes with 934
identities, while large-scale datasets like MARS and LS-VID offer millions of frames for
deep learning models. Cross-modality datasets like SYSU-MM01 and RegDB introduce
challenging RGB-Infrared matching, supporting domain adaptation research. Synthetic
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datasets like RandPerson and ClonedPerson enable domain generalization with extensive
identity counts and realistic appearance variations, making them essential for robust model
evaluation.

Table 3: Comparative Summary of Common Datasets for Video-Based Person Re-Identification.

PRID2011 [56] 2011 RGB
934 total (200
overlap)

385 (camA) + 749 (camB) 2 Download

iLIDS-VID [57] 2014 RGB 300 600 (300×2) 2 Download

MARS [47] 2016 RGB 1,261
≈ 20,000 tracklets (incl.
3,248 distractors)

6 Download

SYSU-MM01 [49] 2017
RGB &
Thermal

491 287,628 RGB + 15,729 IR 6 (4 RGB, 2 IR) Download

RegDB [58] 2017
RGB &
Thermal

412 4,120 (10 vis + 10 IR per ID) 2 (1 vis, 1 IR) Download

DukeMTMC-
VideoReID [48]

2018 RGB
1,404 (702 train +
702 test) + 408
distractors

4,832 (2,196 train + 2,636
test)

8 Download

LS-VID [37] 2019 RGB 3,772 14,943 tracks (≈ 3M frames)
15 (3 indoor, 12
outdoor)

Download

L-CAS
RGB-D-T [59]

2019
RGB &
Depth &
Thermal

Not Specified ≈ 4,000 (rosbags)
3 (RGB, Depth,
Thermal)

Download

P-DESTRE [60] 2020 RGB 1,581 Over 40,000 frames UAVs Download

FGPR [61] 2020 RGB 358 716
6 (2 per color
group)

Download

PoseTrackReID [62] 2020 RGB ≈ 5,350 ≈ 7,725 tracks Unknown Download

RandPerson [63] 2020
Synthetic
RGB

8,000 1,801,816 images
19 (virtual
cams)

Download

DeepChange [40] 2022 RGB 1,121 178,407 frames 17 Download

LLVIP [64] 2022
RGB &
Thermal

≈ (15,488 pairs) 30,976 images 2 (1 RGB, 1 IR) Download

ClonedPerson [20] 2022
Synthetic
RGB

5,621 887,766 images
24 (virtual
cams)

Download

BUPTCampus [65] 2023
RGB &
Thermal

3,080 (RGB-IR tracklets) 2 (1 RGB, 1 IR) Download

MSA-BUPT [66] 2024 RGB 684 2,665
9 (6 indoor, 3
outdoor)

Download

GPR+ [67] 2024
Synthetic
RGB

808 475,104 bounding boxes Unknown Download

G2A-VReID [68] 2024 RGB 2,788 185,907 images
Ground
surveillance &
UAVs

Download

Dataset Year Modality Identities Sequences / Images Cameras
Dataset

Link

Continued on next page

https://www.tugraz.at/institute/icg/research/team-bischof/learning-recognition-surveillance/downloads/prid11
https://xiatian-zhu.github.io/downloads_qmul_iLIDS-VID_ReID_dataset.html
https://link.springer.com/chapter/10.1007/978-3-319-46466-4_52
https://github.com/wuancong/SYSU-MM01
https://opendatalab.com/OpenDataLab/RegDB
https://github.com/Yu-Wu/DukeMTMC-VideoReID
https://www.pkuvmc.com/dataset.html
https://lcas.lincoln.ac.uk/wp/research/data-sets-software/l-cas-rgb-d-t-re-identification-dataset/
https://www.di.ubi.pt/~hugomcp/PReID/
https://www.isee-ai.cn/~yinjiahang/FGPR.html
https://github.com/numediart/PoseTReID_DATASET
https://github.com/VideoObjectSearch/RandPerson
https://github.com/PengBoXiangShang/deepchange
https://bupt-ai-cz.github.io/LLVIP/
https://github.com/Yanan-Wang-cs/ClonedPerson
https://github.com/dyhBUPT/BUPTCampus
https://mcprl.com/html/dataset/msa.html
https://jeremyxsc.github.io/GPR/
https://github.com/fhr-l/g2a-vreid
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Table 3: Comparative Summary of Common Datasets for Video-Based Person Re-Identification. (Continued)

DetReIDX [69] 2025 RGB 509 13 million+ annotations
7 university
campuses (3
continents)

Download

AG-VPReID [70] 2025 RGB 6,632 32,321 tracklets

Drones
(15-120m
altitude), CCTV,
Wearable
cameras

Download

Dataset Year Modality Identities Sequences / Images Cameras
Dataset

Link

3. Causal Foundations for Person Re-Identification
Before delving into the application of causal reasoning to person re-identification, it is

essential to clarify the key terminology that forms the foundation of this approach:

• Causal Inference: Unlike statistical correlation which merely identifies patterns of
association, causal inference aims to understand the underlying cause-and-effect
relationships between variables [10,12]. In re-identification, this means distinguishing
which visual features truly cause identity recognition (e.g., body structure) versus
those that merely correlate with identity in specific contexts (e.g., clothing) [5].

• Structural Causal Models (SCMs): Mathematical frameworks that use directed graphs
to explicitly represent causal relationships between variables [10,11]. In these graphs,
nodes represent variables (such as identity, clothing, or background), and directed
edges represent the causal influence of one variable on another [5,15].

• Confounding Variables: Factors that influence both the cause and effect, potentially
creating spurious correlations [10,71]. In re-identification, environmental factors like
lighting or camera viewpoint can confound the relationship between identity and
visual appearance [4,6].

• Intervention: The process of actively modifying a variable in a causal system to
observe the effect on other variables [10,11]. In re-identification, this might involve
artificially changing a person’s clothing in images while keeping their identity con-
stant [14,17].

• Counterfactual Reasoning: Evaluating what would have happened under conditions
different from what actually occurred [10,12]. For re-identification, this involves
asking questions like "Would the model still identify this person correctly if they were
wearing different clothes?" [55].

• Causal Disentanglement: The process of separating variables that are causally in-
dependent from one another in the underlying data generation process [12,72]. In
re-identification, this means isolating identity-specific features from non-identity fac-
tors like background or lighting [5,17].

These concepts provide the theoretical framework for addressing the limitations of
traditional video-based person re-identification approaches by focusing on the true causal
factors that determine identity, rather than relying on potentially misleading correlations.

3.1. Introduction to Causal Inference

Causal inference provides a framework for understanding cause-and-effect relation-
ships in video-based person re-identification by isolating true identity-preserving features
and discarding confounders like background or clothing, which often interfere with tra-

https://www.it.ubi.pt/DetReIDX/
https://www.kaggle.com/competitions/agvpreid25
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ditional models. Unlike correlation-based methods, which rely on spurious associations,
causal models focus on identity signals such as body shape, gait, and motion consis-
tency, using causal interventions to remove the influence of confounders like viewpoint or
lighting changes. This shift improves video-based person re-identification performance
across domain shifts and environmental variations, as shown in Figure 4, which contrasts
correlation-based and causal models. Structural Causal Models (SCMs) model identity
as the cause of observed features, with environmental factors treated as confounders. By
applying causal interventions, these models ensure that identity signals remain unaffected
by external noise, improving robustness and generalization.

Figure 4. Correlation versus causation in re-identification. This figure contrasts correlation-based
and causal models with explicit functional components: CNN—convolutional feature extractor;
Attention—spatial attention mechanism highlighting relevant regions; Similarity—cosine similarity
scoring function s = f1· f2

|| f1||·|| f2|| where f1, f2 are feature vectors; Softmax—probability normalization

pi =
exp(si)

∑j exp(sj)
. The correlation-based model (top) focuses on spurious background cues, while

the causal model (bottom) emphasizes identity-intrinsic features through intervention. The violin
plot shows conceptual values of 32% versus 8% median background overlap to demonstrate how
causal training de-emphasizes spurious context—these percentages are illustrative values designed
to highlight the conceptual principle rather than results from specific experimental measurements.
Arrows indicate information flow: input�feature extraction�attention weighting�similarity com-
putation�final prediction.

Causal methods improve video-based person re-identification accuracy by reducing
the influence of confounders that traditional models mistake for identity cues. The illus-
trative percentages shown in Figure 4 (32% vs. 8% background attribution) serve as a
conceptual demonstration of how causal training typically reduces spurious background
focus compared to correlation-based methods, representing an important direction for
future quantitative analysis of attention patterns in causal versus traditional video-based
person re-identification approaches. For instance, while traditional models may incorrectly
associate a jacket with identity, causal models maintain accuracy despite changes in appear-
ance due to lighting. DIR-ReID, for example, improves cross-domain Rank-1 accuracy by
11.2% by removing the causal effect of domain-specific features on appearance [5]. Causal
models also excel in handling occlusions by learning the causal relationships between body
parts and identity. This allows them to make accurate predictions even when parts of the
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person are obscured. For example, IS-GAN shows a 15.7% improvement in Rank-1 accuracy
under severe occlusion conditions compared to non-causal models [17]. These methods
demonstrate how causal inference improves the robustness and reliability of video-based
person re-identification systems in real-world environments.

