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Abstract: Within the scope of precision agriculture, many applications have been developed to 1

support decision-making and yield enhancement. Fruit detection has attracted considerable attention 2

from researchers, and can be used offline. In contrast, some applications, such as robot vision in 3

orchards, require computer vision models to run on edge devices while performing inference at high 4

speed. In this area, most modern applications use an integrated graphics processing unit (GPU). In 5

this work, we propose to use a Tensor Processing Unit (TPU) accelerator with the Raspberry Pi target 6

device and the state-of-the-art, lightweight, and hardware-aware MobileDet detector model. Our 7

contribution is to extend the possibilities of using accelerators (TPU) for edge devices in precision 8

agriculture. The proposed method was evaluated in a novel dataset of peaches with three cultivars, 9

which will be made available for further studies. The model achieved an average precision (AP) of 10

88.2% and a performance of 19.84 frame per second (FPS) at an image size of 640 × 480. The results 11

obtained show that the TPU accelerator can be an excellent alternative for processing on the edge in 12

precision agriculture. 13

Keywords: Deep learning; edge device; object detection; precision agriculture; TPU accelerator 14

1. Introduction 15

Precision agriculture can be used to increase yields and provide information for 16

decision-making. The application of precision agriculture in fruit detection has attracted 17

considerable attention from researchers. Examples of benefits of fruit detection include 18

yield estimation and mapping [1] and disease control [2]. The increase in world population 19

and consequent higher food demand, associated with food habits change for healthier 20

foods such as fruits and vegetables increasing the specific demand of this type of product, 21

the impact of climate change in agricultural activities, and the human exodus to urban areas 22

reducing the workforce available in rural areas enhance the improvement of the efficiency 23

and efficacy of agricultural practices. Technological evolution allows the automation and 24

robotization of some of these practices as well as the development of decision support 25

systems that help the management of these agricultural practices [3]. 26

The detection of fruits through automatic systems, and particularly of peaches, can 27

contribute to improving the efficiency of agricultural cultivation processes, whether through 28

the adequate and sufficient supply of water [4–6], fertilizers supply, evaluation of the vigor 29

and health state [7], ripening state, and diseases [2], and even improve weed control [8]. 30
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The management of agricultural practices supported by artificial intelligence decision- 31

making systems helps yield estimation, resources management, and circular economy 32

[9,10]. These approaches can contribute to increasing production and rentability, through 33

improved supply contracts and fixed costs reduction. Additionally, these results are part of 34

an improvement in the crop’s environmental sustainability by the reduction of fertilizers 35

and contributing to the food loss reduction. 36

Computer vision for fruit detection can be developed such that it cannot be used in 37

real-time. That is, images or videos are first captured and stored for later use (processing) 38

[11]. This type of computer vision model was developed to run on a cloud or desktop 39

computer, which typically requires large amounts of computing resources and memory. 40

However, in certain applications, computer vision models must run on an edge device 41

while performing inference at high speed. This is the case with robot vision applications 42

[12]. In general, edge devices are limited in terms of processing, memory, and power 43

consumption [13,14]. To adapt an image processing application to these constraints, models 44

such as MobileNets [15–17], ShuffleNet [18], Squeezenet [19], and DenseNet [20] have been 45

developed. Because these models are optimized to run on a CPU, they are only suitable for 46

"light applications" (e.g., processing only approximately one frame per second (FPS)). This 47

is because these models have a high latency. However, after training, these models can be 48

optimized to run on a Graphics Processing Unit (GPU) with much better inference time 49

performance [21–23]. 50

Tian et al. [24] proposed a modified version of the YOLOv3 detector model to detect 51

apples at different growth rates stages in orchards. The authors used an NVIDIA Tesla 52

V100 server GPU for the training and testing. Using 3000 × 3000 resolution images, they 53

achieved an F1 score of 0.817 and inference time of 0.304 s. It is important to emphasize 54

that the approach used in this study is not portable. Fu et al. [25] developed a vision 55

system based on RGB and Kinect sensors for detecting apples in outdoor orchards. They 56

used the faster R-CNN model, a desktop PC equipped with a GPU NVIDIA TITAN XP 57

card. For original RGB images at a resolution of 1920 × 1080, they reported a detection 58

performance of 0.79 AP and an inference time of 0.125 s. The approach used in this study 59

was not portable. Liu et al. [26] proposed a modified version of YOLOv3 for detecting 60

tomatoes. The detection uses circles instead of boxes to locate the tomatoes. The model 61

received 416 × 416 pixel images as inputs and achieved a detection accuracy of 96.4% AP 62

and inference time of 54 ms in a PC target device. Because the target device is a PC, this 63

approach does not fall into the portable category. 64

Zhang et al. [22] proposed a lightweight fruit-detection algorithm designed specifically 65

for edge devices. The algorithm is based on a light-CSPNet network and YOLOv3. The 66

model was deployed in the NVIDIA Jetson family (Jetson Xavier, Jetson TX2 and Jetson 67

