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ABSTRACT
In this survey, we provide a comprehensive review of more than 200 papers, technical reports, and GitHub repositories
published over the last 10 years on the recent developments of deep learning techniques for iris recognition, covering broad
topics on algorithm designs, open-source tools, open challenges, and emerging research. First, we conduct a comprehensive
analysis of deep learning techniques developed for two main sub-tasks in iris biometrics: segmentation and recognition.
Second, we focus on deep learning techniques for the robustness of iris recognition systems against presentation attacks
and via human-machine pairing. Third, we delve deep into deep learning techniques for forensic application, especially
in post-mortem iris recognition. Fourth, we review open-source resources and tools in deep learning techniques for iris
recognition. Finally, we highlight the technical challenges, emerging research trends, and outlook for the future of deep
learning in iris recognition.

CCS Concepts: · Security and privacy→ Biometrics.

Additional Key Words and Phrases: Iris Recognition, Deep Learning, Neural Networks

1 INTRODUCTION

The human iris is a sight organ that controls the amount of light reaching the retina, by changing the size of the
pupil. The texture of the iris is fully developed before birth, its minutiae do not depend on genotype, it stays
relatively stable across a lifetime (except for disease- and normal aging-related biological changes), and it may
even be used for forensic identiication shortly after subject’s death [36, 110, 170].
In terms of its information theory-related properties, the iris texture has an extremely high randotypic

randomness, and is stable (permanent) over time, providing an exceptionally high entropy per mm.2 that justiies
its higher discriminating power, when compared to other biometric modalities (e.g., face or ingerprint). The
iris’s collectability is another feature of interest and has been the subject of discussion over the last decade: while
it can be acquired using commercial of-the-shelf (COTS) hardware, either handheld or stationary, data can be
even collected from at-a-distance, up to tens of meters away from the subjects [111]. Even though commercial
visible-light (RGB) cameras can image the iris, near infrared-based (NIR) sensing dominates in most applications,
due to better visibility of iris texture for darker eyes, rich in melanin pigment, which is characterized by lower
light absorption in NIR spectrum compared to shorter wavelengths. In addition, NIR wavelengths are barely
perceivable by the human eye, which augments users’ comfort and avoids pupil contraction/dilation that would
appear under visible light.

A seminal work by John Daugman brought to the community the Gabor iltering-based approach that became
the dominant approach for iris recognition [34, 35, 37]. Even though subsequent solutions to iris image encoding
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and matching appeared, the IrisCodes approach is still dominant due to its ability to efectively search in massive
databases with a minimal probability of false matches, at extreme time performance. By considering binary
words, pairs of signatures are matched using XOR parallel-bit logic at lightning speed, enabling millions of
comparisons/second per processing core. Also, most of the methods that outperformed the original techniques in
terms of efectiveness do not work under the one-shot learning paradigm, assume multiple observations of each
class to obtain appropriate decision boundaries, and - most importantly - have encoding/matching steps with
time complexity that forbid their use in large environments (in particular, for all-against-all settings).

In short, Daugman’s algorithm encodes the iris image into a binary sequence of 2,048 bits by iltering the iris
image with a family of Gabor kernels. The varying pupil size is rectiied by the Cartesian-to-polar coordinate
system transformation, to end up with an image representation of canonical size, guaranteeing identical structure
of the iris code independently of the iris and pupil size. This makes it possible to use the Hamming Distance
(HD) to measure the similarity between two iris codes [37]. Its low false match rate at acceptable false non-match
rates is the key factor behind the success of global-scale iris recognition installments, such as the national person
identiication and border security program Aadhaar program in India (with over 1.2 billion pairs of irises enrolled)
[174], the Homeland Advanced Recognition Technology (HART) in the US (up to 500 million identities) [128],
or the NEXUS system, designed to speed up border crossings for low-risk and pre-approved travelers moving
between Canada and the US.

Deep learning-based methods, in particular using various Convolutional Neural Network architectures, have
been driving remarkable improvements in many computer vision applications over the last decade. In terms
of biometrics technologies, it’s not surprising that iris recognition has also seen an increasing adoption of
purely data-driven approaches at all stages of the recognition pipeline: from preprocessing (such as of-axis gaze
correction), segmentation, and encoding to matching. Interestingly, however, the impact of deep learning on the
various stages of the iris recognition pipeline is uneven. One of the primary goals of this survey paper is to assess
where deep learning helped in achieving high performance and more secure systems, and which procedures did
not beneit from more complex modeling.

The remainder of the paper is structured as follows. Section 2 and 3 review the application of deep learning in
two main stages of the recognition pipeline: segmentation and recognition (encoding and comparison). Section 4
and 5 analyze the state-of-the-art deep learning-based approaches in two applications: Presentation Attack
Detection (PAD) and Forensic. Section 6 investigates how human and machine can pair to improve deep learning-
based iris recognition. Section 7 focuses on approaches in less controlled environments of iris and periocular
analysis. Section 8 reviews public resources and tools available in the deep learning-based iris recognition domain.
Section 9 focuses on the future of deep learning for iris recognition with a discussion on emerging research
directions in diferent aspects of iris analysis. The paper is concluded in Section 10.

2 DEEP LEARNING-BASED IRIS SEGMENTATION

The segmentation of the iris is seen as an extremely challenging problem. As illustrated in Fig. 1, segmenting the
iris involves essentially three tasks: detect and parameterize the inner (pupillary) and outer (limbus) biological
boundaries of the iris and also to locally discriminate between the noise-free/noisy regions inside the iris ring,
which should be subsequently used in the feature encoding and matching processes.

This problem has motivated numerous research works for decades. From the pioneering integro-diferential op-
erator [34] up to subsequent handcrafted techniques based in active contours and neural networks (e.g., [68], [133],
[147] and [175]) a long road has been travelled in this problem. Regardless of an obvious evolution in the efec-
tiveness of such techniques, they all face particular diiculties in the case of heavily degraded data. Images are
frequently motion-blurred, poorly focused, partially occluded and of-angle. Additionally, in the case of visible
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light data, severe relections from the environments surrounding the subjects are visible and even augment the
diiculties of the segmentation task.
Recently, as in many other computer vision tasks, DL-based frameworks have been advocated as providing

consistent advances over the state-of-the-art for the iris segmentation problem, with numerous models being
proposed. A cohesive perspective of the most relevant recent DL-based methods is given in Table 1, with the
techniques appearing in chronographic (and then alphabetical) order. The type of data each model aims to handle
is given in the žDataž column, along with the datasets where the corresponding experiments were carried out
and a summary of the main characteristics of each proposal (žFeaturesž column). Here, considering that models
were empirically validated in completely heterogeneous ways and using very diferent metrics, we decided not to
include the summary performance of each model/solution.

limbus Boundary Parameterization 2

Noise-free Texture Detection 3

Pupillary Boundary Parameterization 1

Iris Segmentation Main Tasks

Dimensionless Noise-Free
Representation

21 + + 3

Fig. 1. Three main tasks typically associated to iris segmentation: 1) parameterization of the pupillary (inner) boundary; 2)

parameterization of the limbus (outer) boundary; and 3) discrimination between the unoccluded (noise-free) and occluded

(noisy) regions inside the iris ring. Such pieces of information are further used to obtain dimensionless polar representations

of the iris texture, where feature extraction methods typically operate.

Schlett et al. [144] provided a multi-spectral analysis to improve iris segmentation accuracy in visible wave-
lengths by preprocessing data before the actual segmentation phase, extracting multiple spectral components in
the form of RGB colour channels. Even though this approach does propose a DL-based framework, the diferent
versions of the input could be easily used to feed DL-based models and augment the robustness to non-ideal
data. Chen et al. [22] used CNNs that include dense blocks, referred to as a dense-fully convolutional network
(DFCN), where the encoder part consists of dense blocks, and the decoder counterpart obtains the segmentation
masks via transpose convolutions. Hofbauer et al. [72] parameterize the iris boundaries based on segmentation
maps yielding from a CNN, using a cascaded architecture with four ReineNet units, each directly connecting
to one Residual net. Huynh et al. [76] discriminate between three distinct eye regions with a DL model, and
removes incorrect areas with heuristic ilters. The proposed architecture is based on the encoder-decoder model,
with depth-wise convolutions used to reduce the computational cost. Roughly at the same time, Li et al. [94]
described the Interleaved Residual U-Net model for semantic segmentation and iris mask synthesis. In this work,
unsupervised techniques (K-means clustering) were used to create intermediary pictorial representations of the
ocular region, from where saliency points deemed to belong to the iris boundaries were found. Kerrigan et al. [85]
assessed the performance of four diferent convolutional architectures designed for semantic segmentation. Two
of these models were based on dilated convolutions, as proposed by Yu and Koltun [188]. Wu and Zhao [186]
described the Dense U-Net model, which combines dense layers to the U-Net network. The idea is to take advan-
tage of the reduced set of parameters of the dense U-Net, while keeping the semantic segmentation capabilities of
U-Net. The proposed model integrates dense connectivity into U-Net contraction and expansion paths. Compared
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with traditional CNNs, this model is claimed to reduce learning redundancy and enhance information low,
while keeping controlled the number of parameters of the model. Wei et al. [205] suggested to perform dilated

convolutions, which is claimed to obtain more consistent global features. In this setting, convolutional kernels
are not continuous, with zero values being artiicially inserted between each non-zero position, increasing the
receptive ield without augmenting the number of parameters of the model.

Table 1. Cohesive comparison of the most relevant DL-based iris segmentation methods (NIR: near-infrared ; VW: visible

wavelength). Methods are listed in chronological (and then alphabetical) order.

Method Year
Data

Datasets Features
NIR VW

Schlett et al. [144] 2018 ✗ ✓ MobBIO Preprocessing (combines diferent possibili-
ties of the input RGB channels)

Trokielewicz and
Czajka [166]

2018 ✓ ✓ Warsaw-Post-Mortem v1.0 Fine-tuned CNN (SegNet)

Chen et al. [22] 2019 ✓ ✓ CASIA-Irisv4-Interval, IITD, UBIRIS.v2 Dense CNN

Hofbauer et al. [72] 2019 ✓ ✗ IITD, CASIA-Irisv4-Interval, ND-Iris-0405 Cascaded architecture of four ReineNet,
each connecting to one Residual net

Huynh et al. [76] 2019 ✓ ✗ OpenEDS MobileNetV2 + heuristic iltering postproc.