3.2. Structural Causal Models (SCMs) and Counterfactual Reasoning

In video-based person re-identification (re-identification), Structural Causal Models
(SCMs) provide a framework to model the relationships between identity-specific factors
and confounders like clothing, background, or camera variations. Unlike traditional
models that rely on correlations, SCMs define causal graphs where identity (I) influences
appearance (X), while non-identity factors such as clothing (C) and background (B) act as
confounders [10]. The data generation process can be expressed as:

X = f (I, C, B, Camera) (1)

where f (·) is the data generation function that maps causal factors to observed appear-
ance, and the goal is to intervene on non-identity factors and observe how these changes
affect identity predictions, thereby isolating the impact of identity itself [5]. Figure 5 il-
lustrates the fundamental difference between correlation-based and causal approaches
to re-identification, highlighting how causal models block the influence of confounding
variables through intervention.

Figure 5. Comparing Correlation vs. Causation in re-identification. Causal graph notation:
X—appearance features, Y—identity prediction, Z—confounding variables (camera, lighting, back-
ground). Left: Traditional correlation approach learns P(Y|X) (observational distribution), where con-
founders Z create spurious pathways (dashed arrows) between X and Y. Right: Causal/interventional
approach targets P(Y|do(X)) where do(·) is Pearl’s intervention operator that blocks backdoor paths
from confounders. The causal model isolates the direct causal effect of appearance X on identity Y by
severing confounding pathways through intervention, resulting in more robust predictions under
domain shift. Solid arrows denote causal relationships, dashed arrows indicate spurious correlations
blocked by intervention.
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Figure 6. Structural Causal Models (SCMs) for re-identification. Causal graph components:
Identity—intrinsic person characteristics (body shape, gait); Appearance—observed visual fea-
tures X = f (Identity, Confounders) where f (·) is the appearance generation function; Predic-
tion—re-identification system output Ŷ = h(Appearance) where h(·) is the prediction function;
Camera—viewpoint and background confounders; Clothing—appearance attributes unrelated to
identity; Occlusion—partial visibility factors. Solid arrows (→) denote direct causal influence, with
the causal flow: (Identity + Confounders)→Appearance→ Prediction. The goal is to learn prediction
function h(·) that isolates identity-specific information by blocking confounding pathways through
causal intervention, ensuring robust re-identification across environmental variations.

Structural Causal Models (SCMs) provide a mathematical framework for representing
causal relationships among identity-specific, domain-specific, and observed features. An
SCM is defined as a tuple G = (V, E), where V = {XI , XD, Y} represents the set of variables
(identity-specific features XI , domain-specific features XD, and identity labels Y), and E
denotes the directed edges capturing causal dependencies.

Counterfactual Reasoning allows the model to disregard irrelevant factors by simulat-
ing interventions. For example, when altering the clothing (C) in an image, counterfactual
reasoning checks whether the identity prediction remains consistent, ensuring the model
focuses on identity-relevant features like gait or body shape [17]. A causally optimized
model, as shown in Figure 7, would preserve the correct identity even with changes in
clothing.

This consistency is formalized through interventions, expressed as:
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P(ID | do(Clothing = c)) = ∑
z

P(ID | Clothing = c, Z = z)P(Z = z) (2)

where P(·) denotes probability distribution, do(·) is Pearl’s intervention operator,
Z represents latent confounding variables, and the summation implements backdoor
adjustment to ensure identity is not influenced by clothing or other confounders [14].

Figure 7. Counterfactual clothing intervention analysis. Function definitions: T(·)—clothing trans-
formation function that modifies clothing attributes while preserving identity; sim(·, ·)—cosine
similarity function sim( f1, f2) =

f1· f2
|| f1||·|| f2|| ; Lconsistency—consistency loss function that enforces

identical predictions for original and transformed images. Left: Correlation-based model shows
score drop (0.77�0.73) when clothing changes, indicating dependence on superficial cues. Right:
Causally optimized model maintains stable similarity (0.73�0.69) through counterfactual interven-
tion I′ = T(I, c′|id) where I is input image, c′ is new clothing attribute, and id represents preserved
identity features. The consistency loss Lconsistency = ||sim( f (I), f (I′))− 1||2 enforces identical iden-
tity predictions between original I and transformed I′ images, guiding the model to focus on invariant
identity features (body shape, facial structure, gait) rather than superficial appearance attributes.

By using SCMs and counterfactual reasoning, video-based person re-identification
systems become more robust and generalizable, as they can focus on core identity features
despite challenges like occlusions or lighting variations. SCMs provide a formal framework
for controlling confounders, allowing the identity signal to remain stable under varying
conditions. These methods improve robustness, generalization, and explainability, making
video-based person re-identification systems more reliable in real-world applications by
focusing on identity-specific traits and ignoring irrelevant context-specific features [5].

3.3. Key Causal Concepts in re-identification

In video-based person re-identification (re-identification), causal graphs, do-calculus,
and interventions are key concepts that help disentangle identity signals from confound-
ing factors such as clothing, background, and environmental conditions. Causal graphs
represent the relationships between variables, where identity (I) influences appearance
(X), and non-identity factors like clothing (C) and background (B) act as confounders. This
causal structure is represented as:

I → X ← C, B→ X (3)

where→ denotes causal influence, and the goal is to focus on identity-specific features,
unaffected by non-identity influences [10]. Using do-calculus [10], we can simulate inter-
ventions to isolate identity features, for example, by fixing clothing to C = c0, ensuring that
identity prediction remains robust to changes in background or clothing. This intervention
is mathematically expressed as:

P(ID | do(C = c0)) = ∑
B

P(ID | C = c0, B)P(B) (4)

where P(ID | do(C = c0)) is the interventional distribution (what would happen if we
set clothing to value c0), P(ID | C = c0, B) is the conditional probability of identity given
clothing and background, and P(B) is the marginal distribution of background factors,
which ensures that non-identity factors do not influence the identity prediction [5].

Interventions are used to modify non-identity factors (e.g., clothing or background) to
make the model focus on stable identity features. For instance, counterfactual interventions
involve altering factors like clothing and observing if the identity prediction remains stable,
as shown in Figure 7. In this context, the intervention can be mathematically represented
as:
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Table 4. Major Challenges and Recent Causal Disentanglement Methods in Video-Based Person
re-identification.

Challenge Cate-
gory

Description Example Methods Causal Factors Ad-
dressed

Notable Outcomes

Visual Appearance
Variations

Variations in view-
point, pose, occlusions,
motion blur, and
lighting complicate
feature extraction.

FIDN [23], SDL [63],
DRL-Net [19]

Spatio-temporal
noise, spectrum dif-
ferences, occlusions

Improved accuracy, bet-
ter occlusion tolerance,
RGB-IR robustness.

Tracking and Se-
quence Issues

Identity drift and frag-
mentation from track-
ing errors can split a
single trajectory into
multiple IDs.

DIR-ReID [5],
DCR-ReID [73],
IS-GAN [17]

Domain shifts, cloth-
ing changes, back-
ground noise

Better domain general-
ization, cloth-change ro-
bustness, stable tracking.

Domain and De-
ployment

Performance drops
due to cross-camera
variation, environ-
mental changes, and
demographic diver-
sity.

DIR-ReID [5], IS-
GAN [17]

Camera bias, pose
variations, back-
ground shifts

Superior cross-domain
performance, robust de-
ployment.

Data and Annota-
tion Scarcity

High annotation costs
and limited labeled
data reduce training ef-
fectiveness.

DRL-Net [19],
IS-GAN [17], DCR-
ReID [73]

Occlusions, spec-
trum noise, missing
labels

High accuracy with lim-
ited data, efficient learn-
ing, realistic augmenta-
tion.

Clothing and Ap-
pearance Changes

Long-term re-
identification fails
when individuals
change outfits, acces-
sories, or hairstyles.

IS-GAN [17],
DeepChange [40],
CrossViT-ReID [74]

Clothing bias, acces-
sory dependence,
temporal appear-
ance drift

Robust to clothing
changes, improved
long-term tracking,
identity-focused fea-
tures.

Cross-Modal Chal-
lenges

Matching across
different modalities
(RGB-IR, RGB-Depth)
introduces spectral
and structural differ-
ences.

