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Abstract

Having observed the unsatisfactory state-of-the-art per-
formance in detecting abnormal events, this paper de-
scribes an iterative self-supervised learning method for
such purpose. The proposed solution is composed of two
experts that - at each step - find the most confidently clas-
sified instances to augment the amount of data available
for the next iteration. Our contributions are four-fold: 1)
we describe the iterative learning framework composed of
experts working in the weak/self-supervised paradigms and
providing learning data to each other, with the novel in-
stances being filtered by a Bayesian framework; 2) upon
Sultani et al. [14]’s work, we suggest a novel term the loss
function that spreads the scores in the unit interval and is
important for the performance of the iterative framework;
3) we propose a late decision fusion scheme, in which an
ensemble of Decision Trees learned from bootstrap sam-
ples fuses the scores of the top-3 methods, reducing the
EER values about 20% over the state-of-the-art; and 4)
we announce the ”Fights” dataset, fully annotated at the
frame level, that can be freely used by the research commu-
nity. The code, details of the experimental protocols and the
dataset are publicly available at http://github.com/
DegardinBruno/ .

1. Introduction

The automatic analysis of human activities is still a tough
challenge. In particular, detecting abnormal events in ur-
ban environments is challenging due to various reasons: not
only the data acquisition environments are extremely di-
verse, but resembling patterns among the various possible
types of abnormalities is particularly difficult, due to their
heterogeneity.

Considering the difficulties in obtaining labelled positive
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instances (abnormal events), most of the existing methods
approach the problem from the one-class classification per-
spective (term coined by Moya and Hush [9]), modelling
exclusively normal events and assuming that elements from
different distributions (i.e., outliers) would represent abnor-
malities. Among other examples, [11] and [17] used gener-
ative adversarial networks (GANs [4]) to generate normal
data, assuming that non-analogous events fed to the gener-
ator will provide higher reconstruction losses than normal
sequences. Also, Roy and Bilodeau [12] used GANs to per-
ceive normal pedestrian trajectories. More recently, Sultani
et al. [14] proposed one method based in the multiple in-
stance learning (MIL) paradigm and using data annotated
at the bag (video) level, coming out with a model that is
considered the state-of-the-art.

In this paper we describe one iterative learning frame-
work based in the weakly and self-supervised paradigms,
composed of two experts feeding data to each other. 1)
Upon Sultani et al. [14]’s method, we infer a model that dis-
tinguishes between normal/abnormal segments (weakly su-
pervised (WS) model). Importantly, a novel term was added
to the original loss function to spread of response scores
in the unit interval, which enables the discrimination be-
tween the most/less confidently classified instances; 2) we
use a Bayesian classifier to filter out the less reliably classi-
fied instances in an unlabelled dataset; 3) we deem that the
high-belief instances are correctly classified and used these
as input of a second network working at the segment level
(self-supervised (SS) expert); 4) based in the responses pro-
duced by the SS model, we select the instances that will
extend the WS learning set in the second iteration.

The rationale is to iteratively augment (based on un-
labelled data) the learning sets used by the WS and SS
experts. The iterative process selects the novel instances
added to the learning sets of both experts, and is repeated
while improvements in validation performance are ob-
served. A pictorial view of the whole framework is given
in Fig. 1.
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Figure 1: Cohesive view of the iterative learning framework proposed in this paper. The blue and red colors represent the
two kinds of components used: at first, we adapted Sultani et al. [14]’s method to spread its output scores in the unit interval.
Then, a Bayesian framework filters the instances of an unlabelled data set, and feeds the most reliably classified elements to
a self-supervised learning network working at the segment level. Again, the responses predicted by this expert are used by a
second Bayesian framework that filters the videos to be used in the next iteration of the first framework.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the most relevant works in the scope of
our work. Section 3 provides the details of the proposed
method. In Section 4 we discuss the obtained results and
the conclusions are given in Section 5.

2. Related Work
Various works (e.g., [7], [8] and [15]) have reported that

3D convolutions provide output volumes that simultane-
ously preserve the spatiotemporal input features. Karpathy
et al. [8] also reported the advantages yielding from fusing
both kinds of information at different stages of the process-
ing pipeline. Tran et al. [15] proposed a video encoding
scheme based on 3D ConvNets, coming out with a descrip-
tor that has been used as main source for various abnormal
detection techniques (e.g., [3] and [14]).