Li et al. [7] 2019 ✓ ✗ CASIA-Iris-Thousand Faster-R-CNN (ROI detection)

Kerrigan et al. [85] 2019 ✓ ✓ CASIA-Irisv4-Interval, BioSec, ND-Iris-
0405, UBIRIS.v2, Warsaw-Post-Mortem
v2.0, ND-TWINS-2009-2010

Resent + Segnet (with dilated convolutions)

Wu and Zhao [186] 2019 ✓ ✓ CASIA-Irisv4-Interval, UBIRIS.v2 Dense-U-Net (dense layers + U-Net)

Wei et al. [205] 2019 ✓ ✓ CASIA-Iris4-Interval, ND-IRIS-0405,
UBIRIS.v2

U-Net with dilated convolutions

Fang and Cza-
jka [50]

2020 ✓ ✓ ND-Iris-0405, CASIA, BATH, BioSec,
UBIRIS, Warsaw-Post-Mortem v1.0 & v2.0

Fine-tuned CC-Net [106]

Ganeva and Myas-
nikov [55]

2020 ✓ ✗ MMU U-Net, LinkNet, and FC-DenseNet (perfor-
mance comparison)

Jalilian et al. [79] 2020 ✓ ✗ ReineNet + morphological postprocessing

Sardar et al. [142] 2020 ✓ ✓ CASIA-Irisv4-Interval, IITD, UBIRIS.v2 Squeeze-Expand module + active learning
(interactive segmentation)

Trokielewicz et
al. [172]

2020 ✓ ✓ ND-Iris-0405, CASIA, BATH, BioSec,
UBIRIS, Warsaw-Post-Mortem v1.0 & v2.0

Fined-tuned SegNet [9]

Wang et al [178] 2020 ✓ ✓ CASIA-Iris-M1-S1/S2/S3, MICHE-I Hourglass network

Wang et al. [176] 2020 ✓ ✓ CASIA-v4-Distance, UBIRIS.v2, MICHE-I U-Net + multi-task attention net + postproc.
(probabilistic masks priors & thresholding)

Li et al. [94] 2021 ✓ ✗ CASIA-Iris-Thousand IRU-Net network

Wang et al. [184] 2021 ✗ ✓ Online Video Streams and Internet Videos U-Net and Squeezenet to iris segmentation
and detect eye closure

Kuehlkamp
et al. [91]

2022 ✓ ✓ ND-Iris-0405, CASIA, BATH, BioSec,
UBIRIS, Warsaw-Post-Mortem v2.0

Fined-tuning of Mask-RCNN architecture

More recently, Ganeva and Myasnikov [55] compared the efectiveness of three convolutional neural network
architectures (U-Net, LinkNet, and FC- DenseNet), determining the optimal parameterization for each one. Jalilian
et al. [79] introduced a scheme to compensate for texture deformations caused by the of-angle distortions, re-
projecting the of-angle images back to the frontal view. The used architecture is a variant of ReineNet [96], which
provides high-resolution prediction while preserving the boundary information (required for parameterization
purposes).
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The idea of interactive learning for iris segmentation was suggested by Sardar et al. [142], describing an
interactive variant of U-Net that includes Squeeze Expand modules. Trokielewicz et al. [172] used DL-based
iris segmentation models to extract highly irregular iris texture areas in post-mortem iris images. They used a
pre-trained SegNet model, ine-tuned with a database of cadaver iris images. Wang et al. [178] (further extended
in [179]) described a lightweight deep convolutional neural network speciically designed for iris segmentation
of degraded images acquired by handheld devices. The proposed approach jointly obtains the segmentation mask
and parameterized pupillary/limbic boundaries of the iris.
Observing that edge-based information is extremely sensitive to be obtained in degraded data, Li et al. [7]

presented a hybrid method that combines edge-based information with deep learning frameworks. A compacted
Faster R-CNN-like architecture was used to roughly detect the eye and deine the initial region of interest, from
where the pupil is further located using a Gaussian mixture model. Wang et al. [184] trained a deep convolutional
neural network(DCNN) that automatically extracts the iris and pupil pixels of each eye from input images. This
work combines the power of U-Net and SqueezeNet to obtain a compact CNN suitable for real-time mobile
applications. Finally, Wang et al. [176] parameterize both the iris mask and the inner/outer iris boundaries jointly,
by actively modelling such information into a uniied multi-task network.
A inal word is given to segmentation-less techniques. Assuming that the accurate segmentation of the iris

boundaries is one of the hardest phases of the whole recognition chain and the main source for recognition
errors, some recent works have been proposing to perform biometrics recognition in non-segmented or roughly
segmented data [132][135]. Here, the idea is to use the remarkable discriminating power of DL frameworks to
perceive the agreeing patterns between pairs of images, even on such segmentation-less representations.

3 DEEP LEARNING-BASED IRIS RECOGNITION

3.1 Deep Learning Models as a Feature Extractor

DL-based Feature Representation

Dimensionless Noise-Free
Representation

Feature Set











�1
�2
...

��











Fig. 2. The main task of DL-based iris feature extraction: given a dimensionless representation of the iris data, obtain its

compact and representative representation - the feature set - that is further used in the classification phase.

As illustrated in Fig. 2, the idea here is to analyze a dimensionless representation of the iris data and produce a
feature vector that lies in a hyperspace (embedding) where recognition is carried out.

In this context, Boyd et el. [15] explored ive diferent sets of weights for the popular ResNet50 architecture to
test if iris-speciic feature extractors perform better than models trained for general tasks. Minaee et al. [105]
studied the application of deep features extracted from VGG-Net for iris recognition, having authors observed
that the resulting features can be well transferred to biometric recognition. Luo et al. [102] described a DL model
with spatial attention and channel attention mechanisms, that are directly inserted into the feature extraction
module. Also, a co-attention mechanism adaptively fuses features to obtain representative iris-periocular features.
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Hafner et al. [65] adapted the classical Daugman’s pipeline, using convolutional neural networks to function as
feature extractors. The DenseNet-201 architecture outperformed its competitors achieving state-of-the-art results
both in the open and close world settings. Menotti et al. [104] assessed how DL-based feature representations
can be used in spooing detection, observing that spooing detection systems based on CNNs can be robust to
attacks already known and adapted, with little efort, to image-based attacks that are yet to come.

Yang et al. [196] generated multi-level spatially corresponding feature representations by an encoder-decoder
structure. Also, a spatial attention feature fusion module was used to ensemble the resulting features more
efectively. Chen et al. [23] addressed the large-scale recognition problem and described an optimized center loss
function (tight center) to attenuate the insuicient discriminating power of the cross-entropy function. Nguyen
et al. [112] explored the performance of state-of-the-art pre-trained CNNs on iris recognition, concluding that
of-the-shelf CNN generic features are also extremely good at representing iris images, efectively extracting
discriminative visual features and achieving promising results. Zhao et al. [207] proposed a method based on the
capsule network architecture, where a modiied routing algorithm based on the dynamic routing between two
capsule layers was described, with three pre-trained models (VGG16, InceptionV3, and ResNet50) extracting the
primary iris features. Next, a convolution capsule replaces the full connection capsule to reduce the number of
parameters. Wang and Kumar [180] introduced the concept of residual feature for iris recognition. They described
a residual network learning procedure with oline triplets selection and dilated convolutional kernels.

Other works have addressed the extraction of appropriate feature representations in multi-biometrics settings:
Damer et al. [32] propose to jointly extract multi-biometric representations within a single DNN. Unlike previous
solutions that create independent representations from each biometric modality, they create these representations
from multi-modality (face and iris), multi-instance (iris left and right), and multi-presentation (two face samples),
which can be seen as a fusion at the data level policy. Finally, concerned about the diiculty of performing
reliable recognition in hand-held devices, Odinokikh et al. [121] combined the advantages of handcrafted feature
extractors and advanced deep learning techniques. The model utilizes shallow and deep feature representations
in combination with characteristics describing the environment, to reduce the intra-subject variations expected
in this kind of environment.

3.2 Deep Learning-based Iris Matching Strategies

The existing matching strategies can be categorized into three categories: (1) using conventional classiiers,
such as SVM, RF, and Sparse Representation; (2) softmax-based losses; and (3) pairwise-based losses. A cohesive
perspective of the most relevant recent DL-based methods are given in Table 2, with the techniques appearing in
a chronographic (and then alphabetically) order.

3.2.1 Conventional classifiers. Various researchers have been using deep learning networks designed and pre-
trained on the ImageNet dataset to extract iris feature representations, followed by a conventional classiier such
as SVM, RF, Sparse Representation, etc. [15, 18, 112]. The key beneit of these approaches is the simplicity of
łplug and playž, where proven and pre-trained deep learning networks inherited from large-scale computer vision
challenges are widely available and ready to be used [112]. Another beneit is that there is no need for large-scale
iris image datasets to train these networks because they have already been trained on such large-scale datasets
as ImageNet. Considering these networks usually contain hundreds of layers and millions of parameters and
require millions of images to train, using pre-trained networks is extremely beneicial.

3.2.2 Iris Classification Networks. Iris classiication networks couple deep learning architectures with a family
of softmax-based losses to classify an iris image into a list of known identities. Coupling a softmax loss with a
backbone network enables training the backbone network in an end-to-end manner via popular optimization
strategies such as back-propagation and steepest gradient descent. Compared to the conventional classiier
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approaches, the DL-based backbones in this category are learnable directly from the iris data, allowing them to
better represent the iris. The key beneit is that it is similar to a generic image classiication task, hence all designs
and algorithms in the generic image classiication task can be trivially applied to the iris image data. Typical
examples of these iris classiication networks are [15, 56]. However, these softmax-based networks require the
iris in the test image to be known in the identity classes in the training set, which means the networks must be
re-trained whenever a new class (i.e. a new identity) is added. Gangwar et al. proposed two backbone networks
(i.e. DeepIrisNet-A and DeepIrisNet-B) followed by a softmax loss for the iris recognition task [56]. Later, they
proposed another backbone network but still followed by a softmax loss to classify one normalized iris image
into a pre-deined list of identity [57].

Backbone Network Architectures: A wide range of backbone network architectures have been borrowed from
generic image classiication for the iris recognition task due to their similarity.

• AlexNet: AlexNet is the most primitive and has been shown as least accurate for iris recognition compared
to others [16, 112].

• VGG: Boyd et al. [16], Nguyen et al. [112] and Minaee et al. [105] all experimented VGG16 .
• ResNet: ResNet with its variants are the most popular backbone network architecture. Nguyen et al.

experimented ResNet152 [112]. Boyd et al. experimented with three variants ResNet18, ResNet50, and
ResNet152 in their post-mortem iris classiication task [16].

• Inception: Zhao et al. employed capsule network based on the InceptionV3 architecture [207].
• EicientNet: Hsiao et al. [74] employed EicientNet to extract iris features.

3.2.3 Iris Similarity Networks. Iris similarity networks couple deep learning architectures with a family of
pairwise-based losses to learn a metric representing how similar or dissimilar two iris images are without
knowing their identities. The pairwise loss aims to pull images of the same iris closer and push images of diferent
irises away in the similarity distance space. Diferent from the iris classiication networks which only operate in
an identiication mode on a pre-deined identity list, iris similarity networks operate across both veriication
and identiication modes with an open set of identities [209]. Typical examples of these iris similarity networks
are [80, 97, 113, 180, 209]. There are three key beneits of these networks: (i) veriication and identiication: iris
similarity networks operate across both veriication and identiication modes; (ii) open set of identities: iris
similarity networks operate on an open set of identities; and (iii) explicit relection: iris similarity networks
directly and explicitly relect what we want to achieve, i.e., small distances between irises of the same subject and
larger distances between irises of diferent subjects.

Pairwise loss: Nianfeng et al. [97] proposed a pairwise network, which accepts two input images and directly
outputs a similarity score. They designed a pairwise layer that accepts two input images and encodes their
features via a backbone network. The backbone network is trained iteratively to minimize the dissimilarity
distance between genuine pairs (pairs of the same identity) and maximize the dissimilarity distance between
impostor pairs (pairs of diferent identities).