CMTR [75],
UCT [14], NiC-
TRAM [76]

Modality gaps, spec-
tral variations, sen-
sor differences

Effective cross-modal
matching, reduced
modality bias, unified
representations.

Temporal Consis-
tency

Maintaining identity
consistency across
long video sequences
with varying quality
and conditions.

STMN [17],
PSTA [77],
TCViT [78]

Temporal noise,
frame quality varia-
tions, motion blur

Improved temporal mod-
eling, consistent iden-
tity features, robust se-
quence analysis.

Scale and Computa-
tional Efficiency

Real-time processing
requirements conflict
with complex model
architectures needed
for accuracy.

DCCT [23],
HCSTNet [79],
Lightweight Trans-
formers

Computational
constraints, memory
limitations, inference
speed

Efficient architectures, re-
duced parameters, real-
time performance.

Fairness and Bias Models exhibit per-
formance disparities
across demographic
groups, raising ethical
concerns.

Fairness-aware ReID,
Bias-corrected train-
ing, Demographic-
balanced datasets

Demographic bias,
dataset imbalance,
algorithmic fairness

Reduced bias, equitable
performance, fair repre-
sentations across groups.

Privacy and Secu-
rity

Re-identification sys-
tems raise privacy
concerns and potential
misuse in surveillance
applications.

Privacy-preserving
ReID, Federated
learning, Differential
privacy

Identity exposure,
surveillance misuse,
data protection

Enhanced privacy pro-
tection, secure matching,
anonymized features.
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Xnew = Intervention(X, C = c0, B = b0) (5)

where Intervention(·) is the intervention function that manipulates confounding vari-
ables while preserving identity-related information, and fixed values for clothing (c0) and
background (b0) ensure that the identity prediction relies on identity-related features. These
interventions improve the model’s robustness and generalization, enabling it to handle
real-world variations in clothing and background while maintaining high accuracy across
different environments [17].

3.4. An Intuitive Example of Causal Intervention in re-identification

To make the concept of causal intervention more concrete, we’ve considered a step-by-
step example of how it works in practice for person re-identification:

1. Initial situation: A video-based person re-identification system is trained on a dataset
where Person A is always wearing a red jacket, and Person B always wears a blue
jacket. A traditional correlation-based model might learn to identify individuals based
primarily on jacket color rather than true identity features.

2. Problem identification: When Person A appears wearing a blue jacket in a new
camera view, the traditional model misidentifies them as Person B because it has
learned a spurious correlation between jacket color and identity.

3. Causal modeling: In a causal approach, we explicitly model the data generation
process using a Structural Causal Model (SCM) where identity (I) and clothing (C)
both influence appearance (A): A = f (I, C). This acknowledges that clothing is a
separate factor from identity.

4. Intervention: We perform a "do-operation" by artificially modifying the clothing
variable while keeping identity constant: A′ = f (I, do(C = new_clothing)). In
practice, this might involve:

• Generating synthetic images of Person A wearing different colored jackets
• Using image manipulation to swap clothing items between images
• Applying data augmentation that specifically targets clothing attributes

5. Learning with intervention: The model is trained to produce the same identity
prediction for both the original image and the transformed image with modified
clothing. This teaches the model that clothing is not causally related to identity.

6. Consistency enforcement: A special loss function penalizes the model when its iden-
tity predictions change due to clothing modifications: Lcausal = d( fID(A), fID(A′)),
where d is a distance function and fID is the identity prediction function.

7. Result: After training with these interventions, when Person A appears in a blue
jacket, the model correctly identifies them as Person A because it has learned to focus
on stable identity features like facial structure, body shape, and gait patterns rather
than superficial clothing attributes.

This example illustrates how causal intervention helps video-based person re-
identification systems disentangle identity-specific features from confounding factors like
clothing. By explicitly intervening on non-identity attributes during training, the model
learns which features are causally related to identity and which are merely correlated in the
training data but not fundamentally tied to who a person is. This makes the model more
robust to environmental and appearance changes in real-world scenarios.

4. Taxonomy of Causal Video-based Person re-identification Methods
Having established the theoretical foundations of causal inference for person re-

identification, we now present a comprehensive taxonomy that categorizes existing causal
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video-based person re-identification approaches into three distinct methodological families.
This taxonomy provides a structured framework for understanding how different causal
techniques address the fundamental challenge of disentangling identity-specific features
from confounding factors in video sequences [5,10].

As illustrated in Figure 8, causal video-based person re-identification methods can be
systematically organized according to their primary causal mechanism and architectural
approach. This classification enables researchers to identify gaps in current methodologies
and guides future research directions by highlighting the complementary strengths and
limitations of each approach [12,15].

Figure 8. Taxonomy of Causal Video-based Person re-identification Methods. Methodologi-
cal families and their functional components: (i) Generative Disentanglement Methods—G(·)
generator function, D(·) discriminator function, EI(·) identity encoder, ED(·) domain encoder,
implementing X = G(EI(I), ED(D)) where I is identity and D is domain factors; (ii) Domain-
Invariant Causal Modeling—P(Y|do(XI)) interventional distribution, XI identity-specific features,
XD domain-specific features, SCM function f : (XI , XD) → X; (iii) Causal Transformer Archi-
tectures—Attentioncausal(Q, K, V) causal attention mechanism, Mcausal causal mask matrix, self-
attention function softmax(QKT

√
dk
⊙ Mcausal)V where Q, K, V are query/key/value matrices and ⊙

is element-wise multiplication. Each family addresses different aspects of causal disentanglement:
generative methods through adversarial training, domain-invariant methods through structural
modeling, and transformers through attention-based intervention.

4.1. Generative Disentanglement Methods

The first family of causal video-based person re-identification methods leverages
generative models and adversarial training to explicitly separate identity-specific features
from non-identity factors such as clothing, background, and pose variations [17,80]. These
approaches typically employ Generative Adversarial Networks (GANs) or Variational
Autoencoders (VAEs) to learn disentangled representations where identity information is
isolated from confounding variables [13,72].

Representative Methods: The Identity Shuffle GAN (IS-GAN) [17] exemplifies this
approach by using adversarial training to disentangle identity features from appearance at-
tributes. The model employs a dual-encoder architecture where one encoder extracts
identity-specific features while another captures non-identity attributes. Through an
identity-shuffling mechanism, the method generates counterfactual samples by combining
identity features from one person with appearance attributes from another, forcing the
identity encoder to focus solely on intrinsic identity characteristics [17].

Causal Mechanism: These methods implement causal intervention through genera-
tive processes that explicitly model the data generation function X = f (I, C, ϵ), where I
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represents identity factors, C denotes confounding variables, and ϵ captures noise. By learn-
ing to manipulate C while keeping I constant, these models achieve causal disentanglement
that enables robust identity matching across varying conditions [6,80].

Strengths and Limitations: Generative disentanglement methods excel in scenarios
with significant appearance variations, particularly clothing changes, achieving up to 15.3%
improvement in Rank-1 accuracy on clothing-change datasets [17]. However, they typically
require substantial computational resources for training and may struggle with complex
multi-factor confounding scenarios [72].

4.2. Domain-Invariant Causal Modeling

The second family focuses on structural causal modeling to eliminate domain-specific
biases that confound identity representations across different camera views, lighting con-
ditions, and environmental settings [5,9]. These methods explicitly model the causal
relationships between identity, domain factors, and observed appearance using Structural
Causal Models (SCMs) [10,11].

Representative Methods: Domain-Invariant Representation Learning for re-identification
(DIR-ReID) [5] represents the archetypal approach in this family. DIR-ReID employs a
causal graph that separates identity-specific features (XI) from domain-specific features
(XD), using backdoor adjustment to block confounding pathways between domain fac-
tors and identity predictions. The method implements interventional training through a
domain-adversarial framework that minimizes the mutual information between identity
representations and domain indicators [5].

Causal Mechanism: These approaches implement Pearl’s causal hierarchy by explic-
itly modeling confounding relationships and applying do-calculus to estimate causal effects.
The intervention mechanism can be formalized as P(Y|do(XI)) = ∑XD

P(Y|XI , XD)P(XD),
ensuring that identity predictions are invariant to domain-specific variations [5,10].

Strengths and Limitations: Domain-invariant methods demonstrate exceptional
performance in cross-domain scenarios, with DIR-ReID achieving 11.2% improvement in
cross-dataset Rank-1 accuracy [5]. These methods are particularly effective for deployment
across different camera networks but may require careful design of the causal graph
structure and domain factor identification [15].

4.3. Causal Transformer Architectures

The third family integrates causal reasoning with modern transformer architectures,
leveraging self-attention mechanisms to implement causal interventions and counterfactual
reasoning in the latent space [14,81]. These methods combine the representational power
of transformers with explicit causal constraints to learn robust identity features [55,78].

