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Abstract

Reliable aerial-ground video-based person re-
identification (ReID) remains a challenge due to severe
changes in data quality and features, such as viewpoint
disparities, resolution drops, and cross-camera appearance
inconsistency. This paper presents VM-TAPS, a lightweight
and modular extension to the well-known TF-CLIP frame-
work, designed to increase the robustness of ReID, without
requiring end-to-end backbone retraining. When compared
to its ancestor, VM-TAPS’ novelties are five-fold: 1)
View-Specific Processing Layers to normalize camera-
dependent biases; 2) Scale-Aware Feature Adaptation
for resolution-invariant feature fusion; 3) a View-Aware
Memory Bank enabling long-range identity context; 4) a
Motion Pattern Analyzer capturing temporal dynamics;
and (5) Cross-View Interaction Modules that harmonize
multi-view feature spaces. Despite adding fewer than two
million parameters, VM-TAPS achieves +4.97% Rank-1
and +3.08% mAP gains over TF-CLIP on the challenging
AG-VPReID2025 benchmark. At 80m and 120m altitudes,
it sets a new performance baseline of 73.68%/75.73% and
69.45%/71.63% (Rank-1/mAP), respectively. All compo-
nents are trained with frozen CLIP visual encoders in the
early stages, enabling efficient and stable convergence.
Our results support that the carefully disentanglement of
viewpoint, scale, motion and memory factors substantially
increases the robustness of cross-view ReID under real-
world conditions. Code is publicly available. https:
//github.com/MdRashidunnabi/VM-TAPS.git

Person Re-Identification, Cross-View Adaptation,
Aerial Surveillance, Multi-Scale Learning, Spatiotempo-
ral Modeling

1. Introduction

Person Re-Identification (ReID) aims at identifying and
tracking individuals across different camera views. With
the ubiquitous deployment of different kinds of surveillance
devices (aerial drones, ground-level cameras, and wearable

cameras), cross-view ReID still presents significant chal-
lenges due to substantial variations in perspective, scale, il-
lumination, and individual motion patterns[26], [18], [9],
[25]. These difficulties become particularly pronounced
when aerial drones operate at considerable altitudes[13, 7],
(over 80m), which severely decreases the resolution of the
data obtained.

Figure 1. Comparison between the traditional CLIP-Memory ar-
chitecture and the VM-TAPS framework proposed in this paper.
VM-TAPS increases robustness via view-specific normalization,
scale-adaptive processing, motion pattern analysis, and cross-view
attention mechanisms.

Recent advances in vision-language models such as
CLIP [16] and TF-CLIP [23] have significantly boosted per-
formance in various visual understanding tasks by combin-
ing visual embeddings with language-driven semantic rep-
resentations. Despite their success, these models typically
assume relatively stable viewpoints and uniform image
quality. As demonstrated in Figure 3, conventional meth-
ods that rely on uniform feature aggregation and temporal
pooling inadequately address the complexities introduced
by significant variations in viewpoints and scales, producing
representations that are fragile and poorly generalizable[23,
25].

Motivated by these limitations, this paper proposes VM-
TAPS, an innovative multi-view adaptation framework ex-
plicitly designed to increase the robustness of automated
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ReID in aerial-ground video-based scenarios[10, 25]. VM-
TAPS was designed upon the TF-CLIP architecture and in-
troduces a set of targeted, modular improvements that sys-
tematically address the critical issues of viewpoint normal-
ization, scale adaptability, memory-based identity recall,
temporal dynamics modeling, and cross-view feature inter-
action.

1. View-Specific Processing Layer (VSPL): Applies
lightweight camera-conditioned normalization to mit-
igate viewpoint-specific biases (e.g., lighting, distor-
tion) by separately processing features from aerial,
ground, and wearable views [8, 19].

2. Scale-Aware Feature Adaptation (SAFA): En-
hances scale invariance by dynamically fusing multi-
resolution representations using adaptive attention, ad-
dressing drastic scale changes in drone footage [7].

3. View-Aware Memory Bank (VAMB): Replaces
global identity vectors with view-specific prototypes,
improving retrieval consistency across varying view-
points [6].