Triplet loss: Since the pairwise network is trained with separate genuine and impostor pairs, it may not converge
well, which has been proven in face recognition [145]. Rather than using one pair of two images to update the
training as in the pairwise loss for each training iteration, the triplet loss employs a triplet of three images: an
anchor image, a positive image with the same identity, and a negative image with a diferent identity [145]. The
backbone network is trained to simultaneously minimize the similarity distance between the positive and the
anchor images and maximize the distance between the negative and the anchor images. Tailored for iris images,
Zhao et al. [180, 209, 211] proposed Extended Triplet Loss (EPL) to incorporate a bit-shifting operation to deal
with rotation in the normalized iris images. Nguyen et al. also employed the ETL for their iris recognition network
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[113, 115]. Kuehlkamp et al. [91] proposed to improve the generic triplet loss function for iris recognition by
forcing the distance to be positive (through the use of a sigmoid output layer), and adding a logarithmic penalty
to the error. This modiication allows the network to learn even when the diference between samples is negative
and converges faster. Yan et al. [195] extended the generic triplet loss to batch triplet loss, in which the triplet
loss is calculated over a batch of � subjects and � images for each subject. Performing batch triplet loss is usually
expected to have a smooth loss function. Yang et al. [196] improved the triplet selection method for training by
Batch Hard [197].

Backbone Network Architectures: Diferent from the classiication iris networks, similarity iris networks are usually
designed with their network architectures and are usually much łshallowerž than the classiication counterparts.

• FCN: All similarity iris networks employ Fully Convolutional Networks (FCNs) instead of CNNs. Compared
to CNNs, FCNs [100] do not have a fully connected layer, allowing the output map to preserve the
original spatial information. This is important to iris recognition since the output map can preserve spatial
correspondence with the original input image [113, 209], thus enabling pixel-to-pixel matching. Zhao et al.

[209] proposed an FCN architecture with 3 convolutional layers, followed by activation and pooling layers.
Outputs of convolutional layers are up-sampled to the original input image size. The up-sample features
are stacked and convolved by another convolutional layer to generate 2-dimension features with the same
size as the input image. Later, they extended the backbone network with dilated convolutions [180]. Yan et

al. [195] employed a ResNet architecture and ine-tuned it with the triplet loss. Kuehlkamp et al. only used
a part of the ResNet architecture.

• NAS: Nguyen et al. [113] proposed to learn the network architecture directly from data rather than
hand-designing it or using generic-image-classiication architectures. They proposed a diferential Neural
Architecture Search (NAS) approach that models the architecture design process as a bi-level constrained
optimization approach. This approach is not only able to search for the optimal network that achieves the
best possible performance, but it can also impose constraints on resources such as model size or number of
computational operations.

• Complex-valued: Observing that there is an intrinsic diference between the iris texture and generic object-
based images where the iris texture is stochastic without consistent shapes, edges, or semantic structure,
Nguyen et al. [115] argued the network architecture has to be better tailored to incorporate domain-speciic
knowledge to reach the full potential in the iris recognition setting. Another observation that they made is
a majority of well-known handcrafted features such as IrisCode [35] transformed the iris texture image into
a complex-valued representation irst, then further encoded the complex-valued representation to get a
inal representation. They proposed to use fully complex-valued networks rather than popular real-valued
networks. Complex-valued backbone networks better retain the phase, are more invariant to multi-scale,
multi-resolution, and multi-orientation, have solid correspondence with the classic Gabor wavelets [173],
hence are much better suited to iris recognition than their real-valued counterparts.

3.3 End-to-end Joint Iris Segmentation+Recognition Networks

Almost all existing approaches perform segmentation and normalization to transform an input image to a
normalized rectangular 2D representation before recognition as this simpliies the representation learning. As
segmentation and recognition may require a separate network themselves, this would cause redundancy in both
computation and training, further slowing down a DL-based iris recognition approach. Several researchers have
looked at approaches to perform end-to-end networks. One category is to perform segmentation-less recognition.
Another category is to jointly learn segmentation and recognition using a uniied network via multi-task learning.
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Table 2. Cohesive comparison of the most relevant DL-based iris recognition methods (NIR: near-infrared ; VW: visible

wavelength). Methods are listed in chronological (and then alphabetical) order.

Category Method Year
Data

Datasets Features
NIR VW

Conventional
classiiers

Menotti et at.
[104]

2015 ✓ ✓ Biosec, LivDet-2013-Warsaw, Mob-
BIOfake

Shallow CNNs + SVM for Spooing De-
tection

Minaee et al. [105] 2016 ✓ ✗ CASIA-Iris-Thousand, IITD VGG + SVM
Nguyen et
al. [112]

2017 ✓ ✗ ND-CrossSensor-2013, CASIA-Iris-
Thousand

AlexNet, VGG, Google Inception, ResNet,
DenseNet + SVM

Boyd et al. [15] 2019 ✓ ✓ CASIA-Irisv4-Interval, IITD,
UBIRIS.v2

ResNet50 + SVM

Boyd et al. [18] 2020 ✓ ✓ DCMEO1, Warsaw AlexNet, ResNet, VGG, DenseNet + Co-
sine, Euclidean, MSE

Hafner et
al. [65]

2021 ✓ ✗ CASIA-Iris-Thousand ResNet101 + DenseNet-201 + Cosine Sim-
ilarity

Classiication
Networks

Gangwar et
al. [56]

2016 ✓ ✗ ND-IRIS-0405, ND-CrossSensor-2013 DeepIrisNet

Gangwar et
al. [57]

2019 ✓ ✓ ND-IRIS-0405, UBIRIS.v2, MICHE-I,
CASIA-Irisv4-Interval

DeepIrisNetV2

Odinokikh et
al. [121]

2019 ✓ ✗ CASIA-Iris-M1-S2, CASIA-Iris-M1-
S3, Iris-Mobile

Feature Fusion + Softmax

Zhao et al.[207] 2019 ✓ ✗ JluIrisV3.1, JluIrisV4, CASIA-Irisv4-
Lamp

Capsule network + Softmax

Chen et al. [23] 2020 ✓ ✗ ND-IRIS-0405, CASIA-Iris-Thousand,
IITD cross sensor

T-Center loss

Luo et al.[102] 2021 ✓ ✗ ND-IRIS-0405, CASIA-Iris-Thousand Attention + Softmax Loss + Center Loss

Similarity
Networks

Nianfeng et
al. [97]

2016 ✓ ✗ Q-FIRE, CASIA-Cross-Sensor DeepIris

Zhao et al. [209] 2017 ✓ ✓ CASIA-Irisv4-Interval, IITD,
UBIRIS.v2

UniNet (FeatNet+MaskNet) + Extended
Triplet Loss

Damer et
al. [32]

2019 ✓ ✗ Biosecure, CASIA-Iris-
Thousand/Lamp/Interval

Inception + Triplet Loss

Wang et
al. [180]

2019 ✓ ✓ CASIA-Irisv4-Interval, IITD,
UBIRIS.v2

FeatNet + Dilated Convolution + Ex-
tended Triplet Loss

Zhao et al. [211] 2019 ✓ ✗ ND-Iris-0405, Casia-Irisv4-Distance,
IITD

FeatNet + Mask RCNN + Extended
Triplet Loss

Nguyen et
al. [113]

2020 ✓ ✓ CASIA-v4-Distance, UBIRIS.v2, ND-
CrossSensor-2013

Constrained Design Backbone + Ex-
tended Triplet Loss

Yan et al. [195] 2021 ✓ ✗ CASIA-Iris-Thousand Spatial Feature Reconstruction + Triplet
Loss

Yang et al. [196] 2021 ✓ ✗ CASIA-Irisv4-Thousand, CASIA-
Irisv4-Distance, IITD

Dual Spatial Attention Network + Batch
Hard

Nguyen et
al. [115]

2022 ✓ ✓ ND-CrossSensor-2013, CASIA-Iris-
Thousand, UBIRIS.v2

Complex-valued Backbone + Extended
Triplet Loss

Kuehlkamp et al.
[91]

2022 ✓ ✓ DCMEO1, DCMEO2, Warsaw-Post-
Mortem v2.0

ResNet + Triplet Loss

Segmentation-less: These approaches feed the cropped iris images directly into a deep learning network to extract
features. For example, Kuehlkamp et al. [91] used Mask R-CNN for semantic segmentation and fed the cropped
iris region directly into a ResNet50 to extract features. Similarly, Chen et al. [24] also fed the cropped iris images
directly into a DenseNet. Rather than feeding the cropped iris images directly, Proenca et al. transformed the
cropped region (which is detected by SSD) into a polar representation irst, then fed the polar representation into
the VGG19 for extracting features [135].

Multi-task: Segmentation and recognition can be jointly learned with one uniied network. This paves the way
for multi-task learning. However, segmentation and recognition may require a diferent number of layers, hence
research is required to perform using diferent intermediate layers for each task. To the best knowledge, there
does not exist any approach to explore this direction.
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4 DEEP LEARNING-BASED IRIS PRESENTATION ATTACK DETECTION

In parallel to the popularity of biometrics, the security of these systems against attacks has become of paramount
importance. The most common attack is a Presentation Attack (PA), which refers to presenting a fake sample
to the sensor. The goal can be either to impersonate somebody else identity (also known as Impostor Attack

Presentation), or to conceal the own identity (also known as Concealer Attack Presentation). Via impostor attacks, a
person could also enroll fraudulently, allowing a continuous manipulation of the system. The previous acronyms
and terms in italics correspond to the vocabulary recommended in the series of ISO/IEC 30107 standards of the
ISO/IEC Subcommittee 37 (SC37) on Biometrics [163], which we will follow in the rest of this section. Presentation
Attack Instruments (PAI) used to carry out impostor attacks are typically generated from bona ide images of an
iris from an individual who has legitimate access to the system. The iris is printed on a piece of paper (printout
attack) or displayed on a screen (replay attack) and then presented to the sensor. The iris of deceased individuals
can also be used as PAI since the texture remains intact for some hours [169]. Theoretically, it would be possible
to print a genuine iris texture into a contact lens as well, although this has not been successfully demonstrated
yet [16]. Concealer attacks, on the other hand, are commonly done via textured contact lenses that obscure or
alter properties of the eye (such as color) to prevent the system from identifying the user. Synthetic iris images
[191] not belonging to any speciic identity could be used for similar purposes. Concealers can also present their
legitimate iris, but in a way not expected by the system, e.g. closing eyelids as much as possible, looking to the
sides (of-axis gaze), rotating the head, etc.

Two challenges of PAs are that they happen outside the physical limits of the system, and they do not require
speciic knowledge of its inner workings, or any technical knowledge at all. Thus, if no properly tackled, they
can derail public perception of even the most reliable biometric modality. It is even more critical if authentication
is done without any supervision. Presentation Attack Detection (PAD) methods to counteract such attacks can
be done [54]: �) at the hardware (or sensor) level, using additional illuminators or sensors that detect intrinsic
properties of a living eye or responses to external stimuli (like pupil contraction or relection), or ��) at the software
level, using only the footprint of the PA (if any) left in the same images captured with the standard sensor that
will be employed for authentication.

Software-based techniques are in principle less expensive and intrusive since they do not demand extra
hardware, and they will be the focus of this section.

Two comprehensive surveys on PAD are [30] (2018) and [16] (2020). While DL techniques were residual in the
2018 survey, they rose in popularity thereafter. We build this section upon the latest survey and summarize the
most important developments in DL-PAD since it was published (Table 3). A descriptive summary of the datasets
employed is given later in Section 8. The aim of PAD is to classify an image either as a bona ide or an attack

presentation, so it is usually modeled as a two-class classiication task. Typical strategies mimic the trend of the
previous section when applying DL to iris recognition: either a CNN backbone is used to extract features that
will feed a conventional classiier or the network is trained end-to-end to do the classiication itself. Some hybrid
methods also combine traditional hand-crafted with deep-learned features. In the same manner, the network may
be initialized e.g. on the ImageNet dataset to take advantage of such a large generic corpus, since available iris
PAD data is more scarce.

