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Abstract. Previous research works have demonstrated that traffic control mod-
els based on the comparison between an historical archive of information and
current traffic conditions tend to produce better results, usually by improving the
system’s proactivity behavior. Based on this assumption, we present in this pa-
per MARCS - Multi-Agent Railway Control System, a multi-agent system for
communications based trains traffic control. For this purpose we have developed
a system infrastructure based on an architecture composed of two independent
layers: ”Control” and ”Learning”.
”Control” layer is responsible for traffic supervision, regulation, security and flu-
idity, including three distinct agent types: ”Supervisor”, ”Train” and ”Station”.
The ”Learning” layer, using situations accumulated by the ”Control” layer, will
infer rules that can improve traffic control processes, minimizing waiting time
and stop orders sent for each train. At this moment, inferred rules seem like:
”At T1 moment, when a train is located atP1 = (x1, y1) with destinationE1

and another one is atP2 = (x2, y2) with destinationE2, a traffic conflict inL1

aftert1 seconds” will occur.
Rules of this kind are transmitted to the control system to be taken into account
whenever a similar traffic situation is to occur. In the learning process we apply
an unsupervised learning algorithm (APRIORI).

1 Introduction

1.1 Motivation

Railroad traffic volume will have in the next two decades a significant increment. More
people and merchandize will circulate in increasingly bigger and faster railway net-
works [4].

Although traffic’s scheduling systems guarantee that, for the foreseen conditions,
vehicles in circulation will not compete simultaneously for the same resources (do not
conflict), they lack of flexibility in order to enforce security.

Once railway networks will be under dynamic conditions it is most desirable that
the control system becomes more flexible knowing how to provide an answer to these
new requirement in an autonomous way.

Our propose consists in a completely distributed, decentralized and adaptable archi-
tecture for railway traffic control in a communications based train control [3].
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1.2 Summary

The proposed system can be decomposed in two different sub-systems: ”Control” and
”Learning”.

”Control” sub-system is responsible for traffic management and guidance in the
network and includes three agent types: (”Supervisor”, ”Train” and ”Station”). Those
agents must interact with the objective of providing control mechanisms to the dis-
placement of each train in the network. In this context, security is the principal concern,
trying to assure that train crashes will never occur. Having security guaranteed, it is
then important to maximize systems’s overall efficiency, by minimizing conflicts be-
tween trains. In our terms, a trains ”conflict” occurs when several trains wish to cross at
same time the same place. When that situation occurs, control sub-system is responsible
for assigning priority, and sending ”stop” commands to trains that must wait until the
resource crossing zone is free.

”Learning” sub-system is the complementary one and has the objective of analyzing
system’s past accumulated situations descriptions and identify typical cases that became
the origin of later conflicts. The objective is to make the learning sub-system to infer
rules that anticipate train conflicts and be able to make the ”Control” system to benefit
from them.

”Control” sub-system must compare all current train positions with the ones that
can been identified by each rule. If any match is found, the predicted conflict must be
avoided and all necessary actions must be taken in order to do it.

As we will show in section 4 this proactive behavior tends to minimize train conflicts
and, under certain conditions, improve system’s efficiency.

1.3 Related Work

Probably induced by increasing traffic congestion problems, multi-agent systems ap-
plied to transportation domain, usually concern road transportation.

Typical approach tend to divide covered area by several traffic management agents,
each one coping with decision responsibilities in a specific parcel. Often, authors decide
to implement agents that represent every vehicle in circulation and the self physical
infrastructure.

”TraMas” [7] is a system aiming at the study of multi-agent systems viability in the
road transportation domain, as well as testing applicability of different models and co-
operation strategies in multi-agent systems. In TraMas every cross point is represented
by a traffic agent that is responsible for respective traffic control. Each one of the traffic
control agents is independent enough to decide locally, but is also prepared to share
information (cooperate) with other agents.