NANO). The detection accuracies for the orange, tomato, and apple datasets were 93, 88, 68

and 85% AP, respectively. The detection speed of the Jetson Xavier reaches 46.9 ms, 40.3 69

ms, and 45.0 ms (orange, tomato, and apple, respectively) for image resolutions of different 70

sizes. This approach falls into the portable category. Huang et al. [23] proposed a modified 71

version of the YOLOv5 detector by adding an attention mechanism and an adaptive fusion 72

method to the citrus detection model. The target device was an NVIDIA Jetson Nano 73

integrated graphics processor. Using 608 × 608 resolution images, they achieved a detection 74

accuracy of 93.32% AP and an edge-computing processing speed of 180 ms. Based on the 75

model used and target device, this approach falls into the portable category. Tsironis et al. 76

[27] adapted the single-shot object detector (SSD) to the underlying object size distribution 77

of the target detection area. They evaluate the proposed adapted model in tomato fruit 78

detection and classification for three maturity stages of each tomato fruit. In the image 79

resolution of 515× 512 using a PC with a standard GPU (not portable) the model perform 80

inference speed of 200 FPS. In addition, the model was not optimised in terms of edge 81

divice approach. In another work, Tsironis et al. [28] created a specialized tomato dataset 82

with more than 250 images and a total of 2400 annotations. In this work, the dataset was 83

evaluated for six object detection models. 84
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Recently a state-of-the-art TPU accelerator [29] and the MobileDet detector was de- 85

veloped for general image detection tasks [30]. In this work, we propose to use these 86

two technology with the Raspberry Pi target device for a real-time peach fruit detection 87

application. The main contributions of this paper include the following: 88

• We propose the use of a lightweight and hardware-aware MobileDet detector model 89

for a real-time peach fruit detection application embedded in a Raspberry Pi target 90

device along with a Coral edge TPU accelerato. 91

• We present a novel dataset of the three peach cultivars with annotations and make it 92

available for further study (to our knowledge, the first work of its kind). 93

The remainder of the paper is organized as follows. Section 2 presents the equipment 94

used for inference, the image dataset, the object detection model, and the mathematical 95

formulation for model evaluation. To confirm the performance of the proposed method, 96

the results and discussions are presented in Section 3. Finally, section 4 concludes the paper 97

and provides guidelines for future work. 98

2. Materials and Methods 99

2.1. Dataset Description 100

An image dataset of three fruit peach cultivars was created: Sweet Dream, Royal Time, 101

and Catherine. The images were taken in peach orchards in the Beira Interior region, the 102

main peach growing area in Portugal [31]. Table 1 shows the characteristics of each peach 103

cultivar and describes the predominant fruit density for each cultivar. 104

The images were taken with a Sony DSC-RX100M2 red, green, blue (RGB) camera. 105

The images were then resized to 640 × 480 pixels resolution. Subsequently, the images were 106

manually labelled using the LabelImg annotation tool [32], which generated an xml file 107

for each image. The information for the dataset is presented in Table 2. The dataset can be 108

downloaded at Data Availability section at the end of this article. 109

2.2. Hardware for Inference 110

The hardware platform (edge device) used to perform inferences consists of the 111

following parts, as shown in Figure 1: 1- A microcontroller development kit Raspberry Pi 112

4 [33]; 2- An accelerator Coral TPU [29]; 3- A Raspberry Pi Camera Module 2 [34]; 4- A 113

DC to DC Converter [35]; and 5- Three Li-Ion Battery [36]. Note: The battery in Figure 1 114

is only an illustration for the application, as the capacity of the battery used depends on 115

the application. The Raspberry has a quad-core Cortex A72 processor, 8 GB RAM, and 116

Linux operating system with a Python interpreter and TensorFlow Lite library. The coral 117