Another strategy also employed widely in the PAD literature is to use adversarial networks, where a GAN [60]
is trained to generate synthetic iris images that the discriminator must use to detect attack samples.

4.1 CNNs for Feature Extraction

Since each layer of a CNN represents a diferent level of abstraction, Fang et al. [44] fused the features from
the last four convolutional layers of two models (VGG16, MobileNetv3-small). The features are projected to a
lower dimensional space by PCA and either concatenated for classiication with SVM (feature fusion) or the

ACM Comput. Surv.



Deep Learning for Iris Recognition: A Survey • 11

classiication scores of each level combined (score fusion). Using two databases of printouts and textured contact
lenses, the method showed superiority over the use of the diferent layers individually, or the feature vector from
the next-to-last layer of the networks.

4.2 End-to-end Classification Networks

Arora and Bathia [8] trained a CNN with 10 convolutional layers to detect contact lenses and printouts. Rather
than using the entire image, the network is trained on patches from all parts of the iris image. The system showed
superior performance compared to state-of-the-art methods which at that time, according to the paper, were
mostly based on hand-crafted features.

Focusing on embedded low-power devices, Peng et al. [126] adopted a Lite Anti-attack Iris Location Network
(LAILNet) based on three dense blocks featuring depthwise separable convolutions to reduce the number of
parameters. The algorithm demonstrated very good performance on three databases with printouts, synthetic
irises, contact lenses and artiicial plastic eyes.

Also focusing on mobiles, Fang et al. [45, 48] used MobileNetv3-small. The contribution lies in the division of
the normalized iris image into overlapped micro-stripes which are fed individually and a decision is reached by
majority voting. The claimed advantages are that the classiier is forced to focus on the iris/sclera boundaries (given
by their exact micro-stripes), the input dimensionality is lower and the amount of samples is higher (reducing
overitting), and the impact of imprecise segmentation is alleviated. Using three databases with contact lenses
and printouts, the paper featured extensive experimentation with cross-database, cross-sensor, and cross-attack
settings.
Sharma and Ross [150] proposed D-NetPAD, based on DenseNet121, chosen due to beneits such as the

maximum low of information given by dense connections to all subsequent layers, or fewer parameters compared
to counterparts like ResNet or VGG. The PAI included printouts, artiicial eye, cosmetic contacts, kindle replay,
and transparent dome on print, with experiments substantiating the efectiveness of the method on cross-PAI,
cross-sensor, and cross-database scenarios.

Chen and Ross [19] proposed an explainable attention-guided detector (AG-PAD). To do so, the feature maps
of a DenseNet121 were fed into two modules that independently capture inter-channel and inter-spatial feature
dependencies. The outputs were then fused via element-wise sum to capture complementary attention features
from both channel and spatial dimensions. With three datasets containing colored contact lenses, artiicial eyes
(Van Dyke/Doll fake eyes), printouts, and textured contact lenses, the attention modules are shown to improve
accuracy over the baseline network. Using heatmap visualization, it is also shown that the attention modules
force the network to attend to the annular iris textural region which, intuitively, plays a vital role for PAD.

Spatial attention was also explored by Fang et al. [46].
To ind local regions that contribute the most to making accurate decisions and capturing pixel/patch-level

cues, they proposed an attention-based pixel-wise binary supervision (A-PBS) method. To capture diferent levels
of abstraction, they perform multi-scale fusion by adding spatial attention modules to feature maps from three
levels of a DenseNet backbone.
Using six datasets with textured lenses and printouts, they outperformed previous state-of-the-art including

scenarios with unknown attacks, sensors, and databases.
Given the diiculty of collecting iris PAD data, most databases contain, at most, a few hundred subjects.
To address this, Fang et al. [47] studied data augmentation techniques that modify position, scale or illumination.

Using three architectures (ResNet50, VGG16, MobileNetv3-small) and three databases with printouts and textured
contact lenses, they found that data augmentation improves PAD performance signiicantly, but each technique
has a positive role on a particular dataset or CNN. They also explored the selection of augmentation techniques,
inding, again, no consensus regarding the best combination, which was attributed to diferences in capture
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environment, subject population, scale of the diferent datasets, or imbalance between bona ide and attack
samples.
Gupta et al. [63] proposed MVANet, with 5 convolutional layers and 3 branches of fully connected layers.

They addressed the challenge of unseen databases, sensors, and imaging environments on textured contact
lens detection. The size of each layer of MVANet is diferent, thus capturing diferent features. They used three
databases, each one captured in diferent settings (indoor/outdoor, diferent times of the day, varying weather,
ixed/mobile sensors, etc.), with MVANET trained in one database at a time and tested on the other two. As
a baseline, they ine-tuned three popular CNNs (VGG16, ResNet18, DenseNet) initialized on ImageNet. The
proposed network is shown to perform consistently better and more uniformly on the test databases than the
baseline approaches.

Sharma and Ross [151] studied the viability of Optical Coherence Tomography (OCT). OCT provides a cross-
sectional view of the eye, whereas traditional NIR or VW imaging provides 2D textural data. The PAIs considered
are artiicial eyes (Van Dyke eyes) and cosmetic lenses, evaluated on three diferent CNNs (VGG19, ResNet50,
DenseNet121). By both intra- (known PAs) and cross-attack (unknown PAs) scenarios, OCT is determined as a
viable solution, although hardware cost is still a limiting factor. Indeed, OCT outperforms NIR and VW in the
intra-attack scenario, while NIR generalizes better to unseen PAs. Cosmetic lenses also appear to be more diicult
to detect than artiicial eyes with any modality. Via heatmaps, it is seen as well that the ixation regions are
diferent for each imaging modality and for each PAI, which could be a source of complementarity.
Zhang et al. [199] proposed a Weighted Region Network (WRN) to detect cosmetic lenses that includes a

local attention Weight Network (for evaluating the discriminating information of diferent regions) and a global
classiication Region Network (for characterizing global features). Such a strategy considers both the entire image
and the attention efect by assigning diferent weights to regions. The mentioned networks are applied to a
VGG16 backbone. The reported results showed improved performance compared to the state-of-the-art over
three diferent databases.
The works by Agarwal et al. [1, 2] evaluated the detection of contact lenses. In [2], they trained a siamese

CNN of 5 convolutional layers on two diferent inputs (the original image and its CLAHE version), which are
then combined by weighted score fusion of the softmax layer. Adding a processed version of the raw image
attempts to enhance the feature extraction capabilities of the CNN. A similar strategy is followed in [1], but
here they used a siamese contraction-expansion CNN, and the processed image is an edge-enhanced image
obtained via Histogram of Oriented Gradients (HOG). Another diference was the use of a feature-level fusion of
the next-to-last CNN feature vectors, testing diferent strategies (vector addition, multiplication, concatenation,
and distance). The papers employed several databases, with an extensive protocol including unseen subjects,
environments (indoor vs outdoor) and databases (sensors) that showcase the strength of the solutions against
cross-domain changes. The methods also showed superiority against popular CNN models (VGG16, ResNet18,
DenseNet) and the popular LBP and HOG hand-crafted features.

Gautam et al. [59] proposed a Deep Supervised Class Encoding (DSCE) approach consisting of an Autoencoder
that exploits class information, and minimizes simultaneously the reconstruction and classiication errors dur-
ing training. Three datasets were used, containing textured lenses, printouts, and synthetic images, showing
superiority over a variety of hand-crafted and deep-learned features.
Tapia et al.[162] used a two-stage serial architecture based on a modiied MobiletNetv2. A irst network was

trained to only distinguish two classes (bona ide vs attack). If it votes bona ide, the image is sent to a second
network trained to classify it among three or four classes (bona ide or a diferent type of PAI: contact lenses,
printout, or cadaver). Four databases were combined to obtain a super-set with the diferent PAIs, and class weights
were also incorporated into the loss to compensate imbalance. The paper applied contrast enhancement (CLAHE),
and an aggressive data augmentation (rotation, blurring, contrast change, Gaussian noise, edge enhancement,
image region dropout, etc.). They tested two image sizes, 224×224 and 448×448, observing that the extra detail of
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a higher resolution image results in more efective features. The paper also carried out leave-one-out PAI tests
for open-set evaluation, showing robustness in detecting unknown attacks.

4.3 Hybrid Methods

Choudhary et al. [26, 27] applied a Friedman test-based selection method to identify the best features of a set of
hand-crafted and deep-learned ones. Each feature method feeds an SVM classiier, and the scores of the individual
SVMs are fused via a weighted sum. A preliminary version of [26] without feature selection appeared in [25]. The
databases of [27] include a medley of diferent PA (printouts, synthetic irises, artiicial eyeballs, etc.), although the
feature selection and classiication methods are trained and evaluated separately on each database. The authors
observed a saturation after a certain number of features are combined, and the superiority of the score-level
fusion over other methods such as majority voting, feature-level fusion, and rank-level fusion. The work [26], on
the other hand, concentrated on textured contact lenses attack, with an extensive set of evaluations including
single sensor, cross-sensor, and combined sensor experiments. Apart from the generic live vs attack scenario, it
also reports binary and ternary classiication across the diferent types of real (normal iris, soft lens) and fake
(textured) classes. Naturally, the cross-sensor error is larger compared to the single-sensor, and the combined
sensor error is also observed to be slightly larger. The latter is attributed to the larger intraclass variation created
when images from diferent sensors are combined. In any case, an improvement in performance over previous
works with the three datasets employed is observed after the proposed feature selection and score-level fusion
method.

4.4 Adversarial Networks

Generative methods have been used by some approaches, either to use the trained discriminator for iris PAD, or
to generate synthetic samples and augment under-represented classes. In this direction, Yadav and Ross [193]
proposed CIT-GAN (Cyclic Image Translation Generative Adversarial Network) for multi-domain style transfer to
generate synthetic samples of several PAIs (cosmetic contact lenses, printed eyes, artiicial eyes, and kindle-display
attacks). To do so, image translation is driven by a Styling Network that learns the style characteristics of each
given domain. It also employs a Convolutional Autoencoder in the generator for image-to-image style translation,
which takes a domain label as input along with an image. This is diferent than previous works of the same
authors [191, 192] which employed the traditional generator/discriminator approach driven by a noise vector.
Diferent PAD methods using hand-crafted (BSIF, DESIST) and deep features (VGG16, D-NetPAD, AlexNet) were
evaluated, demonstrating that they can be improved by adding synthetically generated data. The quality of
synthetic images is also superior to a competing generative method (Star-GAN v2), measured via FID score
distributions.

4.5 Open Research uestions in Iris PAD

One of the open research issues is to design robust iris PAD methods with cross-sensor and cross-database
capabilities, so they generalize to unseen imaging conditions. Attackers are constantly developing new attack
methodologies to circumvent PAD systems, so an even more important issue is unseen PAIs (i.e. cross-PAI
capabilities) [149]. Great results have been achieved in detecting known attack types (known as closed-set
recognition), although cross-database evaluation (training in one database and testing in others) still appears as a
diicult challenge due to changes in sensors, acquisition environments, or subjects. Moreover, generalizing to
attacks that are unknown at the time of training (open-set recognition) is an even greater challenge for state-
of-the-art methods [45]. Part of the problem lies in the limited size of existing databases, which is an issue for
data-hungry DL approaches. Some solutions, as studied by some of the methods above, are data augmentation
by geometric or illumination modiications [47], or creating additional synthetic data via generative methods
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[193]. Human-aided DL training is another promising avenue. Indeed, humans and machines cooperating in
vision tasks are not new, and this strategy is inding its way into DL as well [14, 17]. For example, Boyd et al.
[14] analyzed the utility of human judgment about salient regions of images to improve the generalization of DL
models. Asked about regions that humans deem important for their decision about an image, the work proposed
to transform the training data to incorporate such opinions, demonstrating an improvement in accuracy and
generalization in leave-one-attack-type-out scenarios. In a similar work, Boyd et al. [17] incorporated annotated
saliency maps into the loss function to penalize large diferences with human judgment.