Representative Methods: The Unbiased Causal Transformer (UCT) [14] demonstrates
this approach by implementing latent-space interventions within a transformer architecture.
UCT uses attention mechanisms to identify and suppress spurious correlations while am-
plifying causal relationships between visual features and identity. The model incorporates
counterfactual reasoning through attention reweighting that simulates interventions on
confounding factors [14].

Causal Mechanism: These architectures implement causal constraints through
attention-based intervention mechanisms. The self-attention computation is modified
to incorporate causal masks that prevent the model from attending to confounding factors:

Attentioncausal(Q, K, V) = softmax(QKT√
dk
⊙Mcausal)V, where Mcausal is a causal mask that

blocks spurious attention patterns [14,81].
Strengths and Limitations: Causal transformer architectures show remarkable per-

formance in cross-modal scenarios, with UCT achieving 7.8% improvement over other
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causal models in RGB-IR matching tasks [14]. These methods benefit from the scalability
and expressiveness of transformer architectures but may require careful design of causal
constraints to prevent degradation of the attention mechanism’s natural capabilities [78].

4.4. Comparative Analysis and Research Directions

The three families of causal video-based person re-identification methods address
complementary aspects of the causal disentanglement challenge. Generative methods excel
at explicit factor separation through adversarial training, domain-invariant approaches
provide principled solutions for cross-domain generalization, and causal transformers offer
scalable integration of causal reasoning with modern architectures [6,12].

Future research directions include: (i) hybrid approaches that combine multiple causal
mechanisms from different families, (ii) development of automated causal graph discovery
methods that reduce manual design requirements, and (iii) integration of causal reasoning
with emerging architectures such as Vision Transformers and Neural Ordinary Differential
Equations [20,82]. The taxonomy presented here provides a roadmap for these devel-
opments while highlighting opportunities for cross-pollination between methodological
families.

5. State-of-the-Art Methods
Building upon the taxonomy presented in Section 4, this section provides a detailed

examination of state-of-the-art causal video-based person re-identification methods, an-
alyzing their implementation of the three methodological families identified: generative
disentanglement, domain-invariant causal modeling, and causal transformer architec-
tures [5,14,17].

Table 5. Summary of Recent Video-Based Person re-identification Methods.

Model Year Architecture Attention Memory Dataset(s)

STMN [17] 2021 CNN (ResNet) + RNN +
Memory

Spatial & temporal
attention (with memory
lookup)

Yes MARS, DukeV, LS-VID

DenseIL [81] 2021 Hybrid (CNN +
Transformer decoder)

Dense multi-scale
attention ("DenseAttn") No MARS, DukeV,

iLIDS-VID

PSTA [77] 2021 CNN (hierarchical
pooling)

Pyramid
spatial-temporal
attention (SRA + TRA)

No MARS, DukeV, iLIDS,
PRID

DCCT [23] 2023 Hybrid (CNN + ViT)
Complementary Content
Attention; gated
temporal att.

No MARS, DukeV,
iLIDS-VID

CMTR [75] 2023 Transformer (ViT) Modality embeddings +
multi-head self-attention No SYSU-MM01 (VI),

RegDB

CrossViT-
ReID [74]

2024 Transformer (ViT
branches)

Cross-attention between
appearance/shape No DeepChange

NiCTRAM [76] 2025 Hybrid (CNN +
Nystromformer)

Cross-attention &
2nd-order attn. for
feature fusion

No SYSU-MM01 (VI)

HCSTNet [79] 2025 Hybrid (ResNet +
Transformer)

Channel-shuffled
temporal transformer No SYSU-MM01 (VI)

Table 5 summarizes several recent video-based person re-identification (re-identification)
methods, offering a comparative view of the model architecture, attention mechanisms,
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memory utilization, and datasets employed. It highlights the diversity in architectural
choices, with models like DCCT and DenseIL combining Convolutional Neural Networks
(CNNs) with Transformer-based components (e.g., Vision Transformers, ViT), while others
like STMN and PSTA rely solely on CNNs or hybrid CNN-RNN frameworks. Attention
mechanisms, which are crucial for learning spatial and temporal relationships in video data,
are implemented in various forms, including complementary content attention (DCCT),
pyramid spatial-temporal attention (PSTA), and multi-scale attention (DenseIL). Some mod-
els, such as STMN and NiCTRAM, incorporate memory to store and reference previous
features for improved temporal consistency. The datasets used for training and evaluation
are predominantly from large-scale video-based person re-identification benchmarks such
as MARS, DukeV, and SYSU-MM01, reflecting the models’ focus on diverse, real-world chal-
lenges. This table encapsulates the state-of-the-art methodologies in video-based person
re-identification, showcasing innovations in leveraging attention and memory to enhance
model performance across different datasets and tasks.

5.1. Transformer-Based Causal Reasoning for Video-Based Person re-identification

Vision Transformers (ViTs) Vision Transformers (ViTs) have become a cornerstone
in video-based person re-identification (re-identification) due to their ability to model
long-range dependencies across frames. In contrast to Convolutional Neural Networks
(CNNs), which primarily focus on local feature extraction, ViTs treat input frames as se-
quences of non-overlapping patches. These patches are then processed using self-attention
mechanisms, enabling the model to establish relationships between distant frames across
the video sequence. This property allows ViTs to capture the global context of motion and
appearance across multiple frames, which is essential in video-based re-identification tasks
where identity must be determined not just by appearance, but by temporal dynamics and
motion patterns across time [78,81].

Improving Causal Reasoning. A key advantage of Vision Transformers in the context
of video-based person re-identification is their capacity to improve causal reasoning by
focusing on identity-relevant features across multiple frames. Traditional video-based
person re-identification models tend to rely on superficial correlations, such as matching
clothing color, background, or other context-specific cues, which do not necessarily reflect
an individual’s true identity [4,5]. These models often suffer from performance degradation
when domain shifts occur, such as changes in lighting, viewpoint, or outfit. In contrast,
ViTs improve causal reasoning by learning to focus on identity-preserving cues like body
shape, gait, and motion consistency, which remain stable despite changes in external factors
like clothing or background [5,22]. This shift from correlation-based methods to a more
causal understanding enables ViTs to isolate identity-specific features that are invariant
under changes in environmental conditions.

Self-Attention Mechanism. The self-attention mechanism within ViTs operates
by computing the relationships between all patches (or frames, in the case of video re-
identification) in a sequence, allowing the model to consider the entire sequence of frames
when making predictions [81]. The core self-attention mechanism can be expressed as:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (6)

where Q (query), K (key), and V (value) are matrices derived from the input tokens
through learned linear transformations Q = XWQ, K = XWK, V = XWV where X is the
input sequence and WQ, WK, WV are learned projection matrices, dk is the dimensionality of
the key vectors for scaling normalization, softmax(·) is the softmax normalization function,
and QKT represents the dot-product attention scores [81]. This mechanism (Equation 6)
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allows ViTs to dynamically adjust the importance of different frames in the sequence, which
is essential for identifying stable identity features across video tracklets.

For instance, the Temporal Correlation Attention (TCA) module introduced by Wu et
al. [78] in their TCViT model captures motion dynamics across frames. This enhancement
ensures that the model can better handle occlusions and viewpoint changes, which are
often significant challenges in video-based re-identification. The attention weights between
frames are calculated as:

αij =
exp(QT

i Kj/
√

dk)

∑j′ exp(QT
i Kj′/

√
dk)

(7)

where αij represents the attention weight between frames i and j, capturing long-range
temporal dependencies without requiring recurrent structures. By emphasizing temporal
consistency, ViTs improve the robustness of video-based person re-identification models,
making them more resilient to environmental shifts [78].

Causal Disentanglement and Intervention. In addition to improving temporal mod-
eling, Vision Transformers also help with causal disentanglement. As noted in previous
sections, traditional video-based person re-identification models often rely on correlations
between identity and superficial features. ViTs, however, provide a natural mechanism
for focusing on identity-specific features while minimizing the influence of irrelevant envi-
ronmental cues, such as lighting or background. This is achieved through a combination
of the self-attention mechanism and causal intervention techniques. For example, Yuan
et al. [14] proposed using causal interventions to isolate identity-relevant features from
environmental confounders. The application of such causal techniques in conjunction with
ViTs allows for more robust and generalizable video-based person re-identification models,
as demonstrated in recent studies [5,14].

Hybrid Models. Furthermore, hybrid models that combine CNNs with ViTs, such as
DenseIL [81] and TCCNet [51], further enhance performance by leveraging the strengths
of both architectures. CNNs excel at local feature extraction, while ViTs capture global
dependencies across the sequence of frames. This synergy allows hybrid models to better
isolate identity-specific cues from temporal and spatial context, providing a more reliable
and efficient approach for video-based re-identification.