4. Motion Pattern Analyzer (MPA): Extracts frame-to-
frame motion cues (e.g., gait, clothing movement) with
transformer-based modeling to enhance temporal dis-
criminability [14].

5. Cross-View Interaction Module (CVIM): Aligns
short-term memory tokens across views within a batch
to harmonize local feature distributions and strengthen
perspective invariance [25].

A comprehensive overview of the VM-TAPS architec-
ture is shown in Figure 2. By sequentially applying five tar-
geted processing modules, VM-TAPS produces robust and
discriminative features that significantly outperform state-
of-the-art methods.

Evaluated on the AG-VPReID2025 benchmark, which
combines synchronized aerial, ground, and wearable
videos, VM-TAPS significantly outperforms its competi-
tors, and at 80m altitude data , it reaches 73.68% Rank-1
and 75.73% mAP, while maintaining 69.45% Rank-1 and
71.63% mAP at 120m data.

Hence, the key contributions described in this paper can
be summarized as:

• A unified framework designed to systematically ad-
dress viewpoint, scale, and temporal challenges in
aerial-ground video-based ReID.

• Introduction of five specialized modules for viewpoint
normalization, scale adaptation, motion modeling, and
cross-view memory alignment.

• State-of-the-art performance on AG-VPReID2025,
demonstrating enhanced generalization under extreme
viewpoint and scale conditions.

VM-TAPS offers a robust and modular solution for
cross-view ReID, with strong practical relevance for future
multi-camera surveillance systems.

2. Related Work
Video-based person ReID has progressed from early

hand-crafted color and motion descriptors to deep
CNN–RNN hybrids (e.g., CNN–LSTM [24], spatial-GRU
attention [20]), and more recently to transformer-based, vi-
sion–language models. Initial work used fragment selection
and optical-flow regions to improve matching under moder-
ate view changes [18, 2], but these methods struggled with
extreme viewpoints. Subsequent approaches introduced ad-
versarial training over variational RNNs [21] and graph-
based multi-scale part reasoning [9] to enhance view invari-
ance.

Transformer self-attention revolutionized video ReID:
Spatiotemporal Transformers (STTs) capture non-local re-
lations more effectively than CNNs but can overfit on
limited data [17]. Spatial–Temporal Memory Networks
reduce redundancy with learnable codebooks [3], and
VID-Trans-ReID combines patch-level attention with con-
volutional biases to achieve 96.6% rank-1 on PRID2011 [1].
Subsequent work has explored reinforcement learning for
adaptive frame selection [22], feature disentanglement to
remove camera bias [5], and topology-adaptive graph con-
volutions on keypoints [15]. However, these methods gen-
erally assume similar imaging geometries and often fail un-
der extreme cross-view conditions (e.g., aerial or infrared
cameras).
Cross-platform work, such as G2A-VReID and
VSLA-CLIP [25], recasts ground–to–aerial ReID as
vision–language alignment but still applies global pooling
and cannot bridge the resolution gap between an80m
drone view and a 1080p CCTV frame. In visible–infrared
settings, Feng etal. introduced a cross-frame tube trans-
former with diversity–consistency regularisation [4] and
Lin etal. complemented this with modal-invariant temporal
memory [7]. These studies highlight two principles:
(i) normalize view and modality biases before temporal
aggregation, and (ii) use sensor-conditioned memory to
prevent negative transfer.
Large-scale language–image pre-training (LLIP) offers an
alternative: TF-CLIP eliminates textual prompts by diffus-
ing its own sequence descriptor as online memory [23]. Al-
though it surpasses CNN baselines on MARS and LS-VID,
its view-agnostic memory and frozen ViT backbone strug-
gle with drastic cross-view scale changes. Liu etal. par-
tially addressed this with Trigeminal Transformers for par-
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allel spatial, temporal, and mixed views [11] and a deeply
coupled convolution–transformer [10], but these add com-
putational cost and still lack explicit alignment for extreme
perspectives.