Recently, concerns have emerged about the observed bias of DL methods that leads to discriminatory perfor-
mance diferences based on the user➫s demographics, with face biometrics being the most talked-about and many
companies and authorities banning its use [78]. This issue appears in iris PAD as well, as addressed by Fang et
al. [49]. Using three baselines based on hand-crafted and DL approaches and a database of contact lenses, the
authors showed a signiicant diference in the performance between male and female samples. In dealing with
this phenomenon, examination of biases towards eye color or race is another direction worthwhile to consider.
Some elements considered as PAIs in this section, such as cosmetic lenses, may be worn normally by users

without the purpose of fooling the biometric system, as it is the case of facial retouching via make-up, digital
beautiication, or augmented reality [69]. This poses the question of whether it is possible to use such images
for authentication while diminishing the efect on the recognition performance. Suggested alternatives have
been to detect and match portions of live iris tissue still visible [125] or incorporate ocular information of the
surrounding area [4]. Unfortunately, in iris biometrics, recognition with textured contact lenses remains a hard
problem to solve.
Another under-researched task is iris PAD in the visible spectrum. The majority of studies and datasets

(Section 8) employ near-infrared illumination and speciic iris close-up sensors. However, in some environments
such as mobile or distant capture, such sensing is not guaranteed [119].

5 DEEP LEARNING-BASED FORENSIC IRIS RECOGNITION

Iris recognition has become the next biometric mode (in addition to the face, ingerprints, and palmprints)
considered for large-scale forensic applications [52], and coincides in time with discoveries made in recent years
about the possibility of employing iris in recognition of deceased subjects. This includes both matchings of iris
patterns acquired a few hours after death with those with longer PMIs (Post-Mortem Intervals), ranging from
days [12, 143, 167, 168] to several weeks after demise [18, 170], as well as matching patterns acquired before
death with those collected post-mortem [141].
Due to decomposition changes to the eye tissues, post-mortem iris images difer signiicantly from live iris

images and rarely meet ISO/IEC 29794-6 quality requirements, as shown in Fig. 3(a). The challenges are related to
the appropriate detection of places when the cornea dries and generates irregular and large specular highlights, as
well as regions where iris muscle furrows show up when the eyeball dehydrates. This is where DL-based methods
may win over hand-crafted approaches, as the latter usually make strong assumptions about the anatomy of the
iris appearance, making it possible to predict eyes undergoing random decomposition processes. Trokielewicz
et al. proposed the irst known to us iris recognition method designed speciically to cadaver irises [171, 172]. It
incorporates a SegNet-based segmenter and Siamese networks-based feature extractor, both trained in a domain-
speciic way solely on post-mortem iris samples. An interesting element of this approach is that segmentation
incorporates two models: one trained with łinež ground truth masks, marking all details associated with eye
decomposition, and the łcoarsež model, aiming at detecting iris annulus and eyelids, as in classical iris recognition
approaches. This allowed the application of a standard łrubber sheetž iris image normalization based on łcoarsež
masks, and at the same time excluded decomposition-driven artifacts from encoding, marked by the łinež mask.
Kuehlkamp et al. [91] in addition to detecting post-mortem deformations, as shown in Fig. 3(c), they also proposed
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Table 3. Cohesive comparison of the most relevant DL-based iris Presentation Atack Detection methods ater the surveys

[16, 30] (NIR: near-infrared ; VW: visible wavelength). Methods are listed in chronological (and then alphabetical) order.

Category Method Year
Data

Datasets Features
NIR VW

Feature
Extraction

Fang et al. [44] 2020 ✓ ✗ LivDet-2017 (IIITD-WVU, ND- CLD) VGG16, MobileNetv3-small (multi-layer
features) + PCA + SVM

End-to-end
Training

Arora and
Bathia [8]

2020 ✓ ✗ LivDet-2017 (IIITD-WVU) CNN with patch input

Peng et al. [126] 2020 ✓ ✗ IPITRT, CASIA-Iris-v4, CASIA-Iris-
Fake

LAILNet lightweight CNN

Sharma and
Ross [150]

2020 ✓ ✗ Proprietary, LivDet-2017 (IIITD-
WVU, ND-CLD, Warsaw, Clarkson)

DenseNet121 pre-trained on ImageNet

Chen and Ross
[19]

2021 ✓ ✗ JHU-APL, LivDet-2017 (Warsaw, ND-
CLD)

DenseNet121 pre-trained on ImageNet +
AG-PAD channel and spatial attention

Fang et al. [45] 2021 ✓ ✗ LivDet-2017 (IIITD-WVU, ND-CLD),
ND-CLD-15,

MobileNetv3-small with micro-stripes

Fang et al. [46] 2021 ✓ ✗ LivDet-2017 (IIITD-WVU, ND-CLD,
Clarkson), ND-CLD-13, ND-CLD-15,
IIITD-CLI

DenseNet + A-PBS spatial attention

Fang et al. [47] 2021 ✓ ✗ LivDet-2017 (IIITD-WVU, ND-CLD,
Clarkson)

ResNet50, VGG16, MobileNetv3-small

Gupta et al. [63] 2021 ✓ ✗ MUIPA, UnMIPA, IIITD-CLI CNN with multi-branch classiication
Sharma and
Ross [151]

2021 ✓ ✓ OCT, NIR and VW images VGG19, ResNet50, DenseNet121

Zhang et al.
[199]

2021 ✓ ✗ ND-CLD-13, CASIA-Iris-Fake, IF-VE VGG16 +WRN local attention and global
classiication

Agarwal et al.
[1]

2022 ✓ ✗ MUIPA, UnMIPA, IIITD-CLI, LivDet-
2017 (IIITD-WVU), ND-PSID

Siamese contraction-expansion CNN,
feature fusion

Agarwal et al.
[2]

2022 ✓ ✗ MUIPA, UnMIPA, IIITD-CLI, LivDet-
2017 (IIITD-WVU), ND-PSID,
NDIris3D

Siamese CNN, score fusion

Gautam et al.
[59]

2022 ✓ ✗ SYN, IIITD-CLI, IIITD-IS Autoencoder with reconstruction and
classiication loss

Tapia et al. [162] 2022 ✓ ✓ LivDet-2020, Iris-CL1, Warsaw-Post-
Mortem v3.0

MobileNetv2, data augmentation, class-
weights

Hybrid
Methods

Choudhary et al.
[27]

2022 ✓ ✗ IIITD-CLI, ND-CLD-13, CASIA,
LivDet-2017 (IIITD-WVU, ND-CLD,
Clarkson)

MBISF (domain-speciic ilters), SIFT,
Haralick, DenseNet, VGG8 + SVM classi-
ication

Choudhary et al.
[26]

2022 ✓ ✗ IIITD-CLI, ND-CLD-13, LivDet-2017
(Clarkson)

MBSIF (generic ilters), MBSIF (domain-
speciic ilters), SIFT, LBPV, DAISY,
DenseNet121 + SVM classiication

Adversarial
Networks

Yadav and Ross
[193]

2021 ✓ ✗ Casia-Iris-Fake, Berc-iris-fake, ND-
CLD-15, LivDet-2017, MSU-IrisPA-01

BSIF, DESIST, VGG16, D-NetPAD,
AlexNet

a human-interpretable visualization of a classiication process. The visualization is based on the Class Activation
Mapping mechanism [212] and highlights salient features used by the classiier in its judgment. This novelty in
iris recognition algorithms may help human examiners locate iris regions that should be carefully inspected or to
verify the algorithm’s decision.

6 HUMAN-MACHINE PAIRING TO IMPROVE DEEP LEARNING-BASED IRIS RECOGNITION

Iris recognition is usually associated with automatic, solely machine-based, and rapid biometric means. It has
been changing in the recent decade due to the constantly increasing ubiquitousness of iris recognition, especially
owing to large governmental applications such as [174] or FBI’s Next Generation Identiication System (NGI)
gradually replacing the Integrated Automated Fingerprint Identiication System (IAFIS) [52]. This combined with
the unique identiication power of the iris whetted the appetite to apply this technique to identiication problems
normally reserved for ingerprints and face: forensics, lost subjects search, or post-mortem identiication. To
have the legal power, however, the judgment about samples originating or not from the same eye conclusion
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(a) (b) (c)

Fig. 3. Post-mortem iris recognition and visualization: (a) a good-quality post-mortem iris image; (b) top to botom: deep

learning-based detection of iris annulus, specular highlights, and decomposition-induced wrinkles; (c) segmentation results

presented to a human examiner along with an overlaid heatmap visualizing regions judged as salient by the matching

algorithm. Source: [91]

must be conirmed by a trained human expert. And here is the place where DL-based iris image processing may
play a useful role.
Trokielewicz et al. compared iris images in post-mortem iris recognition between humans and machines.

They investigated which iris image regions humans and machines mainly attend to compare a pair of images.
The machine-based attention maps are generated by Grad-CAM to highlight the regions that contribute the
most to the deep learning model’s prediction. The human-based attention maps are learned by tracking the
gaze as the human is looking around the screen that displays iris image pairs and recording the regions where
the human spends the most time. Interestingly while humans and machines tend to focus on a limited number
of iris areas, however, the region, appearance, and density of these areas between humans and machines are
diferent. As salient regions proposed by the deep learning model and identiied from the human eye gaze do
not overlap in general, the computer-added visual cues may potentially constitute a valuable addition to the
forensic examiner’s expertise, as it can highlight important discriminatory regions that the human expert might
miss in their proceedings. This human-machine pairing is important as human subjects can make an incorrect
decision even after spending quite some time observing many iris regions [120]. In addition, there has been a
body of research showing that humans and machines do not perform similarly well under diferent conditions
[20, 108, 154]. For example, Moreira et al. also showed that machines can outperform humans in healthy easy iris
image pairs; however, humans outperform machines in disease-afected iris image pairs [108]. Human-machine
pairing will improve deep learning-based iris recognition.

7 RECOGNITION IN LESS CONTROLLED ENVIRONMENTS: IRIS/PERIOCULAR ANALYSIS

Rooted in the seminal work due to Park et al. [124], eforts have been paid to the development of human recognition
methods that - apart from the iris - also consider information in the vicinity of the eye to infer the identity. This
is a relatively recent topic, termed as periocular recognition. The rationale is that the periocular region represents
a trade-of between the face and the iris. Periocular biometrics has been claimed to be particularly useful in
environments that produce poor-quality data (e.g., visual surveillance). Recently, as in the case of iris, several
DL-based solutions have been proposed.

Hernandez-Diaz et al. [70] tested the suitability of of-the-shelf CNN architectures to the periocular recognition
task, observing that albeit such networks are optimized to classify generic objects, their features still can be
efectively transferred to the periocular domain.
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In the visual surveillance context, Kim et al. [88] infer subjects’ identities based either on loose/tight regions of
interest, depending on the perceived image quality. Hwang and Lee [77] prevent the loss of mid-level features
and dynamically select the most important features for classiication. Luo et al. [102] used self-attention channel
and spatial mechanisms in the feature encoding module of a CNN, to obtain the most discriminative features of
the iris and periocular regions.