TraMas system includes three layers (Cooperative, Decision and Control).
[8] proposes a peculiar road traffic multi-agent system. Main objective consists in

vehicles movement coordination inside a delimited area. Having a GPS-like localization
method, every vehicle is represented by an agent, and each network parcel is managed
by a control agent. Each control agent is responsible for analyzing specific traffic vol-
ume and construct the system essential’s component: ”co-field”. The co-field is a 3D
representation of the environment, having two principal characteristics:
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– Areas with high traffic density are represented as higher altitude (mountains).
– Areas with low traffic density are represented as lower altitude (depressions).

Vehicle agents are responsible for route selection through minimization travel cost.
As expected, it is cheaper to travel in descendent directions. This fact induces vehicles
to avoid areas with high traffic density, potentially where they could spent more time in
result of traffic conflicts.

Proposed in 1994, dMARS [9] is a multi-agent system where two agent types inter-
act: ”Intersection” and ”Street”. They establish cooperation mechanisms with neighbors
in order to produce an emergent system behavior. Every agent gets as input the traffic
volume in represented area, being responsible for maintain that information and provide
it to neighbors agents that request it.

[12] propose a multi-agent system for trains traffic coordination with one peculiar
characteristic: natural language interface. When a traffic agent fells a high uncertain de-
gree about what the correct action is, it starts user interaction section. User will analyze
current traffic situation and communicate correspondent action in an oral form. This
information must be achieved by the agents, and applied in next similar situation.

Several multi-agent systems [11] [10] and models [13] have been proposed, each
of them with specific characteristics but sharing with the ones referred above: area (and
responsibilities) sharing and inclusion of cooperation mechanisms enabling to go from
a local to global perspective.

2 MARCS Architecture

Fig. 1.MARCS architecture

Figure 1 gives a global perspective of MARCS architecture, existing agents in both
sub-systems (”Control” and ”Learning”), and interaction mechanisms between them.
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Following what has been said before, the figure shows the interaction between four
distinct agent types:

– Supervisor. These agents must control, guide and guarantee security in traffic
network for each specific area. Each area is delimited by latitude and longitude
coordinates.Supervisor agents are the only ones that simultaneously belong to
control and learning sub-systems.

– Train. This agent type exclusively belongs to control sub-system. Train agents
represent correspondent interests and are responsible for train velocity control, de-
pending on free-distances (”distance-to-go”) assigned bySupervisor agents.

– Station. Represents the interests of a railway station, and also belongs exclusively
to control sub-system. Station agents objectives consist in administrate platforms,
giving orders for trains arrivals and departures and providing useful users (passen-
gers in train stations) information.

– Learning. This agent type belong to ”Learning” sub-system. Learning agents task
consists in asking for control agent registry log, analyze it, to identify possible
existent meaningful patterns to infer possible rules that can optimize traffic fluidity.

2.1 Control Sub-System

Control sub-system main objective consists of providing secure and efficient routing for
all trains while preventing crash situations and maximizing traffic fluidity.

This is accomplished throughSupervisor, Train andStation agents information
exchange consisting of both data and plans.

2.2 Learning Sub-System

As it was reported above , MARCS learning sub-system includes two different agent
types:Learning andSupervisor, being this one also part of control sub-system. Per-
formance and efficiency were primary factors analyzed at design time, inducing these
architecture based on two parallel sub-systems.

Usually control systems have rigid time requirements making them adequate for
”real time”. On other hand, learning processes (specially data mining ones) tend to
consume much computational resources and spend too much time until useful results
become available. For our application, it was crucial that control processes priority
was preserved, as well as guaranteeing that each real time traffic situation could be
effectively analyzed, with no interference of any other task or objective that an agent
possibly could have.

Another important factor is system modularity, which could also facilitate overall
implementation. Once learning process tasks are easily distinguished from control ones,
it becomes more intuitive the implementation by means of different computational en-
tities.

Based on these requirements,Learning agents are learning sub-system essential
components. Their unique objective consists in asking registry activity toSupervisor
agents, concatenate and analyze it and infer rules that potentially increment system´s
efficiency.
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At creation time, eachLearning agent receives a list ofSupervisor addresses and
becomes responsible for periodically asking for their activities record.