Chong and Tay [2] trained a spatial feature extractor fol-
lowed by a temporal auto-encoder that is fed with normal
events. The rationale is that, upon an abnormal event, the
auto-encoder should not be able to reconstruct it, at least
in an effective way as for the normal events seen during
the learning phase. Roy and Bilodeau [12] followed a sim-
ilar strategy, based in GANs to better train the discrimina-
tor expert. Hasan et al. [5] considered improved trajectory
features from Wang and Schmid [16]’s work, fused to his-
tograms of oriented gradients (HOG) and histograms of op-
tical flows (HOF) features to feed an auto-encoder. Based in
conditional GANs [6] (cGANs), Ravanbakhsh et al. [11] ex-
tracted the optical-flow from consecutive frames and trained
two networks, one to generate optical-flow from frames and
another to generate frames from optical-flow, both com-
posed of a conditional generator and discriminator.

Sultani et al. [14] proposed the method that is consid-
ered the state-of-the-art. They exploited both normal and
abnormal videos, learning anomalies in a multiple instance
learning (MIL) paradigm. Each video was considered a bag,
and divided into non-overlapping temporal segments, used
as instances. As the specific information of the positive
bag (video containing an anomaly) is not known, the im-
plemented ranking loss uses the maximum scores of each
video to produce a ranking model, obtaining low scores and
high scores for negative and positive instances, significantly
advancing the state-of-the-art performance.

3. Proposed Method

For consistency purposes, we adopt a notation as close as
possible to Sultani et al. [14]’s. Vi

k denotes the ith segment
of a video (bag) Bk, where k ∈ {′a′,′ n′} refer videos with
abnormal and normal events. B(t) = {B1, . . . ,Bnw

} is a
learning set of nw videos at iteration t (used as learning data
by the WS model). Similarly, V(t) = {V1, . . . ,Vns} is the
learning set used by the SS model.

3.1. Weakly-supervised Network

The proposed WS model is based in the work of Sultani
et al. [14]. Under the MIL paradigm, we consider the videos
as bags, annotated in a binary way: positive instances have
an abnormal event at some point, while negative instances
assuredly contain only normal segments. Sultani et al. pro-
posed the following MIL ranking loss function:
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represent the prediction scores

of abnormal and normal segments and max considers the
video segments in each bag. In this formulation, 1© enforces
the temporal smoothness, while 2© is the sparsity term.

During our experiments, we noticed that the loss func-
tion described in (1) typically produces extremely peaked
distributions for both the normal/abnormal scores, turning
hard to perceive the most confidently correctly classified in-
stances. For our purposes, it was also important to assure
that the responses for the most evidently normal/abnormal
segments were close to the extremes of the unit interval,
while all the scores for uncertain observations should spread
as much as possible among intermediary values. Hence, an
entropy-based term was added to the loss function, given
by:

H (Bu) = −
t∑

i=1

P
(
f(Vi

u)
)
log
(
P
(
f(Vi

u)
))
, (2)

where Bu
def
= {Ba ∪ Bn} denotes all the videos in the

batch, and P
(
f(Vi

u)
)

approximates the density of the f(Vi
u)

scores. We divided the unit interval into bins of equal width
and counted the number of values in each bin:

bi =

n∑
j=1

1{ i−1
n ≤f(V

j
u)≤ i

n}
,∀i ∈ {1, . . . , t}, (3)

where 1. represents the characteristic function. After ob-
taining the bi statistic, values were normalized to have sum
equal to one, i.e., approximating a distribution probability:
b∗i = bi∑

j bj
. In practice, the b∗i values were used to approx-

imate P
(
f(Vi

u)
)
. The primary effect of the novel term is

illustrated in Fig. 2, with the horizontal axis denoting the
codomain of the classifier and the vertical axis provides the
b∗i values per bin.

Fusing (1)-(2) and considering also the regularization
terms that minimizes the model weights, our complete ob-
jective function becomes:

L(W) = l (Ba,Bn)− λ3

3©︷ ︸︸ ︷
H (Bu))+λ4‖W‖F ,

(4)

where W represents the model weights and 3© avoids
peaked distributions for normal/abnormal events.