Jung et al. [82]’s work is based on the concept of label smoothing regularization (LSR). Having as the main goal
to reduce the intra-class variability, they described a so-called Generalized LSR (GLSR) by learning a pre-task
network prediction that is claimed to improve the permanence of the obtained periocular features. Having similar
purposes, Zanlorensi et al. [198] described a preprocessing step based on generative networks able to compensate
for the typical data variations in visual surveillance environments. Nie et al. [118] applied convolutional restricted
Boltzmann machines to the periocular recognition problem. Starting from a set of genuine pairs that are used as
a constraint, a Mahalanobis distance metric is learned.
Obtaining auxiliary (e.g., soft biometrics) has been seen as an interesting direction for compensating for

the lack of image quality. Zhao and Kumar [210] incorporate an attention model into a DL architecture to
emphasize the most important regions in the periocular data. The same authors [208] described a semantics-
assisted CNN framework to infer comprehensive periocular features. The whole model is composed of diferent
networks, trained upon ID and semantic (e.g., gender, ethnicity) data, that are fused at the score and prediction
levels. Similarly, Talreja et al. [158] described a multi-branch CNN framework that predicts simultaneously soft
biometrics and ID labels, which are inally fused into the inal response.

With regard to cross-spectral settings, Hernandez-Diaz et al. [71] used conditional GANs (CGANs) to convert
periocular images between domains, that are further fed to intra-domain of-the-self frameworks. Sharma et
el. [148] described a shallow neural architecture where each model learns the data features in each spectrum. Then,
at a subsequent phase, all models are jointly ine-tuned, to learn the cross-spectral variability and correspondence
features.

Finally, several works have attempted to faithfully fuse the scores/responses from iris and periocular data. Wang
and Kumar [181] used periocular features to adaptively match iris data acquired in less constrained conditions.
Their framework incorporates such discriminative information using a multilayer perceptron network. Zhang et

al. [203] described a DL-model that exploits complementary information from the iris and the periocular regions,
that applies maxout units to obtain compact representations for each modality and then fuses the discriminative
features of the modalities through weighted concatenation. In the opposite direction, Proença and Neves [134]
argued that the periocular recognition performance is optimized when the components inside the ocular globe
(the iris and the sclera) are simply discarded.

8 OPEN-SOURCE DEEP LEARNING-BASED IRIS RECOGNITION TOOLS

Here we summarize the main properties of the datasets employed by the methods of the previous sections for
DL-based iris segmentation, recognition, and PAD. We also describe available open-source software code for
these tasks and other relevant tools.

8.1 Data Sources

Table 4 gives the technical details of the datasets used in the segmentation and recognition methods of Tables 1
and 2. Table 5 does the same for the iris PAD methods of Table 3. We show the main properties (spectrum, image
size, identities, images, sessions) and relevant features. Only the datasets of the methods reported in the previous
section are presented. Since we focus on the most recent developments, we consider that such an approach
provides the most relevant datasets for each task. Of course, the list of available datasets after decades of iris
research is much longer [122].
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Table 4. Summary of datasets used in the DL-based iris segmentation and recognition methods of Tables 1 and 2 (NIR:

near-infrared ; VW: visible wavelength).

Name Data Size # IDs # Samples # Sessions Features

BATH [107] NIR 1280×960 1600 16000 1 High quality images
BioSec [53] NIR 640×480 400 3200 2 Oice environment
Biosecure [123] NIR 640×480 1334 2668 2 Oice environment
CASIA-Cross-Sensor [187] NIR n/a 700 21000 1 Multi-sensor, multi-distance (12-30cm, 3-

5m)
CASIA-Iris-Distance [40] NIR 2352×1728 284 2567 1 Distant acquisition
CASIA-Iris-Interval [103] NIR 320×280 395 2639 2 High quality images
CASIA-Iris-Lamp [185] NIR 640×480 819 16212 1 Non-linear deformation
CASIA-Iris-M1-S1 [204] NIR 1920×1080 140 1400 1 Mobile device
CASIA-Iris-M1-S2 [202] NIR 1968×1024 400 6000 1 Mobile device, multi-distance

(20,25,30cm)
CASIA-Iris-M1-S3 [203] NIR 1920×1920 720 3600 1 Mobile device
CASIA-Iris-Thousand [200] NIR 640×480 2000 20000 1 High quality images
DCME01 [18] NIR,

VW
n/a 254 621 1-9 -

DCME02 [91] NIR n/a 259 5770 1-53 -
IITD [92] NIR 320×240 224 1120 1 Varying quality
Iris-Mobile [121] NIR n/a 750 22966 n/a Mobile device, indoor & outdoor
JluIrisV3.1 [207] NIR 640×480 120 1780 n/a -
JluIrisV4 [207] NIR 640×480 172 114904 n/a -
LivDet-2013-Warsaw [28] NIR 640×480 284 1667 1 High quality images
MICHE-I [38] VW var. 184 3732 2 Three mobile devices
MMU NIR 320×240 92 460 1 High quality images
MobBIOfake [146] VW 300×200 200 1600 1 With a handheld device
ND-CrossSensor-2013 [187] NIR 640×480 1352 146550 27 Multi-sensor
ND-Iris-0405 [127] NIR 640×480 712 64980 1 Varying quality
ND-TWINS-2009-2010 VW n/a 435 24050 n/a Facial pictures frontal, 3/4 and side views.

Indoor & outdoor
OpenEDS [58] NIR 640×400 304 356649 1 From head-mounted VR glasses
Q-FIRE [81] NIR var. 390 586560 2 Iris/face Videos, various distances and

quality
UBIRIS.v1 [130] VW 800×600 241 1877 2 Several noise factors
UBIRIS.v2 [131] VW 400×300 522 11102 2 Distant acquisition, on the move
Warsaw [18] NIR,

VW
n/a 157 4866 1-13 -

Warsaw-Post-Mortem v1.0 [167] NIR,
VW

var. 34 1330 2-3 Deceased persons, 5-7h to 17 days post-
mortem

Warsaw-Post-Mortem v2.0 [170] NIR,
VW

var. 73 2987 1-13 Deceased persons

A irst observation is the dominance of near-infrared (NIR) over the visible (VW) spectrum, which should not
be surprising, since NIR is regarded as most suitable for iris analysis. However, research-wise, many segmentation
and recognition studies (Tables 1, 2) use VW images, pushed by the success of challenging databases such as
MICHE and UBIRIS. On the contrary, the VW modality in iris PAD research is residual (Table 3), a tendency also
observed in pre-DL research [16, 30].
When it comes to the types of Presentation Attack Instruments (PAIs) employed in iris PAD databases, they

can be categorized into:

• PP: paper printout of a real iris image, i.e. from a live person
• PPD: paper printout of a real iris image with a transparent 3D plastic eye dome on top
• CLL: textured contact lenses worn by a live person
• CLP: textured contact lenses on the printout (either a printout of a CLL image or a printout of a real iris
image with a textured contact lens placed on top)

• RA: replay attack, i.e. a real iris image shown on a display
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• AE: artiicial eyeball (plastic eyes of two diferent types: Van Dyke Eyes, with higher iris quality details,
and Scary eyes, plastic fake eyes with a simple pattern on the iris region)

• AEC: artiicial eyeball with a textured contact lens on top
• SY: synthetic iris, i.e. an image created via generative methods
• PM: postmortem iris, i.e. an image acquired from cadaver eyes

These PAIs mostly entail presenting the mentioned instrument to the iris sensor, which then captures an image
of the artifact. An exception is łSYž, which directly produces a synthetic digital image, although such an image
could be used as a base to, for example, PP, PPD, RA, or AE attacks. In Table 5, it can be seen that CLL (textured
lenses live) and PP (paper printouts) largely dominate as the most popular PAIs on the existing databases, and
consequently, on the related research (Table 3). CLP (textured lenses on the printout) also appears in many studies,
driven by the wide use of the LivDet-2017-IIITD-WVU set, which includes such PAI. CASIA-Iris-Fake, which
contains AE (artiicial eyes) and SY (synthetic irises) also appears in a few studies. Other attacks that one may
expect in the digital era, such as RA (replay), however, are residual in datasets and recent studies.

Table 5. Summary of datasets used in the DL-based iris Presentation Atack Detection methods of Table 3 (NIR: near-infrared ;

VW: visible wavelength). The type of PAIs (second column) is PP: paper printout, PPD: paper printout with a plastic dome,

CLL: textured contact lenses (live), CLP: textured contact lenses (printout), RA: replay atack (display), AE: artificial eyeball,

AEC: artificial eyeball with textured contact lens, SY: synthetic iris, PM: postmortem iris. TTP (next to the last column)

indicates the existence of a training/test split. The features (last column) are MS: multi-sensor, ME: multi-environment (e.g.

indoor/outdoor, light variability, mobile environment, etc.), and UPAI: unseen PAIs in the test set.

Name PAIs Data Size
# IDs # Samples

TTP Features
live fake live fake total

CASIA-Iris-Fake
[155]

PP, CLL, AE,
SY

NIR 640×480 1000 815 6000 4120 10240

IF-VE [199] CLL NIR n/a 200 200 25000 25000 50000 ✓ MS, ME
IPITRT [126] PP NIR var. 58 n/a 1800 551 2351 ME
IIITD-CLI [89] CLL NIR 640×480 202 n/a n/a n/a 6570 ✓ MS
IIITD-IS3 [64] PP, CLP NIR 640×480 202 n/a 0 4848 4848 MS
LivDet-2017 [194]
-Clarkson PP, CLL NIR 640×480 50 n/a 3954 4141 8095 ✓ UPAI (additional patterned

lenses)
-IIITD-WVU1 PP, CLL, CLP NIR 640×480 n/a n/a 2952 4507 7459 ✓ MS, ME, UPAI (additional pat-

terned lenses)
-ND-CLD2 CLL NIR 640×480 n/a n/a 2400 2400 4800 ✓ UPAI (additional patterned

lenses)
-Warsaw PP NIR 640×480 457 446 5168 6845 12013 ✓ MS
LivDet-2020 [33] PP, PPD, CLL,

CLP, RA, AE,
AEC, PM

NIR 640×480 n/a n/a 5331 7101 12432 MS

Iris-CL1 [162] PP NIR var. n/a n/a n/a 1800 n/a MS
JHU-APL [19] CLL, AE NIR n/a n/a n/a 7191 7214 14405 ME
MSU-IrisPA-01
[191]

PP, CLL, RA,
AE

NIR 640×480 n/a n/a 1343 2523

MUIPA [190] PP, CLL NIR 640×480 70 70 n/a n/a 10296 ME
ND-CLD-13 [42] CLL NIR 640×480 330 n/a 3400 1700 5100 ✓ MS
ND-CLD-152 [41] CLL NIR 640×480 n/a n/a 4800 2500 7300 ✓ MS
NDIris3D [51] CLL NIR 640×480 176 176 3458 3392 6850 MS
ND-PSID4 [31] CLL NIR 640×480 238 238 3132 2664 5796
UnMIPA [189] CLL NIR 640×480 162 162 9319 9387 18706 MS, ME
Warsaw-Post-
Mortem v3.0 [172]

PM NIR,
VW

var. 0 79 0 1879 1879 MS

1 Contains IIITD-CLI and IIITD-IS
2 Iris-LivDet-2017-ND-CLD is a subset of ND-CLD-15
3 IIITD-IS images are printouts of IIITD-CLI captured with an iris scanner and a latbed scanner
4 ND-PSID is a subset of ND-CLD-15
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8.2 Sotware Tools

The availability of DL-based tools for iris biometrics has been scarce for years, especially for PAD [51]. In the
following, we provide a short description of peer-reviewed references with associated source code (link included
in the paper, or easily found on the websites of the authors or dedicated sites such as www.paperswithcode.com).
We describe (in this order) tools for segmentation, recognition and PAD. For each type, the references are then
presented in chronological order.