TPU accelerator, which connects to Raspberry Pi via a USB, is an integrated edge TPU 118

coprocessor designed to perform machine learning operations in an optimized manner 119

(e.g., four Tera operations per second). 120

2.3. SSD: Single Shot Detector 121

A single-shot detector (SSD) [37] is an state-of-the-art object detection model that 122

outperforms its competitors You only look once (YOLO) [38] [31] and faster R-CNN [39] in 123

terms of accuracy and inference time [37]. Therefore, the SSD model was used as a detector 124

in this study. Similar to any model for computer vision tasks based on deep learning, the 125

first step of SSD is the feature extraction. This block is a convolutional neural network 126

(CNN) and is usually referred to as the backbone of the model. The output of the backbone 127

is a feature map containing the relevant information required to solve computer vision 128

tasks. It is important to emphasize that the variations in the SSD model are on the backbone 129

when selecting the CNN and performing optimizations (as described in Section 2.4). The 130

remainder of the SSD model is constructed by adding additional layers of functionality 131

at the end of the backbone. The SSD model partitions specific feature maps into standard 132

boxes and generates scores for the presence of objects in each box. Additional technical 133

details of the SSD model can be found in [37]. 134
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Table 1. Examples of peach tree cultivar with their predominant fruit density.

Cultivar Sample Image Fruit Density Color

Royal Time Low Red

Sweet Dream Medium Dark Red

Catherine High Yellow

Table 2. Statistics of the dataset.

Split Cultivar Images Fruits (Labels)

Train
Sweet Dream 270 2,015
Royal Time 248 1,066
Catherine 305 4,564

Test
Sweet Dream 66 453
Royal Time 63 270
Catherine 76 1,480

Total of train 823 7,645
Total of test 205 2,203
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Figure 1. Hardware platform (edge device) for performing inference.

As mentioned previously, SSD variations were performed on the backbones. In this 135

study, experiments were conducted using a MobileNet CNN as the backbone for the SSD 136

model to investigate the trade-off between the detection accuracy and inference time. The 137

backbones used were MobileNetV1, MobileNetV2, MobileNet EdgeTPU, and MobileDet. 138

2.3.1. MobilenetV1 139

MobileNetV1 is a lightweight model designed for use in mobile devices that typically 140

has limited computing resources and memory. The main idea for achieving this goal is the 141

implementation of a depthwise separable convolution. Depthwise separable convolution 142

factorizes a conventional convolution into depthwise and pointwise convolutions (i.e., a 143

1 × 1 convolution). MobileNetV1 uses 3 × 3 depth-wise separable convolutions, which 144

require eight–nine times less computation than standard convolutions, with only slightly 145

lower accuracy [15]. 146

2.3.2. MobilenetV2 147

MobiliNetV2 is a second-generation MobileNet. It was developed based on Mo- 148

bileNetV1. In MobileNetV2, linear bottlenecks between layers and connections between 149

bottlenecks (residual connections) were included in the convolutional structure. Mo- 150

bileNetV2 also uses depthseparable convolution but adds the concepts of inverted residuals 151

and linear bottlenecks to the building block. The concept of an inverted residual comes 152

from an earlier idea of creating a connection (shortcut) between the layers. However, in 153

MobilenetV2, this process is performed in an opposite manner to the original concept [40], 154

allowing for faster training and better accuracy. In summary, linear bottlenecks are related 155

to the last activation function of the block, which is replaced by a nonlinear function with a 156

linear function. This approach avoids information degradation [16]. 157

2.3.3. Mobilenet Edge TPU 158

MobileNetV1 and MobileNetV2 were designed manually entirely by hand. In contrast, 159

the MobileNet edge TPU was developed using the accelerator-aware auto-machine learn 160

(AutoML) [41] approach, which significantly reduces the manual process of designing 161

and optimizing neural networks for hardware accelerators [42]. MobileNet Edge TPU 162

is a version of MobileNet that has been adapted to run optimally on edge TPU devices 163

(and take advantage of their features). In this study, this model was expected to perform 164

significantly better in terms of accuracy and latency than MobileNetV1 and MobileNetV2 165

when running on a TPU device. 166
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2.3.4. MobileDet 167