As stated above, the rationale of (4) is that less peaked
distributions of scores will produce higher entropy values.
Even if it is less frequent to obtain scores close to 0 and
1, the important point is to assure that only the most evi-

Figure 2: Comparison between the histograms describing
the spread of f(Vi

u) scores in the unit interval, without/with
the novel term. The left plot regards Sultani et al.’s loss,
while the right plot provides the values for the loss func-
tion proposed in this paper. For visualization purposes, the
vertical axis is plotted in log scale.

dently normal/abnormal instances attain values close to the
extremes, which is the key feature for selecting the instances
that are iteratively added to the next generation of the learn-
ing sets, by means of the Bayesian framework.

3.2. Self-supervised Network

The SS model works at the segment level, and follows
a classical classification paradigm. It receives C3D [15]
feature vectors of 4,096 components describing video seg-
ments (16 frames/each) and predicts the abnormality of that
segment, i.e., the likelihood of containing one abnormal
event. This network has a 3-layer fully connected archi-
tecture, with 512 units in the first layer, 32 units in the sec-
ond one and 1 unit in the output layer. We used ReLU [10]
activation functions for the two first layers and a sigmoid
activation in the output neuron. A binary cross-entropy loss
drives the learning process of this model.

3.3. Bayesian Classifiers

In this work, the Bayesian classifiers enable to perceive -
among the unsupervised data - the degree of belief for each
classified instance. In a self-supervised fashion, the idea
is that only the instances with the highest beliefs should
be added to the next generation of the learning set, either
for the WS and SS models. There are two Bayesian classi-
fiers in our method: 1) the weak one (Pw), that receives the
scores produces by the WS expert and filters the segments
that should be used in the SS training; and 2) the strong
counterpart, that receives the scores from the SS expert (at
the segment level), and selects the videos that should be
used in the next iteration of the WS model.

Pw

(
y|f(Vi)

)
=
P
(
f(Vi)|y

)
P (y)

P
(
f(Vi)

) (5)



Figure 3: Comparison between the posteriors P
(
y|f(Vi)

)
obtained by the Bayesian classifier, when using the Sultani
et al. formulation and ours.

where y ∈ {′a′,′ n′} represent the abnormal/normal
classes. A Gaussian kernel density estimator was used
to more accurately approximate the conditional densities
P
(
f(Vi)|y

)
, with Scott’s rule [13] for bandwidth selection.

Even though there is typically a significant imbalance be-
tween the number of normal and abnormal instances, we
empirically adjusted the priors to P (′a′) = P (′n′) = 0.5.

Fig. 3 compares the posteriors per class, according to
the Sultani et al.’s loss and ours, when the entropy term
was also considered. The blue lines represent the normal
events, and the red lines represents the abnormality scores.
As it is notorious, the immediate effect of our proposal is
to obtain a more evident separation between the degrees of
belief for both classes near the extremes of the unit interval
(particularly in the upper extreme).

Formally, the ith segment is selected for the next gener-
ation of the SS learning data according to the rule:

V(t+1) def
= {Vi ⇐⇒ Pw

(
y|f(Vi)

)
≥ τ1}, y ∈ {′a′,′ n′},

(6)
i.e., if the posterior for either the ’n’/’a’ classes is higher
than a threshold.

Regarding the strong Bayesian classifier, it should decide
at the bag (video) level, receiving the video segments scores
and classifying globally that video as normal/abnormal:

Ps

(
y|f(Bi)

)
=
P
(
f(Bi)|y

)
P (y)

P
(
f(Bi)

) (7)

where y ∈ {′a′,′ n′} represent the abnormal/normal
classes. Having initially considered the utilisation of simple
fusion rules (such as max or prod) for obtaining the degree
of belief per video, the poor levels of performance led us to
the choice of a simple feed-forward classification module
with four layers and 256 : 196 : 128 : 1 architecture for es-
timating Ps

(
y|f(Bi)

)
. This network was trained in a small

part of our initial learning set (at iteration 0). Finally, and in
way much similar to the weak Bayesian classifier, only the
video instances that provide the extreme degrees of belief

are selected to the next iteration of the learning set:

B(t+1) def
= {Bi ⇐⇒ Ps

(
y|f(Bi)

)
≥ τ2},∀i ∈ B(t),

y ∈ {′a′,′ n′}, (8)

The τi values were adjusted empirically, according to the
performance observed in a validation set.