8.2.1 Segmentation.

Lozej et al. [101] released their end-to-end DL model based on the U-Net architecture [139]. The model was
trained and evaluated with a small set of 200 annotated iris images from the CASIA database. The authors also
explored the impact of the model depth and the use of batch normalization layers.
Kerrigan et al. [85] released the code and models of Iris-recognition-OTS-DNN, a set of four architectures

based on of-the-shelf CNNs trained for iris segmentation (two VGG-16 with dilated convolutions, one ResNet
with dilated kernels, and one SegNet encoder/decoder). Training databases included CASIA-Irisv4-Interval, ND-
Iris-0405, Warsaw-Post-Mortem v2.0, and ND-TWINS-2009-2010, whereas testing data came from ND-Iris-0405
(disjoint subject), BioSec and UBIRIS.v2. Results showed that the DL solutions evaluated outperform traditional
segmentation techniques, e.g. Hough transform or integro-diferential operators. It was also seen that each test
dataset had a method that performed best, with UBIRIS obtaining the worst performance. This should not come
as a surprise, since it contains VW images with high variability taken distantly with a digital camera, whereas
the other two are from close-up NIR iris sensors in controlled environments.

Wang et al. [176] released the code and models of their high-eiciency segmentation approach, IrisParseNet. A
multi-task attention network was irst applied to simultaneously predict the iris mask, pupil mask, and iris outer
boundary. Then, from the predicted masks and outer boundary, a parameterization of the iris boundaries was
calculated. The solution is complete, in the sense that the mask (including light relections and occlusions) and
the parameterized inner and outer iris boundaries are jointly achieved.
More recently, authors from the same group presented IrisSegBenchmark [177], an open iris segmentation

evaluation benchmark where they implemented six diferent CNN architectures, including Fully Convolutional
Networks (FCN) [100], Deeplab V1,V2,V3 [21], ParseNet [98], PSPNet [206], SegNet [9], and U-Net [139]. The
methods were evaluated on CASIA-Irisv4-Distance, MICHE-I, and UBIRIS.v2. As in [85], results showed that
the best method depends on the database, being: ParseNet for CASIA (NIR data), DeeplabV3 for MICHE (VW
images from mobile devices), and U-Net for UBIRIS (VW images from a digital camera). In this case, however, the
three test databases behaved approximately equal, since they all contain diicult distant data. CASIA showed a
slightly better accuracy, suggesting that NIR data may be easier to segment. Traditional, non-DL methods were
also evaluated, concluding that DL-based segmentation achieves superior accuracy.
Banerjee et al. [10] released the code of their V-Net architecture, designed to overcome some drawbacks of

U-Net, such as instability to tackle iris segmentation or the tendency to overit. A pre-processing stage on the
YCrCb and HSV spaces was also added to detect salient regions and aid the detection of iris boundaries. The
method was evaluated on the diicult UBIRIS.v2 VW dataset.

8.2.2 Recognition.

The code of the DL method ThirdEye was released by Ahmad and Fuller [3], based on a ResNet-50 trained with
triplet loss. Authors directly used segmented images without normalization to a rectangular 2D representation,
arguing that such step may be counterproductive in unconstrained images. The model was evaluated on the
ND-0405, IITD, and UBIRIS.v2 datasets.
The models of Boyd et al. [15] for recognition have been also released, based on a ResNet-50 with diferent

weight initialization techniques, comprising: from scratch (random), of-the-shelf ImageNet (general-purpose
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vision weights), of-the-shelf VGGFace2 (face recognition weights), ine-tuned ImageNet weights, and ine-tuned
VGGFace2 weights. Both ImageNet and VGGFace2 are very large datasets with millions of images, and face images
contain the iris region. Thus, using these datasets as initialization may be beneicial for iris recognition, where
available training data is in the order of hundreds of thousands of images only. This strategy has been followed
e.g. in ocular soft-biometrics as well [6]. The observed optimal strategy is indeed to ine-tune an of-the-shelf set
of weights to the iris recognition domain, be general-purpose or face recognition weights.

8.2.3 Segmentation and Recognition Packages.

A complete package comprising segmentation and feature encoding was provided by Tann et al.[161]. The
segmentator is based on a Fully Convolutional Network (FCN), but the encoding is based on hand-crafted Gabor
ilters [35]. The evaluation was done on CASIA-Irisv4-Interval and IITD.
In forensic investigation for diseased eyes and post-mortem samples, Czajka [29] also released a complete

package combining segmentation and feature encoding. The models are based on previous eforts of the author
and co-workers, comprising a SegNet [172] and a CCNet [106] DL segmentators, but the feature encoder is based
on hand-crafted BSIF ilters.

Another complete segmentation and recognition package was released by Kuehlkamp et al. [91]. The segmen-
tator is based on a ine-tuned Mask-RCNN architecture, with the cropped iris region fed directly into a ResNet50
pre-trained for face recognition on the very large VGGFace2 dataset, and ine-tuned for iris recognition using
triplet loss. The paper is oriented toward postmortem iris analysis, so the methods use a mixture of live and
postmortem images for training and evaluation.

Parzianello and Czajka [125] also released the models and annotated data for their textured contact lens aware
iris recognition method. The foundation is that such lenses may be used normally for cosmetic purposes, without
the intention of fooling the biometric system. Therefore, they proposed to detect and match portions of live
iris tissue still visible to enable recognition even when a person wears textured contact lenses. To do so, they
applied a Mask R-CNN as a segmentation backbone, trained to detect authentically-looking parts of the iris using
manually segmented samples from the NDIris3D dataset. Non-iris information is then removed from the training
images by blurring it or replacing it with random noise to guide the subsequent recognition network (based on
ResNet-18) to salient, non-occluded regions that should be used for matching.

8.2.4 Iris PAD.

In the iris PAD arena, Gragnaniello et al. [61] proposed a CNN that incorporates domain-speciic knowledge.
Based on the assumption that PAD relies on residual artifacts left mostly in high-frequencies, a regularization
term was added to the loss function which forces the irst layer to behave as a high-pass ilter. The method, which
is available on the website of the irst author, could be applied to PAD in multiple modalities, including iris and
face.
The code and model of the method of Sharma and Ross [150] (D-NetPAD) is also available. It is based on

DenseNet121 and trained for a variety of PAIs (printouts, artiicial eye, cosmetic contacts, kindle replay, and
transparent dome on print), with a script to retrain the method also available.

8.3 Other Tools: Iris Image uality Assessment

Several image properties considered to potentially inluence the accuracy of iris biometrics have been deined
in support of the standard ISO/IEC 29794-6 [164]. They include the grayscale spread (dynamic range), iris size
(pixels across the iris radius when the boundaries are modeled by a circle), dilation (ratio of the pupil to iris
radius), usable iris area (percentage of non-occluded iris, either by eyelashes, eyelids or relections), the contrast
of pupil and sclera boundaries, shape (irregularity) of pupil and sclera boundaries, margin (distance between the
iris boundary and the closest image edge), sharpness (absence of defocus blur), motion blur, signal to noise ratio,
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gaze (deviation of the optical axis of the eye from the optical axis of the camera), and interlace of the acquisition
device.

Low-quality iris images, which can potentially appear in uncontrolled or non-cooperative environments, are
known to reduce the performance of iris location, segmentation, and recognition. Thus, an accurate quality
assessment can be a valuable tool in support of the overall pipeline, either by dropping low-quality images, or
invoking specialized processing [5]. One possibility might be to quantify the properties mentioned above, and
place thresholds on each. A more elaborated alternative is to combine them according to some rule and produce
an overall quality score. However, it is diicult to provide metrics that cover all types of quality distortions [157],
and doing so for some indeed entails segmenting the iris.

Broadly, a biometric sample is of good quality if it is suitable for recognition, so quality should correlate with
recognition performance [62]. As such, quality assessment can be viewed as a regression problem. Wang et al.
[182] considered that a non-ideal eye image will pivot in the feature space around the embedding of an ideal
image. They deined quality as the distance to the embedding of such an łidealž image which, is regarded as a
registration sample collected under a highly controlled environment. They used a model to learn the mapping
between images and Distance in Feature Space (DFS) directly from a given dataset. Quality is computed via
attention-based pooling that combines a heatmap that comes from a coarse segmentation based on U-Net and the
feature map of an extraction network based on MobileNetv2 pre-trained on CASIA-Iris-V4 and NDIRIS-0405.

9 EMERGING RESEARCH DIRECTIONS

In this section, we discuss the most relevant open challenges and hypothesize about emerging research directions
that could become hot-topics in biometrics literature in the near future.

9.1 Resource-aware designs of iris recognition networks

Application-wise, iris recognition can be performed on a wide range of hardware, ranging from high-end
computers to low-end embedded devices, or from large computer clusters to personal devices such as mobile
phones. Performing recognition on resource-limited hardware could pose new challenges for deep learning-based
iris networks, which usually contain hundreds of layers and millions of parameters. Therefore designing these
deep learning networks necessarily need to be aware of the hardware platforms on which they will be run.

Lightweight models: Lightweight CNNs employ advanced techniques to eiciently trade of between resource and
accuracy, minimizing their model size and computations in terms of the number of loating point operations
(FLOPs), while retaining high accuracies. Specialized lightweight CNN architectures include MobileNets [73]
and U-Net [139]. There are a few lightweight deep learning-based models for both segmentation and feature
extraction. Fang et al. [50] adapted the lightweight CC-Net [106] for iris segmentation. CC-Net has a U-Net
structure [139], able to retain up to 95% accuracy using only 0.1% of the trainable parameters. Boutros et al. [13]
benchmarked MobileNet-V3 against deeper networks for iris recognition and showed that the MobileNet-based
model can achieve similar EER with 85% less number of parameters and 80% less inference time.

Model compression: Studies have found that most of the large deep-learning models tend to be overparameterized,
leading to lots of redundant parameters and operations in the network. This becomes more severe considering
iris texture images are diferent from generic object-based images. This has motivated a hot trend looking to
remove these redundancies from the models, including pruning, quantization, and low-rank factorization [95]. In
our iris recognition literature, there are a few lightweight deep learning-based models for both segmentation and
feature extraction. Tann et al. [161] quantized 64-bit loating points numbers of weights and activations of the
full FCN-based iris segmentation model using an 8-bit dynamic ixed-point (DFP) format, which provides an 8×
memory saving as well as speed enhancement due to reduced complexity of lower precision operations.
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Neural Architecture Search: Neural Architecture Search (NAS) automates the process of architecture design of
neural networks by iteratively sampling a population of child networks, evaluating the child models’ performance
metrics as rewards, and learning to generate high-performance architecture candidates [43]. In our iris recognition
literature, Nguyen et al. [113] showed that computation andmemory can be incorporated into the NAS formulation
to enable the resource-constrained design of deep iris networks.