This consists in a ”log” file maintained by each agent. It contains all received and
sent messages and most relevant actions taken. For example:

1065189498 SEND tell:sender supervisor1:receiver train1:content Distance 290.474074
1065189501 RECEIVE tell:sender simulator1:receiver supervisor1:content Location train1 112.2 21.3
1065189501 RECEIVE tell:sender simulator1:receiver supervisor1:content Location train2 213.2 -125.9
1065189501 PROCESS Reserve vertex 12 Train train1
1065189501 SEND tell:sender supervisor1:receiver train1:content Distance 230.882501
1065189501 SEND tell:sender supervisor1:receiver train2:content Distance 75.127011
1065189503 RECEIVE tell:sender simulator1:receiver supervisor1:content Location train1 117.2 55.1
1065189503 RECEIVE tell:sender simulator1:receiver supervisor1:content Location train2 158.4 1.4
1065189503 PROCESS Conflict Vertex 13 Trains 2 train1 train2

After complete log file content´s transmission,Supervisor work in learning pro-
cess´s compass is complete, being all following tasks performed byLearning agents,
like related in the next sections.

3 Learning Process

Proposed learning process consists in the analysis of potential conflict situations (Sec-
tion 2.1) that can occur and identification of train positions that originated those con-
flicts. If similar traffic conditions will repeat, control system must anticipate that conflict
and take necessary actions to prevent and avoid it.

Figure 2 shows learning process state diagram. It consists of a preliminary phase of
data pre-processing, followed by the algorithm execution, result analysis and knowledge
acquisition. In a final phase, new knowledge is sent back to control sub-system, hoping
that it will contribute for traffic fluidity and system effectiveness, by avoiding traffic
conflicts.

Fig. 2.Learning Process (State Diagram).

3.1 Data Pre-Processing

An agent activity record consists in a text file containing all exchanged messages plus
relevant actions taken.

Every line has format:
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<time> <type> <description>

Wheretype can be one of ”send”, ”receive”, ”process” or ”exception” respectively
for sent and received messages, actions taken or exceptions handled.description con-
tains message or action additional description.

In the pre-processing phase there are four stages [5]: line selection, attribute selec-
tion, instance reduction and transaction construction.

In the end, data is formatted in an adequate way to be dealt with by next learning
phase.

Transaction Construction The next step consists in building transactions needed for
algorithm execution. In the APRIORI [2] context terms, a transaction consists of an
items set grouped by any criteria. For this purpose, we will group items relative to
historic train locations that later originate a traffic conflict. A conflict identification
between two trains (Ca andCb) in locationLa and momentTt, implies the selection of
lines relative to absolute position ofCa andCb in past (t− i) moments,i = 1..n, being
all grouped in the same transaction.

Let iconf be a ”Conflict” at timetconf andC={C1, C2, . . . , Cn} the set of trains
involved. Defineα ∈ N , as the analysis retrospective limit. For eachij line relative to
Cj train location attj time: if (tj < tconf ), (tj >= (tconf - α)) andCj ∈ C then addij
to same transaction asiconf .

As an example, see the set of items displayed below:

ID Time Type Description Destination
1 t1 Location TrainC1 (x3, y3) DestinationD1

2 t2 Location TrainC2 (x2, y2) DestinationD1

3 t2 Location TrainC1 (x1, y1) DestinationD1

4 t3 ConflictL1 TrainsC1, C2

5 t8 Location TrainC3 (x2, y2) DestinationD1

6 t8 Location TrainC4 (x1, y1) DestinationD1

7 t9 ConflictL1 TrainsC3, C4

This set originates two transactions (T1 andT2):

Transaction Items
T1 1, 2, 3, 4
T2 5, 6, 7

3.2 Algorithm for Association Rules

APRIORI allows the identification of association rules from large data sets grouped
through transactions. Just as described in [2], letI={i1, i2,. . . , im} be a set of literals,
called items. LetD be a set of transactions, where each transaction is an items set{ij},
j=1..k, such thatij ∈ I. An association ruleis an implication of form X⇒ Y, where
X ⊂ I, Y ⊂ I and X∩ Y = ∅. The rule X⇒ Y holds in the transaction setD with
confidencec if c% of transactions inD that contain X also contain Y. This rule has
supports if s% of transactions inD contain X∪ Y.