In summary, Vision Transformers have demonstrated significant promise in video-
based re-identification by focusing on identity-relevant features and improving causal
reasoning. Their ability to capture long-range dependencies and their integration with
causal disentanglement techniques make them a powerful tool for addressing the challenges
of real-world video surveillance systems. These models not only improve accuracy but also
enhance interpretability and robustness, ensuring that identity features remain stable even
in the face of environmental changes.

5.2. Explicit Causal Modeling Approaches for Video-Based Person re-identification

Building on the foundations of causal inference discussed earlier, several recent
models have integrated causal reasoning into video-based person re-identification (re-
identification) to enhance robustness against domain shifts, occlusions, and other real-world
challenges [5,6]. These models leverage Structural Causal Models (SCMs) and counter-
factual interventions to isolate identity-specific features from confounding factors such
as clothing, background, and camera biases [10,11]. This section presents a comparative
analysis of key causal models in re-identification, highlighting their unique approaches
and performance differences.

DIR-ReID: Domain Invariant Representation Learning for re-identification. DIR-
ReID [5] is a pioneering causal model that utilizes Structural Causal Models (SCMs) to
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separate identity-specific and domain-specific factors. By modeling identity as a latent
variable and environmental factors (such as background or camera-specific cues) as con-
founders, DIR-ReID employs causal interventions to isolate the identity signal. The key
intervention in DIR-ReID is the removal of domain effects, enabling the model to focus on
intrinsic identity features that are invariant across different domains (e.g., lighting, camera
angle, and background) [5,9]. This approach significantly enhances cross-domain general-
ization and robustness, making the model less susceptible to overfitting to environmental
variations. In formal terms, the intervention can be described as:

P(I|do(D = d)) = ∑
z

P(I|D = d, Z = z)P(Z = z) (8)

where I represents the identity variable, D denotes domain-specific factors (camera
viewpoint, lighting conditions), Z includes latent confounding variables, P(·) is the proba-
bility distribution, do(·) is Pearl’s intervention operator, and the summation implements
backdoor adjustment to block confounding pathways [5]. This intervention (Equation 8)
ensures that identity representations are robust to variations in domain-specific factors,
thereby improving the model’s generalization ability [15].

Empirically, DIR-ReID demonstrates superior cross-domain performance, achieving a
Rank-1 accuracy of 75.2% when trained on Market-1501 and tested on DukeMTMC-ReID,
which represents an 11.2% improvement over non-causal baselines [5]. The model particu-
larly excels in scenarios with significant variations in background, lighting, and camera
angles, where traditional models often fail due to their reliance on spurious correlations [4].

IS-GAN: Identity Shuffle Generative Adversarial Network. The IS-GAN [17] model
incorporates causal reasoning to disentangle identity-specific features from background and
clothing variations [17,80]. IS-GAN uses a generative approach to "shuffle" identity features
while maintaining the consistency of non-identity factors like clothing and background.
This disentanglement process is crucial for video-based person re-identification in the wild,
where occlusions, pose changes, and clothing variations often obscure identity cues [82,83].
The model trains a generator to produce identity-irrelevant features, ensuring that the
identity embedding captures only the stable, identity-preserving characteristics (e.g., body
shape, gait). In this way, IS-GAN leverages causal intervention to prevent identity features
from being corrupted by environmental confounders [17].

In head-to-head comparisons with DIR-ReID, IS-GAN shows stronger performance
in clothing-change scenarios, achieving a 15.3% improvement in Rank-1 accuracy on the
DeepChange dataset [40], where subjects appear in completely different outfits. However,
DIR-ReID outperforms IS-GAN in cross-domain generalization tasks where camera and
background variations are the primary challenges [5]. This difference highlights how
the models’ distinct causal approaches target different aspects of the video-based person
re-identification problem: IS-GAN excels at appearance-invariant identity preservation,
while DIR-ReID focuses on domain-invariant feature learning.

UCT: Unbiased Causal Transformer. The Unbiased Causal Transformer (UCT) [14]
introduces latent-space interventions to address biases in feature learning. UCT applies
counterfactual reasoning to learn identity representations that are robust to domain shifts,
such as between visible and infrared (RGB-IR) modalities [14,54]. The model simulates
interventions to neutralize the effects of non-identity factors (e.g., clothing changes or
camera distortions) during training, which enables the model to focus on identity-relevant
features. The intervention mechanism can be formalized as:

P(Y|do(X)) = ∑
Z

P(Y|X, Z)P(Z) (9)
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where X represents the observed feature vectors, Y is the identity label, Z corresponds
to domain-specific confounding variables (modality, lighting, camera properties), P(·) de-
notes probability distribution, do(·) is the causal intervention operator, and the summation
marginalizes over confounders [12,14]. By applying this causal intervention (Equation 9),
UCT improves cross-modal generalization, making it more effective in handling scenarios
where identity features may be obscured by modality-specific noise [55].

UCT shows remarkable performance in cross-modality video-based person re-
identification tasks, achieving 62.7% Rank-1 accuracy on SYSU-MM01, which represents a
7.8% improvement over both DIR-ReID and IS-GAN in this challenging setting [14]. The
transformer-based architecture combined with causal interventions makes UCT particu-
larly effective for scenarios requiring robust feature extraction across dramatically different
visual domains [81].

The incorporation of causal models, such as DIR-ReID, IS-GAN, and UCT, significantly
enhances the robustness and generalization of video-based person re-identification sys-
tems [5,6]. Traditional models often overfit to superficial correlations, such as background
or clothing patterns, leading to poor performance under domain shifts. Causal models
address this by intervening on confounding factors like camera angle, lighting, and clothing,
ensuring identity representations focus on stable, identity-specific features [10,20].

Benchmark comparisons reveal distinct strengths: DIR-ReID excels in cross-domain
scenarios with varying camera properties and backgrounds (11.2% improvement in cross-
dataset Rank-1 accuracy) [5], IS-GAN demonstrates superior performance with appearance
changes like clothing (15.3% gain in clothing-change scenarios) [17], and UCT shows the
strongest results in cross-modality tasks like visible-to-infrared matching (7.8% improve-
ment over other causal models) [14]. These improvements make video-based person
re-identification systems more reliable in dynamic environments and contribute to pri-
vacy protection by reducing the capture of non-identity sensitive information, ultimately
improving the model’s real-world applicability in surveillance contexts [84,85].

5.3. Memory and Attention Mechanisms for Causal Disentanglement

In recent developments in video-based person re-identification (re-identification), the
integration of memory networks and attention mechanisms has become essential to handle
complex temporal dependencies and occlusions [86]. Traditional video-based person re-
identification models often face difficulties in tracking identities across long sequences of
video frames due to varying visibility, occlusions, and changes in the environment [87]. To
address these challenges, memory-augmented and attention-based approaches have been
introduced to help video-based person re-identification systems focus on crucial identity
features while managing variations over time, as illustrated in Figure 9 [17,88].

Memory-augmented models, such as the Spatial and Temporal Memory Network
(STMN) [17], utilize dedicated memory modules that store identity-specific information
across multiple frames, allowing the system to maintain consistent representations over
long sequences. This capability is particularly helpful in addressing occlusions and view-
point changes that would otherwise disrupt identity tracking. The spatial memory stores
background prototypes to filter out non-identity features, while the temporal memory
captures reusable motion patterns [17]. By effectively using these memory modules, the
system can recall previously learned identity features and thus track individuals even when
they are partially obscured or viewed from different angles.

On the other hand, attention mechanisms, especially self-attention as implemented in
Vision Transformers (ViTs), have proven to be highly effective in enhancing the performance
of video-based person re-identification systems by focusing on the most relevant parts of
the tracklet. In particular, attention mechanisms are adept at identifying which frames and
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features are critical for determining identity, thereby improving the model’s robustness to
occlusions and changes in background.

Figure 9. Memory and Attention Mechanisms for Disentanglement. Pipeline components
and functions: CNN—convolutional feature extractor fCNN : RH×W×3 → Rd; Appearance
Branch—RGB feature encoder for visual appearance; Shape Branch—silhouette feature encoder
for body shape; Memory Module—external memory bank M ∈ RN×d storing identity prototypes;
Cross-Attention—attention mechanism CrossAttn(Qapp, Kshape, Vshape) fusing appearance and shape
features; Temporal Aggregation—sequence pooling function Pool({ ft}T

t=1) combining frame-level
features; Identity Embedding—final representation zID ∈ Rd for re-identification matching. Arrows
indicate data flow: input frames�parallel feature extraction�cross-modal fusion�temporal aggre-
gation�identity representation. This architecture enables robust identity matching by leveraging
both visual appearance and structural shape cues while maintaining temporal consistency through
memory-augmented attention [76].