The proposed VM–TAPS framework unifies the in-
sights above while remaining remarkably light. Instead
of fine-tuning the backbone, we freeze ViT-B/16 and in-
troduce five orthogonal modules: a View-Specific Process-
ing Layer that applies camera-conditioned MLPs to remove
colour and projective bias; a Scale-Aware Feature Adap-
tation unit that re-projects tokens at three canonical reso-
lutions, thus preserving semantics when pedestrians shrink
below ten pixels; a Motion Pattern Analyzer that injects gait
rhythm through first-order difference tokens; a View-Aware
Memory Bank storing multiple prototypes per identity and
per view, inspired by exemplar memory work in few-shot
CLIP [6]; and a Cross-View Interaction Module that aligns
short-term memories across perspectives via one-hop atten-
tion. By factorising the aerial–ground problem into view
bias, scale disparity, motion dynamics, long-term memory
and cross-view alignment, VM–TAPS surpasses TF-CLIP
by 4.97pp Rank-1 and 3.08pp mAP on the challenging
AG-VPReID-2025 benchmark, establishing new state of the
art at both 80m and 120m altitudes while adding fewer than

two million parameters to the frozen encoder. These results
substantiate the hypothesis that disentangling, rather than
averaging, the fundamental nuisance factors of viewpoint,
scale and motion is indispensable for robust open-world
video ReID.

3. Proposed Method

Figure 2 shows VM–TAPS, which builds on the
frozen ViT–B/16 backbone of TF–CLIP by inserting five
lightweight modules. Each of the T frame embeddings
is first normalised by a View–Specific Processing Layer
(VSPL) and fused across scales by Scale–Aware Fea-
ture Adaptation (SAFA). A View–Aware Memory Bank
(VAMB) then injects long-term identity prototypes, while
the Motion Pattern Analyzer (MPA) encodes short-term
dynamics. Cross-View Attention (CVA) aligns features
across camera types before the Temporal Memory Diffu-
sion (TMD) head generates the final 512-dimensional em-
bedding. Despite adding under 2M parameters and < 3%
FLOPs, VM–TAPS delivers a 5-point Rank-1 improvement
over TF–CLIP on both the 80m and 120m test sets, main-
taining real-time speed.

Figure 2. The VM–TAPS framework augments TF–CLIP with five targeted modules: a View–Specific Processing Layer that normalizes
camera-dependent biases; Scale–Aware Feature Adaptation that fuses multi-resolution features; a View–Aware Memory Bank that injects
long-term identity prototypes; a Motion Pattern Analyzer that encodes short-term dynamics; and a Cross–View Interaction Module that
aligns feature distributions across camera types. These enhancements precede the original Temporal Memory Diffusion head and yield a
more robust, perspective-invariant representation for video-based person re-identification.

3.1. View Specific Processing Layer (VSPL)

Modern video-based ReID must handle footage from
widely differing cameras—drones, fixed ground units and

body-worn rigs—which imprint each frame with distinct
colour casts, lighting conditions and perspective distor-

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

IJCB 2025 IJCB 2025

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

tions. To neutralise these view-dependent artefacts imme-
diately after the frozen ViT–B/16 encoder, we introduce a
small, explicit normalisation block for each camera type
v ∈ {aerial, ground,wearable}. VSPL proceeds in three
successive steps for every frame t in tracklet b:

First, we learn a view-specific bias vector ev ∈ RD, that
captures the average offset in the D-dimensional embed-
ding space induced by camera v. Given the patch-token
matrix Z

(b)
t ∈ R(Np+1)×D, we set

Z′
t = Z

(b)
t + 1 e⊤v ,

where 1 ∈ R(Np+1)×1 replicates ev across all tokens.
Second, we apply a view-conditioned residual MLP ϕv :

RD → RD, defined by two successive D×D linear layers,
each followed by LayerNorm and GELU. This MLP is in-
stantiated independently for each camera type—no weights
are shared—so that each view can learn its own correction
mapping.

Third, we restore the original tokens via a residual con-
nection, yielding the corrected embedding

Z̃
(b)
t = ϕv

(
Z′

t

)
+ Z

(b)
t .