MARCS - Multi-Agent Railway Control System 7

For a transactions setD, the problem of mining association rules consists in generate
all association rules with support and confidence higher than a specific threshold.

The logic of this algorithm is based on the observation that if any given set of at-
tributes S has support lower than the threshold, any superset of S will have lower sup-
port and consequently any effort to calculate the support for such supersets will be
wasted. For example, if we know that{A,B} is not supported it follows that{A,B,C}
or {A,B,D} will also not be supported [6].

3.3 Rule Generation

After the execution of APRIORI [2], we have identified a frequent sets groupF , such
thatF={F1, F2,. . . ,Fn}, being eachFi an items set. LetFi={i1, i2, . . . , in} be a fre-
quent set with dimensionn. Adding a constraint to force that consequent only have one
item, we build a group ofn association rulesR, with R={∀ i ∈ Fi : (Fi - i) ⇒ i}.

For our propose, we consider relevant association rules those with consequent type
equal to ”Conflict”, meaning that we are interested in identifying those items (states)
that usually occur together with a ”Conflict” item.

For every frequent setFi with dimensionn, we can identify an association rule set
Ri of dimensionm (m < n), such that:

r ∈ R : {ir1, ir2, ..., irk} ⇒ iconf , T ype(iconf ) = ”Conflict”

Like referred above, filtering only two distinct items type (”Location” and ”Con-
flict”), all identified rules during the learning process have the form: ”IF Train C1 is
at (x1,y1) with destinationD1 AND Train C2 is at (x2,y2) with destinationD2 AND
. . .THEN Conflict inL1, Trains (C1, C2, . . . ), Timet.

Rule SelectionAfter rules generation process, it is important to select the most relevant
ones and communicate them to the control system´s agents. Above described process
allows the identification of a large association rules set, most of them irrelevant. For
instance, an inferred rule that will foresee a conflict between trains in the next second
is not of great utility. On the other hand, if two rulesr1 andr2 foresee conflicts for
the same trains at the same place in, respectively,t1 andt2 seconds (t1 < t2) with the
same support and confidence, thenr1 is irrelevant, because there is another rule that
anticipates the same situation at a former stage.

For the rules selection process we have defined a lower thresholdli (li > 0 ) and
consider every ruleri=(i1, i2,. . . ,in) ⇒ iconf , with Time(iconf ) < li irrelevant. In a
second phase we compare every remaining rule with each other, to analyze if exists a
better rule for same situation.

Considerri a rule that anticipate a conflict atLi place in aboutti seconds. Also
let (il1, . . . , iln) be locations of most ancient states attached ton trains involved inLi

conflict. If exists a rulerj that also anticipate a conflict atLi in tj seconds (tj < ti)
with (jl1, . . . ,jln) as respective locations for trains and there is only a single possible
path between respectivejlx andilx places thenri is irrelevant.
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3.4 Rule Transmission

After the rule selection process, a relevant set of rules has been identified and we can
proceed for last stage, its communication to control sub-system agents. This process
concerns about trains localization,Supervisor agents identification, those with respon-
sibilities for traffic management at the specific place, and rules transmission.

Having a ruleri, such thatri=(i1, . . . , in) ⇒ iconf , we analyze parameter ”Posi-
tion” of every itemij , j=1,..n, and determine who’sSupervisor is responsible for those
coordinates. Hereinafter, we proceed for rules transmission in KQML coded messages
like the one exemplified in section 4.

This message informsSupervisor1 that, if two trains have positions of respectively
(861.0, -4.9) and (714.2,-263.1) and travel with directionStation1 andStation2, it
will occur a traffic conflict in about 61 seconds, at Vertex 0, being Vertex 0 the internal
representation of a specific railway cross point (switch point).