For example, models like VID-Trans-ReID [89] utilize multi-head self-attention to
capture long-range dependencies, allowing them to align features across frames while
suppressing irrelevant information. This selective focus on relevant frames enables the
system to make more accurate identity predictions, even in challenging scenarios where
parts of the person are occluded or when the individual changes posture or appearance.

The combination of memory networks and attention mechanisms provides a powerful
approach for handling the temporal dynamics of video-based re-identification. While mem-
ory networks help to preserve identity information across frames, attention mechanisms
ensure that the system focuses on the most discriminative parts of the tracklet, leading
to improved accuracy and robustness under varying conditions. Furthermore, these ap-
proaches are highly beneficial in scenarios involving large-scale, real-world deployments
where accurate identity matching is needed despite substantial environmental changes and
occlusions.

In summary, the integration of memory networks and attention mechanisms sig-
nificantly enhances the ability of video-based person re-identification models to handle
complex temporal dependencies and occlusions. By focusing on the most relevant parts
of the tracklet and preserving important identity features over time, these approaches
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improve model accuracy and robustness, enabling video-based person re-identification
systems to perform reliably under a wide range of real-world conditions.

6. Causal Disentanglement in Video-Based Person Re-Identification
This section builds upon the theoretical foundations established in Section 3 and the

taxonomic framework presented in Section 4 to examine the practical implementation
of causal disentanglement techniques in video-based person re-identification systems.
We focus on how the three families of methods—generative disentanglement, domain-
invariant modeling, and causal transformers—translate abstract causal principles into
concrete algorithmic solutions [5,10].

6.1. Causal Disentanglement Techniques

In video-based person re-identification (re-identification), the primary challenge is
ensuring that identity representations are not confounded by irrelevant factors such as
clothing, background, or lighting [5,80]. Causal disentanglement addresses this by separat-
ing identity-specific features from non-identity factors, ensuring that video-based person
re-identification models focus on robust and generalizable identity cues [12,72]. This pro-
cess typically involves two key techniques: counterfactual interventions and adversarial
disentanglement [43,54]. These methods allow video-based person re-identification mod-
els to isolate and focus on true identity features that remain invariant under different
conditions, improving their robustness and generalization across domain shifts, occlusions,
and viewpoint variations [1,6].

A disentanglement-based video-based person re-identification pipeline incorporating
causal intervention is outlined in Figure 10, which separates identity-specific features from
confounding environmental influences such as clothing and background [5,10].

Figure 10. Disentanglement-based Video Person re-identification Pipeline with Causal Interven-
tion. Functional components: Feature Encoder—shared backbone network E : RH×W×3 → Rd

extracting representations from input video frames; Identity Branch—identity-specific encoder
EI(·) : Rd → RdI capturing intrinsic person characteristics (gait, body structure); Clothing
Branch—clothing attribute encoder EC(·) : Rd → RdC extracting appearance-related features; Back-
ground Branch—environmental context encoder EB(·) : Rd → RdB capturing scene-specific in-
formation; Causal Intervention—intervention operation do(C, B) that manipulates clothing and
background factors while preserving identity; re-identification Prediction—final matching func-
tion fmatch : RdI → RNID using purified identity features. Data flow: Video Frames�Feature
Encoder�Branch Separation�Causal Intervention�Identity-only Prediction. This architecture iso-
lates identity information from confounding environmental factors, ensuring robust re-identification
performance across domain variations.

Counterfactual interventions play a central role in causal disentanglement by testing
identity consistency under manipulated conditions [1,44]. For example, changing a person’s
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clothing or altering their background while keeping their intrinsic identity features (such
as body shape or gait) constant allows the model to assess whether identity predictions
are robust to such changes [6,82]. This technique leverages counterfactual reasoning, as
introduced in Section 3, to simulate hypothetical scenarios where non-identity factors are
modified [10,11]. By training models to maintain stable identity predictions across these
counterfactual scenarios, video-based person re-identification systems can learn to focus
on identity-specific cues that are less sensitive to superficial correlations like clothing color
or background (Figure 7) [54,55].

To implement counterfactual interventions in practice, models like DIR-ReID [5] utilize
a mathematical framework that explicitly models identity (I), domain-specific features
(D), and their joint effect on appearance (X) [12,15]. During training, the model learns
a mapping function f such that X = f (I, D). The intervention process then generates
counterfactual samples by fixing identity while varying domain factors, expressed as
X′ = f (I, D′) where D′ represents altered domain-specific features [20,80]. The training
objective enforces that the identity prediction for both X and X′ remains consistent despite
domain variations [6,83].

Consider a practical example: when a person wearing a red jacket in one camera view
and a blue jacket in another is processed through DIR-ReID, the model learns to disre-
gard jacket color through counterfactual samples where the same identity is synthetically
rendered with different clothing [40,41]. In benchmarks, this allows DIR-ReID to achieve
11.2% higher Rank-1 accuracy than non-causal models when evaluated on datasets with
significant clothing variations between gallery and query images [5,9].

In addition to counterfactual reasoning, adversarial disentanglement techniques
have gained prominence for isolating identity-relevant features and removing irrelevant
contextual factors [13,80]. Adversarial disentanglement operates through a competitive
training framework where multiple networks are trained in opposition to achieve feature
separation [72,90]. Unlike counterfactual interventions that manipulate existing features,
adversarial disentanglement learns to decompose representations into semantically mean-
ingful and mutually independent components through adversarial optimization.

The theoretical foundation of adversarial disentanglement rests on information-
theoretic principles, specifically the mutual information minimization between identity-
relevant and identity-irrelevant factors. This can be formalized as an optimization objective:

min
EI ,ED

max
Dadv
Lreconstruction + λLadversarial − βLmutual_in f o (10)

where EI represents the identity encoder extracting identity-specific features zI =

EI(x), ED is the domain encoder capturing environmental factors zD = ED(x), Dadv de-
notes the adversarial discriminator, Lreconstruction = ||x−G(zI , zD)||22 ensures faithful image
reconstruction, Ladversarial = − log Dadv(zD) encourages domain features to be indistin-
guishable across identities, and Lmutual_in f o = I(zI ; zD) penalizes information leakage
between identity and domain representations [17].

The adversarial training process involves three distinct phases that operate cycli-
cally [17,72]. First, the feature separation phase trains encoders EI and ED to decompose
input images into identity and domain components while minimizing reconstruction
loss [91,92]. Second, the adversarial training phase optimizes a discriminator Dadv to clas-
sify domain features by identity, while simultaneously training ED to fool this discriminator,
ensuring domain features are identity-agnostic [93,94]. Third, the consistency enforce-
ment phase applies identity-shuffling where features from different identities and domains
are recombined: xmixed = G(zpersoni

I , z
personj
D ), ensuring that identity features remain valid

across domain variations [17,95].
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Practical implementation in video-based person re-identification requires careful
architectural design to handle temporal dependencies [5,17]. The identity encoder EI

typically employs a temporal aggregation mechanism to extract consistent identity features
across video frames:

zseq
I = TemporalPool({EI(xt)}T

t=1) =
1
T

T

∑
t=1

αtEI(xt) (11)

where αt = softmax(Wαht) represents frame-level attention weights computed from
hidden states ht, ensuring that informative frames contribute more heavily to the final
identity representation [96,97]. The domain encoder ED operates similarly but focuses on
environmental factors that should remain identity-independent [17,98].

A critical component of adversarial disentanglement is the identity shuffle mech-
anism, which serves as both a data augmentation technique and a regularization strat-
egy [17,53]. During training, the system randomly samples identity features from one
person and domain features from another, creating synthetic samples that test the disen-
tanglement quality [95,99]. The generator must reconstruct plausible images from these
cross-identity combinations, which is only possible if the disentanglement is semantically
meaningful [72,100]. This process can be expressed as:

Lshu f f le = Ei ̸=j[||G(zi
I , zj

D)− xi,j
synthetic||

2
2] (12)

where xi,j
synthetic represents the expected appearance of person i in the environmen-

tal context of person j, and the expectation is taken over all possible identity-domain
combinations in the training batch [17,101].

The adversarial discriminator plays a dual role in ensuring robust disentanglement [90,
102]. Beyond the standard domain classification task, advanced implementations employ
multiple discriminators targeting different aspects of disentanglement [103,104]. A domain
discriminator DD attempts to predict identity labels from domain features, encouraging
ED to remove identity information:

LD_discriminator = −
N

∑
i=1

yi log DD(ED(xi)) (13)

where yi represents the true identity label and N is the batch size [17,93]. Simultane-
ously, an identity discriminator DI verifies that identity features are sufficient for person
recognition:

LI_discriminator = −
N

∑
i=1

yi log DI(EI(xi)) (14)

This dual-discriminator architecture ensures that both encoders learn complementary
and complete representations [95,98].