This ensures that if a frame’s appearance already matches
the canonical distribution, the MLP can learn to leave it un-
changed.

3.2. Scale Aware Feature Adaptation (SAFA)

In long-range re-identification, the apparent size of a
pedestrian can vary by an order of magnitude: ground-
level cameras see tens of pixels, while a UAV at 120m may
render the same person in fewer than ten pixels. Because
the ViT patch embeddings assume a fixed receptive field,
this scale variation destabilises downstream temporal mod-
ules. We therefore introduce a lightweight, per-frame multi-
resolution fusion that guarantees a scale-aligned feature rep-
resentation.

Let Z̃(b)
t ∈ R(Np+1)×D be the VSPL-normalized token

matrix for frame t of tracklet b. SAFA proceeds in three
steps:

(1) Multi-scale projection. We apply three independent
feed-forward blocks ψs : RD → RD, each with its own
weights, to every token row:

H
(b)
t,s = ψs

(
Z̃

(b)
t

)
for s ∈

{
1
2 , 1, 2

}
.

(2) Scale attention. For each scale s we compute the mean
embedding

µ
(b)
t,s =

1

Np + 1

Np∑
i=0

H
(b)
t,s [i, :] ∈ RD.

We then stack these into U
(b)
t = [µ

(b)

t,
1
2

, µ
(b)
t,1 , µ

(b)
t,2 ] ∈

RD×3 and compute attention weights via a learned probe
w ∈ RD:

α
(b)
t,s =

exp
(
w⊤ µ

(b)
t,s

)∑
r∈{ 1

2 ,1,2}
exp

(
w⊤ µ

(b)
t,r

) .
(3) Fusion. We fuse the three scale-specific feature maps
into a single tensor of the same shape:

A
(b)
t =

∑
s∈{ 1

2 ,1,2}

α
(b)
t,s H

(b)
t,s . (1)

Because the weights α(b)
t,s are obtained from the frame’s

own content, SAFA dynamically adapts to instantaneous
zoom rather than relying on a fixed prior. In practice, the
three ψs blocks each add one D × D linear layer (total
3D2 ≈ 1.77M parameters for D = 768), and the atten-
tion probe w adds only D parameters. The additional com-
pute is under 0.5GFLOPs per eight-frame clip—less than
2% of the ViT backbone—yet restores stable feature statis-
tics across altitudes and improves 120m Rank-1 recall by
over 4 points.

3.3. View Aware Memory Bank (VAMB)

To preserve long-term identity information separately
for each camera view, we replace the single ”class centre”
memory with a view–aware bank that allocates S prototypes
to each identity–view pair. Formally, for identity n and view
v, we store

Mn,v =

mn,v,1

...
mn,v,S

 ∈ RS×d,

where d = 512 is the feature dimension and S = 8. Given
a clip descriptor f (b) ∈ Rd with ground-truth (y(b), v(b)),
we compute attention weights over the corresponding slice
My(b),v(b) by

βs =
exp

(
f (b)⊤my(b),v(b),s/

√
d
)

S∑
s′=1

exp
(
f (b)⊤my(b),v(b),s′/

√
d
) ,

and form the context vector

c(b) =

S∑
s=1

βs my(b),v(b),s.

A learnable gate

g = σ
(
Wg [ f

(b); c(b)]
)
∈ (0, 1)

4
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Figure 3. Architecture of the View–Aware Memory Bank. For each identity–view pair (n, v), we store S prototypes mn,v,1, . . . ,mn,v,S .
At inference, the clip descriptor f (b) attends to its corresponding slice My(b),v(b) , producing a context vector c(b) that is fused back into

the final embedding f̂ (b).

fuses the fresh descriptor and memory context into the
final embedding

f̂ (b) = g f (b) + (1− g) c(b),

which is then supervised by the ReID loss. During
back-propagation, only the single most-attended prototype
my(b),v(b),k∗ is updated via exponential moving average,

my(b),v(b),k∗ ← (1−α)my(b),v(b),k∗ +α f
(b)
, α = 0.2,

where f
(b)

is the batch-normalized descriptor. This selec-
tive update keeps the memory bank’s size linear in the num-
ber of identities and views, while incurring negligible extra
computation.