3.5 Control System Repercussions

On analyzing present train positions,Supervisor agents make the comparison with
every received rule and, finding a match, proceed to ”conflict avoid” process.

At this moment, this process consist in asking evolved trains to increase or decrease
their usual velocity byα% duringt seconds,α,t > 0, conforming with the conflict time
foresaw.

Traveling during a time interval at superior or inferior velocity then desired, can be
enough for trains to arrive at predicted point at different moments avoiding the conflict
and improving system’s performance.

4 Experimental Results

Evaluation of a traffic control system could be done under multiple perspectives, per-
haps with subjective components about the selection of most relevant characteristics.

”Security” should always be on top of priorities. It is crucial to assure that the sys-
tem provide sufficient security mechanisms to avoid train collisions. ”Capacity” and
”Efficiency” could also be system evaluation parameters.

In our traffic simulator system, we implemented five evaluation parameters:

Crashes Number of train collisions.
Average Velocity Average velocity trains.
STOP Number of stop orders sent for trains.
Time Proportion at Desired Velocity Every train has a optimal velocity, according to

its physic characteristics. This parameter represents the time proportion ([0,1]) that
trains traveled at a velocity near the optimal one.

Simulation Time Total time spent until all trains arrive at final stations.

Experiments on several simulation scenarios like displayed on figure 3, allow us
to conclude that rules inferred by the learning system have improved system perfor-
mance by reducing ”Stop” and ”Simulation Time” parameters, and increase ”Average
Velocity” and ”Time Proportion at Desired Velocity” without compromising security:
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Fig. 3.Traffic simulation process

Parameter Before Learning ProcessAfter Learning Process
Crashes (Total) 0 0
Stop (Total) 1 0
Average Velocity (Km/h) 61 66
Time Proportion at Des. Vel. [0,1] 0.366 0.282
Simulation Time (mm:ss) 1.54 1.48

In the scenario displayed in figure 3 learning sub-system has identified the rule:

(tell:sender Aprender1
:receiver Supervisor1
:content (RULE

Confidence 1.0
Time -67
TotalPremisses 2

Premisse Local 861.0 -4.9 Destination Station2
Premisse Local 768.0 -260.0 Destination Station1

Consequent
Conflict Vertex 0)

)

Rule displayed above informs ”Supervisor” that if two trains with position (861.0,
-4.9) and (768.0, -260.0) move respectively to ”Station1” and ”Station2” it will occur
one traffic conflict at vertex 0 (P1).

Repeating simulation process, we observe that ”Supervisor1” demand ”C2” to re-
duce his optimal velocity, being this action enough to avoid the conflict atP1.

5 Conclusions and Work in Progress

Experimental results allow us to conclude that, in specific cases, MARCS performance
has been improved by applying learning system´s inferred rules.

Extending the learning process perspective, it is our intention to apply it to actions
performed by the system in result of conflict anticipations. By now, learning system has
the ability to anticipate conflicts, but cannot select the best action to avoid it, and cannot



10 H. Proença and E. Oliveira

also anticipate whether actions performed to avoid a specific conflict will induce other
future conflicts herder to be resolved.

Our work is currently focused on the analysis of the effects of actions performed to
avoid conflicts, and determine those which are the optimal ones.

For this purpose, we plan to improve ”line selection” phase, passing to select ”Ac-
tion” instances too. These elements specify actions taken bySupervisor agents with
the aim of avoiding a conflict.

Having this, we expect to infer new knowledge represented in the following exam-
ple:

”Having a trainC1 located atP1=(x1, y1) with destinationD1 and anotherC2 lo-
cated inP2=(x2, y2) with destinationD2 it will occur a conflict inL1 in t1 seconds.
The best way to avoid this conflict is askC1 to decrease 10% his average velocity.
Train C2 must not accelerate because it will conflict with another one (C3) in L2

about t2 seconds later (t2 > t1)”.
Conflicts transitivity is other factor that we also plan to analyze, grouping conflicts

that apply to common trains. We want to derive optimal actions to avoid groups of
conflicts and not just isolated ones.
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