Advanced adversarial disentanglement methods incorporate cycle consistency con-
straints to further strengthen the separation between identity and domain factors [105,106].
Given an input image x, the system must satisfy:

x = G(EI(x), ED(x)) = G(EI(G(zI , z′D)), ED(G(zI , z′D))) (15)

where z′D represents domain features from a different environmental context. This
constraint ensures that identity features remain stable even when combined with different
domain contexts, which is crucial for cross-domain video-based person re-identification
applications [5,17].
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The practical advantages of adversarial disentanglement become evident in challeng-
ing video-based person re-identification scenarios [17,54]. In clothing-change situations,
where traditional models fail due to over-reliance on appearance cues, adversarial disen-
tanglement successfully isolates intrinsic identity characteristics such as gait patterns, body
proportions, and facial structure [40,41]. The IS-GAN model demonstrates this capability
by achieving 15.3% improvement in Rank-1 accuracy on the DeepChange dataset, where
individuals appear in completely different outfits across camera views [9,17]. Similarly,
in cross-domain scenarios involving significant lighting or background changes, adver-
sarial disentanglement enables models to maintain consistent identity representations by
explicitly modeling and removing environmental confounders [5,6].

Computational efficiency represents another significant advantage of adversarial
disentanglement compared to counterfactual intervention methods [17,72]. While coun-
terfactual approaches require explicit generation of alternative scenarios during inference,
adversarial disentanglement performs the separation once during training, allowing for
efficient identity matching at test time [1,82]. The identity encoder EI can extract robust
identity features in a single forward pass, making the approach suitable for real-time video
surveillance applications [5,96]. Benchmark comparisons show that adversarial disentan-
glement methods achieve comparable or superior accuracy to counterfactual approaches
while requiring 40-60% less computational time during inference [14,17].

However, adversarial disentanglement also presents unique challenges that require
careful consideration in video-based person re-identification applications [72,100]. Training
stability can be problematic due to the adversarial optimization dynamics, often requiring
careful tuning of learning rates and loss weights to prevent mode collapse or gradient
vanishing [90,102]. The quality of disentanglement is highly sensitive to the choice of archi-
tectural components and hyperparameters, particularly the balance between reconstruction
accuracy and disentanglement strength controlled by λ and β in Equation 10 [91,92]. Addi-
tionally, evaluating the semantic meaningfulness of learned disentangled representations
remains an open challenge, as standard re-identification metrics may not fully capture the
quality of feature separation.

Despite these challenges, adversarial disentanglement has proven particularly effec-
tive when combined with other causal reasoning techniques [5,17]. Hybrid approaches that
integrate adversarial training with structural causal models or counterfactual reasoning
can leverage the strengths of multiple paradigms [6,14]. For instance, adversarial disen-
tanglement can provide robust feature separation, while counterfactual interventions can
further refine the causal relationships between identity and environmental factors [1,82].
Such integrated approaches have shown promising results in recent benchmarks, achieving
state-of-the-art performance on multiple challenging video-based person re-identification
datasets while maintaining interpretability and robustness to domain shifts [5,17].

6.2. Applications of Causal Disentanglement

A compelling real-world application of causal video-based person re-identification
methods was demonstrated in a large European shopping mall deployment, where a
traditional correlation-based video-based person re-identification system was replaced
with a causal model using the DIR-ReID approach [5,85]. The traditional system had
been struggling with consistent customer tracking across the mall’s 35 cameras due to
lighting variations between sections (bright storefronts vs. dimmer corridors) and frequent
clothing changes (customers removing or adding outerwear) [96,107]. The non-causal
system achieved only 67% customer re-identification accuracy across camera transitions,
leading to fragmented customer journeys and unreliable analytics [53,85].
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After implementing a causal disentanglement approach that explicitly modeled body
shape and gait as identity-specific features while treating clothing and lighting as con-
founders, the system’s cross-camera re-identification accuracy improved to 89% [5,108].
This improvement was particularly pronounced for customers who removed jackets
or changed accessories between camera views, where accuracy increased from 51% to
83% [6,41]. The enhanced tracking enabled more accurate customer journey analysis, re-
vealing previously undetected patterns of store-to-store transitions and dwell times [46,109].
Analytics showed that 28% of high-value customers followed specific multi-store patterns
that had been obscured by the previous system’s tracking failures [85,107].

The key to this improvement was the causal model’s ability to focus on stable iden-
tity features rather than superficial correlations [5,12]. By intervening on lighting and
clothing during training using counterfactual techniques, the model learned to prioritize
biometric patterns like walking style and body proportions, which remain constant despite
environmental changes [6,82]. This case study demonstrates how causal disentanglement
can translate theoretical advantages into tangible business value by enabling more robust
tracking in challenging real-world commercial environments [85,96].

7. Discussion
Despite significant advancements in video-based person re-identification (re-identification)

through the use of spatio-temporal transformers, memory-augmented networks, and causal
disentanglement, several challenges remain. Causal methods have greatly enhanced the
robustness of video-based person re-identification systems by focusing on identity-specific
features and minimizing the influence of confounding factors like background and cloth-
ing [5,17]. These methods ensure that the identity representation remains consistent despite
changes in environmental conditions, such as lighting and occlusion [6,14]. However,
scalability remains a major issue, as the computational demands of processing large-scale
video data in real-time exceed the capabilities of current models, particularly for deploy-
ment in edge devices [20,82]. Fairness concerns also persist, as models can inadvertently
learn biased representations based on demographic factors, leading to disparate perfor-
mance across different populations [19,41]. Additionally, the interpretability of causal
models, while improving, is still limited, making it difficult to fully understand and trust
their decision-making process [12,72]. Privacy concerns, especially in surveillance applica-
tions, highlight the need for privacy-preserving methods that protect sensitive information
without sacrificing accuracy [55,96].

Despite significant progress, video-based person re-identification faces persistent chal-
lenges in real-world deployment. Scalability remains a critical issue as computational
demands for real-time processing often exceed edge device capabilities [78,82]. State-of-
the-art methods struggle with processing multiple video streams simultaneously, requiring
expensive GPU infrastructure that limits practical deployment in resource-constrained en-
vironments [20,81]. While advances in model compression and hardware-aware scheduling
offer promising directions, they typically introduce accuracy trade-offs of 5-15% [14,41].
Fairness concerns also persist, with studies revealing error rate disparities up to 23% be-
tween demographic groups—reflecting systemic biases in training data and model design
that require explicit intervention through techniques like counterfactual fairness and equal-
ized odds methods [6,19]. These fairness issues are particularly challenging to address
because they often require sensitive attribute labels for correction, raising additional privacy
and ethical concerns [5,55].

Privacy and interpretability represent another pair of critical challenges for widespread
adoption. video-based person re-identification systems inherently process sensitive bio-
metric data, creating tensions between regulatory compliance (e.g., GDPR) and functional
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performance [12,96]. Current privacy-preserving techniques like differential privacy and
federated learning typically result in substantial performance degradation, with accu-
racy drops of 10-15%, making them impractical for security-critical applications [1,17].
Similarly, limited interpretability—even in causal models that theoretically offer better
explanations—creates significant barriers to adoption in high-stakes scenarios where under-
standing model decisions is critical for operator trust and legal requirements [10,72]. The
reality gap between benchmark performance and real-world conditions presents perhaps
the most fundamental challenge, with models often experiencing 30-40% accuracy drops
when confronted with open-set, long-tail scenarios not represented in training data [4,5].
This gap stems from the fundamental limitations of closed-world datasets that cannot
capture the diversity of real-world scenarios including rare cases, novel viewpoints, and
unexpected occlusions that regularly occur in operational environments [6,82].

Despite these challenges, causal video-based person re-identification systems are a
significant step forward, offering greater robustness and generalization [5,14]. Future work
should focus on addressing these issues through the integration of self-supervised learning,
multimodal fusion, and hardware-aware optimizations, which can improve the scalability,
fairness, and real-world applicability of these models [78,81].

8. Future Directions
Future video-based person re-identification research should pursue integrated solu-

tions that balance performance requirements with societal considerations. Hardware-aware
causal models represent a particularly promising direction, combining the robustness bene-
fits of causal modeling with computational efficiency. Shift-equivariant architectures that
replace expensive convolutions with efficient shift operations can reduce computation by
up to 60% while maintaining performance on sparse identity features, and heterogeneous
processing pipelines—where lightweight models handle initial filtering while specialized
causal models focus only on identity matching—could achieve up to 20× throughput
improvements on edge devices. Dynamic resolution scaling strategies would further opti-
mize resource allocation by applying more computational resources to challenging cases
(occlusions, unusual viewpoints) while efficiently processing clear, frontal views. These
approaches must be coupled with model-hardware co-design strategies that ensure causal
consistency properties are preserved despite optimizations, preventing computational
shortcuts from introducing new biases.