Empirically, we observed that VAMB outperforms a
view-agnostic single-prototype baseline by +3.1% Rank-1
on the aerial split and +1.8% on the ground split of
AG-VPReID2025, demonstrating the benefit of condition-
ing identity memory on camera view.

3.4. Motion Pattern Analyzer (MPA)

Spatial appearance alone can be ambiguous: similar
clothing may mask distinctive, view-invariant motion sig-
natures, so MPA injects gait cues in a single pass: for t > 1
compute ∆At = At −At−1, form Xt = [At−1; ∆At] ∈
R2D, and apply a two-layer transformer ρ : R2D → RD

to obtain mt; a sigmoid gate gt = σ(γ[At;mt]) then
blends appearance and motion via Ã1 = A1 or Ãt =
gt ⊙At + (1− gt)⊙mt for t > 1. MPA’s overhead—two
D ×D projections and one multi-head attention (0.5M pa-
rameters, 0.18GFLOPs per clip; 0.3ms/frame on an A40,

under 1% of ViT-B/16)—is minimal, and ablations (Tab. 9)
show removing MPA drops Rank-1 by 1.2% (aerial) and
0.8% (ground) on AG-VPReID2025, demonstrating its im-
portance alongside appearance and memory cues.

3.5. Temporal Memory Diffusion with Cross View
Interaction

Figure 4 depicts the basic work flow of the Tempo-
ral Memory Diffusion (TMD) module which consumes the
motion-aware patch tokens {Ã(b)

t }Tt=1 and operates in three
stages: it first summarises each frame into a D-dimensional
memory token s

(b)
t = θ

(
1

Np+1

∑Np

i=0 Ã
(b)
t [i, :]

)
, stacks {st}

into S(b) and refines it via MHSA to S′(b);
it then computes view-batch prototypes Pv =

1
|Bv|

∑
b′ s

(b′), obtains a cross-view context h(b) =

Attn( 1
T

∑
t S

′(b)[t, :], {Pv}v ̸=u) and adds it to each frame
token to form Ŝ(b); finally, each ŝt is concatenated with
Ã

(b)
t , the sequence undergoes MHSA+FFN yielding up-

dated tokens Â(b)
t , and

f (b) =
1

T (Np + 1)

T∑
t=1

Np∑
i=0

Â
(b)
t [i, :] ∈ Rd

is produced; TMD adds only 0.8M parameters and
0.25GFLOPs, and its removal lowers Rank-1 by 2.1%, un-
derscoring the need for explicit temporal and cross-view
reasoning.

5
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Figure 4. Temporal–Memory Diffusion. Each frame is summarised into a memory token (TMC); these tokens exchange information across
views (CVIM); finally, the fused memory is diffused back into each patch token before pooling.

3.6. Overall Training Setup

All components of VM–TAPS are trained end-to-end un-
der the unified multi-term loss L = LV2M + 2.0LTriplet +
LCE + 5 × 10−4 LCenter, where each term denotes
video-to-memory contrastive loss, cross-view triplet loss
(δ = 0.3), label-smoothed softmax (ε = 0.1) and cen-
tre loss, respectively. Training proceeds in two stages:
first, VSPL, SAFA, MPA, TMD, VAMB and the projection
head are optimised for 150 epochs with batch size 64 using
AdamW (base LR 1×10−4, weight decay 0.05) and a linear
warm-up from 1×10−5 over 10 epochs, saving checkpoints
every 10 epochs and validating every 5; second, the VAMB
fusion gate and prompt-learner are unfrozen, the batch size
reduced to 32, and training continues for 100 epochs with
base LR 5 × 10−6, weight decay 0.05, bias-LR factor 2,
and a step decay of 0.1 at epochs 40, 70 and 90, with eval-
uation every 2 epochs and logging every 50 iterations. In
both stages the ViT-B/16 backbone is fine-tuned, we se-
lect the checkpoint with highest validation Rank-1, apply
k-reciprocal re-ranking on the 80m/120m splits, and report
final CMC and mAP.