MobiliDet is the latest version of the SSD model based on the MobileNet family. Again, 168

the AutoML approach is used to create the model. The backbone has a hybrid convolution 169

that includes depthwise and conventional convolution [30]. 170

2.4. Model Optimizations 171

As mentioned in the Introduction, edge devices have limited resources for compu- 172

tation and memory. To address this problem, native efficient models were created by 173

considering model size and computational power. This is the case with several models 174

such as MobileNet and SqueezeNet. Another approach for increasing the performance 175

of an edge device (faster inference and memory accesses) is to apply quantization tech- 176

niques, where the model becomes simpler by reducing the precision of the weights and 177

activation functions of the model (e.g., from 32-bit floating point to 8-bit representations) 178

[13]. Quantization approaches can broadly be divided into two categories. The first cate- 179

gory is post-training quantization (PTQ), which quantizes the floating-point models. This 180

technique reduces the size of the models by a factor of four and reduces inference time [13]. 181

However, PTQ leads to degradation in model performance during inference. One reason 182

for this is the smaller number of bits allocated [43]. 183

The second category, quantization-aware training (QAT), attempts to mitigate the error 184

caused by quantization by simulating the effects of quantization on weights and activation 185

functions during the training process. This means that the model compensates for the loss 186

due to the application of quantization. For this reason, QAT provides higher accuracy than 187

PTQ [13]. We used QAT in all the implementations of the detection models used in the 188

experiments. 189

2.5. Network Training 190

Training was performed on a desktop PC with an Intel(R) Core(TM) i7-4790 CPU 191

@ 3.60GHz, 16 GB RAM, and an NVIDIA RTX 2080 graphics card with 8 GB of memory. 192

Software tools included Linux OS with Python 3.6 and the TensorFlow Model Garden 193

framework. The fine-tuning strategy was performed using pre-trained models in the 194

COCO dataset. The learning rate was set to 0.02 for the MobileNetV1 and MobileNetV2 195

models and 0.0455 for the MobileNet Edge TPU and MobileDet models. The number of 196

training steps was 30,000 for the MobileNetV1 and MobileNetV2 models, and 35,000 for 197

the MobileNet Edge TPU and MobileDet models. 198

2.6. Model Assessment 199

The Average Precision (AP) metric is used to evaluate model performance. The AP is 200

defined as the area over the curve of precision (P) and recall (R). P was calculated using 201

Equation 1, and R was calculated using Equation 2. 202

P =
TP

TP + FP
, (1) 203

R =
TP

TP + FN
, (2) 204

where TP, FP, and FN represent true-positive, false-negative, and false-positive results, 205

respectively. The AP is calculated using the Equation 3. 206

AP =
∫ 1

0
P(R) dR, (3) 207

3. Results and Discussions 208

3.1. Ablation Studies 209

Figure 2, 3 and 4 show the detection samples for each peach cultivar (from different 210

orchards). 211
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Figure 2. Detection sample for Royal Time peach cultivar.

Figure 3. Detection sample for Sweet Dream peach cultivar.

Figure 4. Detection sample for Catherine peach cultivar.
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Table 3 lists the performance of the models and their degradation when converted to 212

inference models (optimized to run on the target TPU device). The results showed that 213

SSD MobileDet outperformed the other models and achieved an AP of 88.2% on the TPU 214

target device. The model with the least degradation (performance drop) was SSD MobilNet 215

EdgeTPU with a drop of 0.5%, and the most affected model was SSD MobileNetV2 with a 216

drop of 1.5%. The results, shown in Table 3, indicate that models designed (native) to run 217

on a TPU device (SSD MobileDet and SSD EdgeTPU) are approximately 4% better than 218

models not designed (native) to run on a TPU, and that converting models to run on a TPU 219

accelerator only slightly affects the model detection accuracy. However, the advantage of 220

conversion in terms of inference time is enormous, as described in section 3.2. 221

See the Sample Availability section at the end of this article for a video demonstration 222

of the detection.

Table 3. Target hardware comparison.

AP (%)Model Baseline EdgeTPU
Drop from

Baseline to TPU
SSDLite MobileDet 89 88.2 0.8
MobileNet EdgeTPU 88 87.5 0.5
SSD MobileNetV2 86 84.5 1.5
SSD MobileNetV1 85 83,8 1,2

223

3.2. Inference Time 224

Table 4 lists the inference times of the models for the CPU and TPU target devices. 225

The model with the lowest latency was SSD MobileNetV1 at 47.6 ms (average). The 226

SSD MobileNet EdgeTPU model exhibited the highest latency (50.5 ms). The maximum 227

difference between the models was 2.9 ms. An important finding is that the inference speed 228

was 20 times faster on average when the model was running on the TPU device and the 229

models designed (native) to run on the CPU (MobileNetV1 and MobileNetV2); however, 230

it was optimized to run on TPU and perform inference slightly faster than the models 231

designed to run on TPU devices. 232

Table 4. Inference time comparison.