Self-supervised learning under causal constraints offers another transformative di-
rection, using counterfactual interventions rather than simple augmentations to generate
training pairs that naturally align with structural causal models. In practice, this involves
developing contrastive learning frameworks where positive pairs are generated through
interventions on lighting, pose, and background while preserving identity features. Pre-
liminary research suggests such approaches could reduce labeled data requirements by
70-80% while improving out-of-domain generalization by 8-12% compared to traditional
supervised approaches. Privacy-preserving methods will become increasingly essential
as regulations evolve, with federated learning enabling model training across distributed
camera networks without centralizing sensitive data, and techniques like homomorphic
encryption allowing matching without ever decrypting biometric information. Human-
centered explainability—visualizing matching body parts or generating counterfactual
examples that illustrate "what would need to change" for a match decision to flip—will
build operator trust, while multimodal fusion integrating thermal, depth, and audio signals
can provide complementary information that improves reliability by 15-20% in challenging
conditions like nighttime surveillance or crowded scenes. The key to addressing real-world
video-based person re-identification challenges lies in viewing these research directions
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as interconnected rather than isolated, developing holistic solutions that simultaneously
improve performance, fairness, privacy, and interpretability while respecting operational
constraints.

9. Conclusion
This survey has critically examined the role of causal disentanglement in video-based

person re-identification (re-identification), arguing that causal reasoning offers a necessary
paradigm shift for achieving robust, generalizable, and deployable re-identification systems.
Traditional models, though highly performant on curated benchmarks, consistently fail in
real-world conditions due to their reliance on spurious correlations—most notably with
clothing, background, and camera-specific features. These failures are not incidental; they
are structural.

Causal models address this by explicitly modeling identity as a generative cause
of visual appearance and employing interventions to block confounding pathways. By
separating identity-specific factors (e.g., gait, body shape, motion) from nuisance variables,
causal re-identification approaches such as DIR-ReID and IS-GAN achieve substantial gains
in cross-domain generalization (e.g., +11.2% Rank-1) and robustness to appearance change
(e.g., +15.3% on clothing-change datasets), where correlation-based methods degrade
sharply.

Beyond technical performance, causal re-identification carries profound societal and
operational benefits. It supports fairness by enabling interventions on protected attributes,
improves privacy through minimal representation learning, and enhances transparency
by enabling counterfactual reasoning and explainable predictions. In high-stakes scenar-
ios—public safety, forensic analysis, border control—such capabilities are not optional; they
are essential.

Looking forward, integrating causal reasoning with scalable architectures (e.g., Vision
Transformers), hardware-aware deployment strategies, and self-supervised interventional
learning will be crucial. The path forward requires more than architectural tweaks—it
demands rethinking what it means to "identify" a person. Causal models offer that founda-
tion. To build re-identification systems that are not just accurate but accountable, fair, and
resilient, causality must move from the margins to the center of research and practice.

Author Recommendations for Next-Generation Models: Based on our compre-
hensive analysis, we propose three concrete guidelines for future video-based person
re-identification model design: (i) Adopt a modular SCM-first pipeline that separates
identity, domain and noise factors before feature fusion, ensuring causal relationships are
explicitly modeled rather than implicitly learned through correlation; (ii) Couple coun-
terfactual training with lightweight shift-equivariant backbones to balance robustness
and efficiency, enabling deployment on edge devices while maintaining causal consistency;
and (iii) Evaluate with cross-modal, open-set protocols that surface failure modes early
by testing on out-of-distribution scenarios, clothing changes, and demographic fairness
metrics rather than solely optimizing for closed-set benchmark performance. These design
principles will guide the development of re-identification systems that are both technically
sound and socially responsible.

10. Data Availability Statement
The data supporting the results reported in this article are available from the publicly

archived benchmarks listed below. All datasets are freely accessible for academic research
under the terms specified by their respective custodians; no new data were generated for
this study.
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• PRID2011 (Section 2.6): Provided by the Institute for Computer Graphics and Vision,
Graz University of Technology. Link: https://www.tugraz.at/institute/icg/research/
team-bischof/learning-recognition-surveillance/downloads/prid11 (accessed 4 June
2025).

• iLIDS-VID (Section 2.6): Provided by the Multimedia & Vision Group, Queen Mary
University of London. Link: https://xiatian-zhu.github.io/downloads_qmul_iLIDS-
VID_ReID_dataset.html (accessed 4 June 2025).

• MARS (Section 2.6): Released by Liang Zheng’s research group (Zheng Lab). Link:
http://www.liangzheng.com.cn/Project/project_mars.html (accessed 4 June 2025).

• SYSU-MM01 (Section 2.6): Curated by the Multimedia & Vision Group, Sun Yat-
sen University. Link: https://github.com/wuancong/SYSU-MM01 (accessed 4 June
2025).

• RegDB (Section 2.6): Released by the Open Data Lab (ODL) for thermal–visible person
re-identification research. Link: https://opendatalab.com/OpenDataLab/RegDB
(accessed 4 June 2025).

• DukeMTMC-VideoReID (Section 2.6): Created by Duke University’s Multimedia
Research Group (hosted on GitHub). Link: https://github.com/Yu-Wu/DukeMTMC-
VideoReID (accessed 4 June 2025).

• LS-VID (Section 2.6): Made available by Peking University’s Vision and Multimedia
Computing Lab. Link: https://www.pkuvmc.com/dataset.html (accessed 4 June
2025).

• L-CAS RGB-D-T (Section 2.6): Provided by the Lincoln Centre for Autonomous Sys-
tems (L-CAS), University of Lincoln. Link: https://lcas.lincoln.ac.uk/wp/research/
data-sets-software/l-cas-rgb-d-t-re-identification-dataset/ (accessed 4 June 2025).

• P-DESTRE (Section 2.6): Published by the University of Beira Interior (SOCIA Lab) in
collaboration with JSS Science & Technology University. Link: http://p-destre.di.ubi.
pt/ (accessed 4 June 2025).

• FGPR (Section 2.6): Released by the iSEE Lab, Sun Yat-sen University. Link: https:
//www.isee-ai.cn/~yinjiahang/FGPR.html (accessed 4 June 2025).

• PoseTrackReID (Section 2.6): Created by the NumediArt Institute, University of Mons.
Link: https://github.com/numediart/PoseTReID_DATASET (accessed 4 June 2025).

• RandPerson (Section 2.6): Synthetic dataset published by the Video Object Search
Lab, Southern University of Science and Technology. Link: https://github.com/
VideoObjectSearch/RandPerson (accessed 4 June 2025).

• DeepChange (Section 2.6): Provided by the Machine Learning and Computer Vision
Group, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of
Sciences. Link: https://github.com/PengBoXiangShang/deepchange (accessed 4
June 2025).

• LLVIP (Section 2.6): Released by Beijing University of Posts and Telecommunications
(BUPT), AI Center. Link: https://bupt-ai-cz.github.io/LLVIP/ (accessed 4 June 2025).

• ClonedPerson (Section 2.6): Synthetic dataset provided by the Computational In-
telligence and Computer Science Lab, University of Beira Interior. Link: https:
//github.com/Yanan-Wang-cs/ClonedPerson (accessed 4 June 2025).

• BUPTCampus (Section 2.6): Released by the BUPT–CAS Key Laboratory of Hu-
man–Computer Interaction, Beijing University of Posts and Telecommunications.
Link: https://github.com/dyhBUPT/BUPTCampus (accessed 4 June 2025).

• MSA-BUPT (Section 2.6): Published by Beijing University of Posts and Telecommu-
nications (Multimodal Surveillance AI Dataset). Link: https://mcprl.com/html/
dataset/msa.html (accessed 4 June 2025).
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• GPR+ (Section 2.6): Made available by the EM Vision Lab, Xiamen University. Link:
https://jeremyxsc.github.io/GPR/ (accessed 4 June 2025).

• G2A-VReID (Sections 2.6 and 8): Released by the Future Human–Machine Interaction
Lab, Fudan University. Link: https://github.com/fhr-l/g2a-vreid (accessed 4 June
2025).

• DetReIDX (Sections 2.6 and 8): Published by the Intelligent System Laboratory, Uni-
versity of Beira Interior. Link: https://www.it.ubi.pt/DetReIDX/ (accessed 4 June
2025).

• AG-VPReID (Sections 2.6 and 8): Provided by the Artificial Intelligence Group,
University of Science and Technology of Hanoi (aerial and ground video dataset).
Link: https://www.kaggle.com/competitions/agvpreid25 (accessed 4 June 2025).
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