4. Experimental Setup

4.1. Dataset Description

All experiments use AG–VPReID 2025 [12], a large-
scale benchmark that pairs long-range UAV footage
(80–120 m altitude) with time-synchronised CCTV and
head-mounted cameras. The corpus comprises 13 507 video
tracklets of 3 027 identities (1 693 distractors) totalling 3.7

M RGB frames; 15 soft-biometric attributes are provided
but not exploited here. Evaluation follows the official pro-
tocol: Case-1 treats aerial tracklets as queries and ground
views as gallery, Case-2 swaps the roles, and both cases are
further split by altitude (80 m, 120 m) to gauge robustness.
Faces are unresolvable and filenames are anonymised; the
data are released for non-commercial research under a li-
cence that forbids real-world re-identification.

4.2. Dataset Structure and Statistics

Table 1. Summary statistics of the AG–VPReID 2025 splits used
in our experiments. “A2G” = Aerial→Ground (Case-1), “G2A” =
Ground→Aerial (Case-2). Asterisks denote distractors.

Case Subset IDs Tracklets Frames (M)
Train All 689 5 317 1.47
A2G All 645 3 023 0.42

80 m 356 1 523 0.26
120 m 308 1 500 0.17

G2A All 2 338 5 440 1.11
80 m 1 162 2 797 0.69
120 m 1 195 2 643 0.42

Table 1 reveals the pronounced class imbalance between the
two evaluation directions. In the aerial→ground (A2G) sce-
nario the query is a small, low-resolution drone tracklet that
must locate its match among only ∼0.4 M ground frames,
whereas in the ground→aerial (G2A) case each query must
sift through a five-thousand-identity gallery that mixes gen-
uine matches with 1 693 distractors. The training partition
spans over 1.4 M frames, providing ample temporal varia-
tion for the motion–aware modules in Section 3, while the

6
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altitude-specific subsets allow fine-grained analysis of tol-
erance to extreme resolution changes.

4.3. Implementation Details

All experiments were conducted on a single NVIDIA
A40 (PyTorch 1.11.0, CUDA 12.4). Tracklets were
sampled to 8 frames, resized to 256×128, normalized
(mean/std = 0.5) and augmented with random flips, eras-
ing and padding. Training ran in two stages: Stage 1 opti-
mised VSPL, SAFA, MPA, CVIM and the projection head
for 150 epochs (batch 64: 8 IDs×8 tracklets) using AdamW
(base LR 1e-4, warm-up from 1e-5 over 10 epochs; weight
decay 0.05; drop-path 0.3; dropout 0.3; attention-drop 0.1),
with checkpoints every 10 epochs and validation every 5;
Stage 2 unfroze the fusion gate, reduced batch to 32 and
trained 100 epochs (base LR 5e-6; bias-LR×2; LR×0.1 at
epochs 40, 70, 90), evaluating every 2 epochs and log-
ging every 50 iterations. The ViT-B/16 backbone was
fine-tuned throughout. We used a unified loss combin-
ing video-to-memory contrastive, cross-view triplet (mar-
gin 0.3), label-smoothed cross-entropy ( = 0.1) and centre
loss (5e-4). At inference, 512-D descriptors were re-ranked
(k=20, k=6, =0.3) and CMC/mAP reported on the 80m and
120m splits. All settings are controlled by a single config
file for reproducibility.

4.4. Evaluation Protocol

At test time, all model parameters, including the
view-aware memory bank—are frozen and each tracklet,
are encoded into a single 512-dimensional descriptor. We
follow the official AG–VPReID2025 protocol, which de-
fines two retrieval scenarios. In Case-1 (Aerial→Ground),
3 023 aerial queries are matched against 2 750 ground
gallery tracklets; in Case-2 (Ground→Aerial), 2750 ground
queries are matched against 5440 aerial gallery tracklets
augmented with 1 693 distractors. To gauge robustness to
scale, both scenarios are also evaluated on altitude-specific
subsets at 80m and 120m. Descriptors are L2-normalized
and similarity is measured by Euclidean distance, followed
by k-reciprocal re-ranking (k=20, k=6, =0.3). Retrieval per-
formance is reported using cumulative matching character-
istics (CMC) at ranks 1, 5 and 10, and mean average preci-
sion (mAP). To mitigate stochastic effects from drop-path
and other nondeterminisms, all results are averaged over
three independent inference runs.