9.2 Human-interpretable methods and XAI

With hundreds of layers and millions of parameters, deep learning networks are usually opaque or łblack boxž
where humans struggle to understand why a deep network predicts what it predicts. This necessitates approaches
to make deep learning methods more interpretable and understandable to humans. Interestingly, the need for
human-interpretable methods has been raised even from the handcrafted era. For example, Shen et al. published
a series of works [20, 152] on using iris crypts for iris matching. Iris crypts are clearly visible to humans in a
similar way as inger minutiae. Another example is the macro-features [156] which use SIFT to detect key points
and perform iris matching based on these keypoints [136]. Another notable work is by Proença et al. [132] where
they proposed a deformation ield to represent the correspondence between two iris images.

From a deep learning perspective, researchers have also attempted to visualize the matching. Kuehlkamp et al.

[91] argued that existing iris recognition methods ofer limited and non-standard methods of visualization to
let human examiners interpret the model output. They applied Class Activation Maps (CAM) [212] to visualize
the level of contribution of each iris region to the overall matching score. Similarly, Nguyen et al. [115] also
decomposed the inal matching score into pixel-level to visualize the level of contribution of each pixel to the
overall matching score.

9.3 Deep learning-based synthetic iris generation

Data synthesis provides an alternative to time- and resource-consuming database collection. One could create as
many images as desired, with new textures that even do not match any existing identity, which would avoid
privacy problems too. On the other hand, fake irises that are indistinguishable from real ones can be used for
identity concealment attacks (if the image does not match any identity) or impersonation attacks (if the image
resembles an existing identity) [30]. Indeed, synthetic irises are present in databases employed for iris PAD, such
as CASIA-Iris-Fake (Table 5).

Regardless of the purpose or ability to detect if an image is synthetic, Generative Adversarial Networks (GANs)
[60] have shown impressive photo-realistic generating capabilities in many domains. GANs learn to model image
distributions by an adversarial process, where a discriminator assesses the realism of images synthesized by a
generator. In the end, the generator has learned the distribution of the training data, being able to synthesize new
images with the same characteristics.

For iris generation, some methods by Yadav et al. [191ś193] were mentioned in iris PAD contexts (Section 4.4).
RaSGAN [191, 192] followed the traditional approach of driving the generation/discrimination training by
randomly sampling so-called latent vectors from a probabilistic distribution. As training progresses, the generator
learns to associate features of the latent vectors with semantically meaningful attributes that naturally vary in
the images. However, this does not impose any restriction on the relationship between features in latent space
and factors of variation in the image domain, making it diicult to decode what the latent vectors represent. As a
result, the image characteristics (eye color, eyelid shape, eyelashes, gender, age...) are generated randomly. Kohli
et al. [90] presented iDCGAN for iris PAD, which also followed the latent vector sampling concept. To counteract
such issues, researchers have tried to incorporate constraints or mechanisms that guide the generation process to
a desired characteristic. For example, CIT-GAN [193] employed a Styling Network that learns style characteristics
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of each given domain, while taking as input a domain label that drives the network to embed a desired style into
the generated data.

In a similar direction, Kaur and Manduchi [83, 84] proposed to synthesize eye images with a desired style (skin
color, texture, iris color, identity) using an encoder-decoder ResNet. The method is aimed at manipulating gaze,
so the generator receives a segmentation mask with the desired gaze and an image with the style that will see its
gaze modiied. To achieve cross-spectral recognition, Hernandez-Diaz et al. [71] used CGANs to convert ocular
images between VW and NIR spectra while keeping identity, so comparisons are done in the same spectrum.
This allows the use of existing feature methods, which are typically optimized to operate in a single spectrum.

Despite great advances in DL-based synthetic image generation, one open problem is the possible identity
leakage from the training set when creating data of non-existing identities, resulting in privacy issues. This has
just been revealed recently in face generation [165]. Another issue in the opposite direction is the diiculty
in preserving identity in the generation process when the target is precisely creating images of an existing
identity with diferent properties. This is an issue being addressed in face-generation methods but is lacking in
iris synthesis research.

9.4 Deep learning-based iris super-resolution

One of the main constraints for existing iris recognition systems is the short distance of image acquisition,
which usually requires a subject to stay still less than 60 cm from iris cameras. This is due to the requirement
of a high-resolution iris region, e.g. 120 pixels across the iris diameter due to the European standard and NIST
standard, despite the small physical size of an eye, i.e. 15 × 15 mm. The lack of resolution of imaging systems has
critically adverse impacts on the recognition and performance of biometric systems, especially in less constrained
conditions and long-range surveillance applications [116].
Super-resolution, as one of the core innovations in computer vision, has been an attractive but challenging

solution to address the low-resolution problem in both general imaging systems and biometric systems. Deep
learning-based super-resolution approaches have been across multiple works in iris recognition. Ribeiro et

al. [137, 138] experimented with two deep learning single-image super-resolution approaches: Stacked Auto-
Encoders (SAE) and Convolutional Neural Networks (CNN). Both approaches learn one encoder to map the
high-resolution iris images to the low-resolution domain, and one decoder to learn to reconstruct the original
high-resolution images from the low-resolution ones. Zhang et al. [201] learned a single CNN to learn a non-linear
mapping function between LR images to HR images for mobile iris recognition. Wang et al. [183] extended the
single CNN to two CNNs: one generator CNN and one discriminator CNN as in the GAN architecture. The
generator functions similarly to the single LR - HR mapping CNN. Adding the discriminator CNN allows them to
control the generator to generate HR images not just visually higher resolution but also preserve the identity
of the iris. Mostofa et al. [109] incorporated a GAN-based photo-realistic super-resolution approach [93] to
improve the resolution of LR iris images from the NIR domain before cross-matching the HR outputs with the
HR images from the RGB domain. While these approaches showed improved performance, dealing with noisy
data in such cases as iris at a distance and on the move could require the quality of an input iris image to be
included in the super-resolution process [114]. In addition, Nguyen et al. argued that a fundamental diference
exists between conventional super-resolution motivations and those required for biometrics, hence proposing to
perform super-resolution at the feature level targeting explicitly the representation used by recognition [117].

9.5 Privacy in deep learning-based iris recognition

Privacy is becoming a key issue in computer vision and machine learning domains. In particular, it is accepted
that the accuracy attained by deep learning models depends on the availability of large amounts of visual data,
which stresses the need for privacy-preserving recognition solutions.
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In short, the goal of privacy-preserving deep learning is to appropriately train models while preserving the
privacy of the training datasets. While the utility of this kind of solution is obvious, there are certain concerns
about the training data that supported the model creation, as the collection of images from a large number of
individuals comes with signiicant privacy risks. In particular, it should be considered that the subjects from
whom the data were collected can neither delete nor control what actually will be learned from their data.

As with most of the existing biometric technologies, DL-based iris recognition poses challenges to privacy,
which are even more concerning, considering the data-driven feature of such kind of systems. Particular attention
should be paid to avoid function creep, guaranteeing that the system yielding from a set of data is not used for a
diferent purpose than the originally communicated to the individual at the time of providing their information.
Covert collection is another major concern, which is also particularly important for the iris trait, according to the
possibility of being imaged from large distances and in a surreptitious way.

Particular attention has been paid to the development of fair recognition systems, in the sense that these kinds
of systems should attain similar efectiveness in diferent subgroups of the population, regarding diferent features
such as gender, age, race or ethnicity. For data-driven systems, this might be a relevant challenge, considering that
most of the existing datasets that support the learned systems have evident biases with regard to the subjects’
characteristics above.
Lastly, in a more general machine learning perspective, potential attacks on the learned models have been

concerning the research community and have been the scope of various recent works, attempting to provide
defense mechanisms against: i) model inversion attacks, that aim to reconstruct the training data from the model
parameters (e.g., [87] and [67]); ii) membership inference, that attempt to infer whether one individual was part
of a training set (e.g., [75] and [153]); and iii) training data extraction attacks, that aim to recover individual
training samples by querying the models (e.g, [86] and [39]).

9.6 Deep learning-based iris segmentation

Being one of the earliest phases of the recognition process, segmentation is known as one of the most challenging,
as it is at the front line for facing the dynamics of the data acquisition environments. This is particularly true, in
the case of less constrained data acquisition protocols, where the resulting data have highly varying features and
the particular conditions of each environment strongly determine the most likely data covariates.
In the segmentation context, the main challenge remains as the development of methods robust to cross-

domain settings, i.e., able to segment the iris region for a broad range of image features, e.g., in terms of: 1)
illumination, 2) scale, 3) gaze, 4) occlusions, 5) rotation and 6) pose, corresponding to the acquisition in very
diferent environments. Over the past decades, many research groups have been devoting their attention to
improving the robustness of iris segmentation, which is known to be a primary factor for the inal efectiveness
of the recognition process. In this timeline, the proposed segmentation methods can be roughly grouped into
three categories: 1) boundary-based methods (using the integro-diferential operator or Hough transform); 2)
based on handcrafted features (particularly suited for non-cooperative recognition, e.g., [160] and [159]); and 3)
DL-based solutions.
For the latter family of methods, the emerging trends are closely related to the general challenges of DL-

based segmentation frameworks, namely to obtain interpretable models that allow us to perceive what exactly
these systems learning or the minimal neural architecture that guarantees a predeined level of accuracy. Also,
the development of weakly supervised or even unsupervised frameworks is another grand-challenge, as it is
accepted that such systems will likely adapt better to previously unseen data acquisition conditions. Finally, the
computational cost of segmentation (both in terms of space and time) is another concern, with special impact in
the deployment of this kind of framework in mobile settings, and in the IoT setting [140].
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9.7 Deep learning-based iris recognition in visible wavelengths

Being a topic of study for over a decade (e.g. [99] and [129]), iris recognition in visible wavelengths remains
essentially an interesting possibility for delivering biometric recognition from large distances (in conditions that
are typically associated to visual surveillance settings) and in handheld commercial devices, such as smartphones.
The emerging trends in this scope regard the development of alternate ways to analyze the multi-spectral

information available in visible light data (typically RGB), i.e., by developing deep learning architectures optimized
for fusion, either at the data, feature, score, or decision levels [11].
In the visual surveillance setting, the main challenge regards the development of optimized data acquisition

settings, proiting from the advances in remote sensing technologies, that should be able to augment the quality
(e.g., resolution and sharpness) of the obtained irises. In this scope, the research on active data acquisition
technologies (based on PTZ devices, or similar) might also be an interesting emerging possibility [66].

10 CONCLUSIONS

Motivated by the tremendous success of DL-based solutions for many diferent solutions to everyday problems,
machine learning is entering one of its golden eras, attracting growing interest from the research, commercial,
and governmental communities. In short, deep learning uses multiple layers to represent the abstractions of data
to build computational models that - even in a bit surprising way - typically surpass the previous generation of
handcrafted-based automata. However, being extremely data-driven, the efectiveness of DL-based solutions is
typically constrained by the existence of massive amounts of data, annotated consistently.
As in the generality of the computer-vision topics, a myriad of DL-based techniques has been proposed over

the last years to perform biometric recognition, and - in particular - iris recognition. Nowadays, the existing
methods cover the whole phases of the typical processing chain, from the preprocessing, segmentation, and
feature extraction up to the matching and recognition steps.

Accordingly, this article provides the irst comprehensive review of the historical and state-of-the-art approaches
in DL-based techniques for iris recognition, followed by an in-depth analysis of pivoting and groundbreaking
advances in each phase of the processing chain. We summarize and critically compare the most relevant methods
for iris acquisition, segmentation, quality assessment, feature encoding, matching, and recognition problems,
also presenting the most relevant open problems for each phase.

Finally, we review the typical issues faced in DL-basedmethods in this domain of expertise, such as unsupervised
learning, black-box models, and online learning and illustrate how these challenges can be important to open
proliic future research paths and solutions.
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