LatencyModel CPU(ms) EdgeTPU (ms) FPS
SSD MobileNetV1 847.9 47.6 21.01
SSDLite MobileDet 1,045.9 50.4 19.84
MobileNet EdgeTPU 1,232 50.5 19.80
SSD MobileNetV2 773.1 48.4 20.66

3.3. Accuracy and Inference Time Trade-off 233

In subsections 3.1 and 3.2, the accuracy (AP) and inference time (ms) of the models 234

for the TPU target device are presented. The models designed specifically for TPU devices 235

had a better detection accuracy, and those designed specifically for CPU (but optimized 236

for TPU) had a better inference time. Thus, there is a trade-off between the accuracy and 237

latency, as shown in Figure 5. Comparing the fastest model (SSD MobileNetV1) with the 238

model that has the best detection accuracy (SSD MobileDet), there is a gain in detection 239

accuracy of 4.4% at the expense of a loss in inference time of 2.8 ms (equivalent to a loss 240

of 1.17 FPS). At a loss of 1.17, the FPS did not significantly affect the performance in the 241
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practical applications of computer vision. Therefore, it is justifiable to use SSD MobileDet 242

to improve the recognition accuracy. 243

Figure 5. Models performance on Edge TPU device.

The performance of the SSD MobileDet model presented in this study is compared 244

with the results of other studies. The results are shown in Table 5. Given the lack of practical 245

applications in horticulture for the fruit detection task [22], this comparison provides insight 246

into model performance, edge devices, and price (cost). 247

Approach 1 was the cheapest and most accurate; however, the combination of the 248

model and device led to a very high inference time. Approach 2 is the most expensive, 249

almost four times cheapest, and the least accurate. Nevertheless, they had the best inference 250

times. 251

Our approach is inexpensive and has a cost similar to that of Approach 1. The accuracy 252

was better than that of Approach 2 but worse than that of Approach 1. The inference time 253

was slightly lower than that of approach 2 but much better than that of approach 1. A direct 254

comparison between the approaches in Table 5 is not possible because different datasets 255

and image sizes are used. Considering the price, AP, and latency, our approach of using a 256

TPU accelerator is a good alternative for practical application. 257

Table 5. Models comparison. Approach_1: Modified YOLOv5 [23], Approach_2: Modified YOLOv3
[22], Our: SSD MobileDet.

Model Device|Accel. Price (€) Input Size Fruit AP (%) Latency
Approach_1 Jetson Nano|GPU 108 608 × 608 Citrus 93.32 180 (ms)
Approach_2 Jetson Xavier|GPU 429 - Apple 85 45 (ms)

Our Raspberry|TPU 141 640 × 480 Peach 88.2 50.4 (ms)

4. Conclusions 258

In this study, we propose the use of a lightweight and hardware-aware MobileDet 259

detector model for real-time peach fruit detection applications in conjunction with an edge 260

device and TPU accelerator. A novel annotated dataset of the three peach cultivars was 261

created and made available for further studies. 262

Models designed to run on a TPU device (e.g., SSD MobileDet and SSD EdgeTPU) 263

(hardware-aware) performed approximately 4% (AP) better than models not designed to 264

run on a TPU (native). An important result is that the inference speed is on average 20 265

times faster when the model runs on a TPU device than on a CPU. The MobileNetV1 model 266
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running on a TPU device performs 21.01 FPS and the MobileDet model performs 19.84 267

FPS. At a loss of 1.17, the FPS did not significantly affect the performance of the practical 268

computer vision applications. Therefore, it is reasonable to use SSD MobileDet to improve 269

the detection accuracy. A comparison was made with the other approaches. However, a 270

direct comparison between the approaches is not possible because different datasets and 271

image sizes were used. Considering the price, AP, and latency, our approach of using a TPU 272

accelerator is a good alternative for practical application. Further research could also be 273

conducted to explore a fruit yield estimate based on the approach presented in this paper. 274
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