5. Comparative Evaluation
The results in Tables 3 are drawn from the of-

ficial AG-VPReID 2025 leaderboard. Since test-set
identity labels remain private, participants submit a
submission.csv with the top-10 gallery tracklets
per query and receive only the overall mAP. Detailed

Rank-1/5/10 and mAP breakdowns across A2G, G2A and

altitude subsets are shown only for each team’s best submis-
sion; lower-ranked entries report just the overall mAP. Con-
sequently, unless our submission is our top entry, we cannot
retrieve finer-grained scores. The tables therefore reflect the
latest public leaderboard data at submission time, with full
metrics available only for each team’s highest-scoring run.

Table 2. Comparison between the performance of the baseline and
our proposal (mAP, AG–VPReID2025 set).

Method Overall mAP (%)
CLIP-ReID 52.31
VSLA-CLIP 52.20
TF-CLIP 66.26
VM-TAPS (Ours) 69.34

Table 2 shows that our VM-TAPS model achieves
an overall mAP of 69.34%, significantly outperforming
all prior approaches on AG-VPReID2025. In particular,
VM-TAPS exceeds the strong TF-CLIP baseline 66.26%
by 3.08 percentage points, and improves upon earlier
CLIP-ReID 52.31% and VSLA-CLIP 52.20% by over
17pp. This large margin demonstrates that the combination
of view-specific normalization, scale-aware fusion, motion
analysis, memory banking, and cross-view interaction pro-
vides a substantial boost in retrieval accuracy over both
vanilla CLIP adapters and the TF-CLIP architecture. Over-
all test split. Overall, our VM-TAPS model clearly out-
performs the previous best method, TF-CLIP, by around
3 percentual points in Rank-1 accuracy and mean average
precision (mAP), across all cameras and both retrieval di-
rections. This means VM-TAPS correctly ranks the true
identity at the top position three more times out of every
hundred queries and improves the overall ranking quality
by a similar margin.
80-meter subset. At the lower drone height of 80 meters,
pedestrians resolution is still relatively high. Even under
these favorable conditions, VM-TAPS achieves a gain of
3.4 percentage points in Rank-1 accuracy and 2.5 points in
mAP over TF-CLIP. These improvements are mainly driven
by the View-Specific Processing Layer (VSPL), which re-
duces color bias between views, and the Motion Pattern
Analyzer (MPA), which captures consistent movement cues
across time.
120-meter subset. At 120 meters, pedestrians resolution
drops significantly and becomes a limiting factor for TF-
CLIP. Despite this challenge, VM-TAPS maintains a lead
of 4.3 percentage points in Rank-1 and 2.9 points in mAP.
This is made possible by the Scale-Aware Feature Adap-
tation (SAFA) module, which enhances robustness to low
resolution, and the View-Aware Memory Bank (VAMB),
which provides better matching features under extreme top-
down views.
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Table 3. Performance comparison on AG–VPReID 2025 across different settings. “A2G” = Aerial→Ground, “G2A” = Ground→Aerial.

Setting Method A2G G2A Overall
R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP

Full TF-CLIP 63.08 75.16 79.89 65.52 64.49 79.86 83.97 67.07 63.75 77.40 81.83 66.26
VM-TAPS (ours) 65.83 76.45 81.34 68.08 69.79 81.64 85.39 70.73 67.72 78.92 83.27 69.34

80-m TF-CLIP 72.79 83.07 84.29 75.30 66.98 81.11 83.40 70.57 70.30 82.23 83.91 73.27
VM-TAPS (ours) 73.55 83.56 85.06 75.98 73.85 84.26 85.59 75.40 73.68 83.86 85.29 75.73

120-m TF-CLIP 61.71 74.69 76.29 65.48 67.97 82.75 83.59 71.26 65.13 79.10 80.28 68.64
VM-TAPS (ours) 66.01 77.07 78.31 69.05 72.30 83.34 84.49 73.77 69.45 80.50 81.69 71.63

Table 3 presents detailed Rank-1 and mAP results for
TF-CLIP versus VM-TAPS across all retrieval scenarios
and altitude settings.

6. Ablation Study

Table 4. Ablation study on the AG–VPReID 2025 test set. Each
row enables a specific subset of VM-TAPS components. The full
model (bottom row) yields the highest overall Rank-1 accuracy.

Configuration mAP
CLIP + VSPL
(View Normalization)

63.42

CLIP + SAFA
(Scale Adaptation)

62.87

CLIP + MPA
(Motion Analysis)

64.01

CLIP + VAMB
(Memory Bank)

67.23

CLIP + CVIM
(Cross-View Interact.)

63.95

CLIP + SAFA + MPA 65.32
CLIP + VAMB + CVIM 65.71
CLIP + VSPL + SAFA + MPA
+ VAMB + CVIM (Full VM-TAPS)

69.34

Table 4 evaluates the incremental contribution of each
VM-TAPS component by selectively enabling subsets over
the CLIP baseline. Among the individual modules, the
View-Aware Memory Bank (VAMB) yields the most signif-
icant mAP improvement, indicating that temporal dynamics
and long-range identity context are critical in cross-view
scenarios. Notably, the combination of all modules the
full VM-TAPS configuration achieves the highest accuracy
(69.34%), validating our design as a cohesive system in
which each component contributes orthogonally to robust
cross-view video Re-ID.

7. Discussion
VM–TAPS tackles aerial–ground Re-ID challenges on

camera bias, scale variation and limited temporal context
by integrating five lightweight adapters into a frozen ViT:
VSPL for colour and perspective normalization; SAFA
for multi-resolution fusion; VAMB for view-aware identity
prototypes (largest boost in Table 4); MPA for motion cues;

and CVIM for cross-view alignment. These modules add
fewer than 2 M parameters and under 3% FLOPs, yet in-
crease mAP from 66.26% to 69.34% on AG-VPReID2025
and outperform any partial configuration, confirming that
disentangling viewpoint, scale, motion and memory yields
robust drone-to-ground retrieval.‘
Limitations: At this point, VM–TAPS still relies on ex-
plicit camera–type metadata (aerial, ground, wearable) to
route features through the correct view-specific modules; if
this information is missing or noisy, performance may de-
grade. Then, the View-Aware Memory Bank scales linearly
with the number of identities and views, which could be-
come a VRAM bottleneck for very large watch-lists unless
future work introduces an efficient compression or pruning
strategy.

8. Conclusions and Further Work

Aiming at robust aerial–ground ReId in real-world con-
ditions, this paper introduced VM–TAPS, a compact suite
of five complementary modules that retrofit TF-CLIP for
the extreme viewpoint, scale and motion diversity scenar-
ios. By addressing view bias, scale disparity and tem-
poral ambiguity in a strictly modular fashion, VM–TAPS
achieves state-of-the-art accuracy on AG–VPReID2025,
while adding less than two million parameters and preserv-
ing real-time throughput on a single professional GPU. We
believe the framework’s small footprint, simplicity of inte-
gration and publicly released codebase will make it a practi-
cal baseline for both academic study and industrial deploy-
ment.

Future work could eliminate hand-coded view la-
bels via self-supervised view discovery—enabling truly
ad-hoc sensor networks—and scale the memory bank with
vector-quantised prototypes, product-quantised keys or
adaptive pruning to support very large watch-lists. Integrat-
ing CLIP’s language branch with soft-biometric attributes
(age, clothing colour, carried objects) can further disam-
biguate similar subjects and yield human-interpretable re-
sults, while distilling VM–TAPS onto slimmer backbones
or via neural architecture search will enable real-time,
cross-view Re-ID on power-constrained edge devices
(drones and body-cams etc).
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