4. Experiments and Discussion

4.1. Datasets, Baselines and Empirical Evaluation
Protocol

Our experiments were conducted in two datasets: 1) con-
cerned about the detection of fights in surveillance footage,
we mined 1,000 videos (collected from Youtube and Live-
Leak): 784 containing normal events, and the remain-
ing 216 containing some fight segment. This dataset was
manually annotated at the frame level; and 2) the UCF-
Crime [14], composed of 1,900 surveillance videos, includ-
ing normal scenes and 13 types of abnormalities, annotated
at the video level (learning) and at the segment level (test).
It is currently the largest freely available data source for ab-
normal events detection.

All videos of both datasets were resized to 360 × 640
pixels, with frame rate normalized to 30 fps, and trimmed
into sub-videos of constant length (16 seconds), having
manually adjusted the corresponding annotations. The
Fights set was split into three disjoint subsets: 80% (learn-
ing), 5% (validation) and 15% (test), while for the UCF-
Crime we used the default learning data, with 50% of
the test data (randomly chosen) used for validation pur-
poses. Next, for every 16 frames of both sets (i.e., one
segment), the sixth fully-connected layer (FC6) of the C3D
network [15] was used to extract the spatiotemporal descrip-
tors. In terms of the parameterization of our solution, we
used τ1 = τ2 = 0.99 (Fights) and 0.999 (UCF-Crime),
λ1 = λ2 = 8 × 10−5, λ3 ∈ [0, log(ep+1)

30 ], with respect
to the training epoch ep, and λ4 = 1

As baselines, five methods were considered to repre-
sent the state-of-the-art: Sultani et al. [14], Ravanbakhsh
et al. [11], Chong and Tay [2], Hasan et al. [5] and Wang
et al. [17], all described in section 2. Apart these, we also
tested the performance attained by a quadratic kernel SVM
working under the single-class paradigm, fed by the same
C3D feature vectors as our WS and Sultani et al. mod-
els. The area under the curve (AUC), and the equal er-
ror rate (EER) and used as performance measures. Also,
considering that abnormal events are rare, we also use the
TPR@FPR=0.001 to report the typical performance values
at very low error rates.

To guarantee a fair evaluation between our method and
the state-of-the-art, considering that one premise of our
work is that a set of unsupervised data is available, we disre-
garded the ground-truth labels of 50% of the learning sets,



Figure 4: Improvements in validation performance of our
frameworks with respect to the iteration, observed for the
Fights and UCF-Crime sets. The red points denote the SS
model and the blue points denotes the WS model. As base-
line, the continuous black lines denote Sultani et al.’s per-
formance.

and considered those subsets as unlabelled. Accordingly,
these instances were also removed from the learning sets of
the other methods. In practice, all methods used rigorously
the same amount of annotated labels for earning purposes.

4.2. Results and Discussion

4.2.1 Individual Methods

The first observation was the poor performance that single-
class techniques attain in this type of problem, in accor-
dance to the observation drew by Sultani et al. In our view,
this might be due to the extreme heterogeneity of the ex-
pected inputs, with these frameworks eventually requiring
additional amounts of learning data to become minimally
effective.

Regarding our proposal, Fig. 4 provides the evolution
in performance the WS and SS models, according to the
number of iterations. For both the Fights and UCF-Crime
datasets, the SS attains its optimal point at the end of the
third iteration, while the WS model obtained its maximum
AUC value at the forth iteration, by a clear margin for the
Fights set, and only by a residual difference for the UCF-
Crime. Regarding the results in the latter set, the substan-
tially harder task of finding simultaneously consistent pat-
terns among 13 different types of abnormalities justifies the
performance of the WS expert, which got results practically
equal to the Sultani et al. method in all iterations.

Fig. 5 compares the ROC curves of all methods, in the

Figure 5: Comparison between the ROC curves obtained by
the seven methods considered, for the Fights (left plot) and
UCF-Crime (right plot) datasets. The inner plots provide
the performance levels at low false acceptance rates.

Fights (left plot) and UCF-Crime (right plot) sets. Consid-
ering that normal events are rare, the zoomed-in plots in
each plot provide the performance values for very low FAR
values (TPR@FAR ¡ 0.01). Overall, our method attained
clearly better results than any competitor, with exception
of a small region in the performance space of UCF-Crime
set, where Ravanbakhsh et al. outperformed any other (even
here, our solution became the best one for FAR ¿ 0.006).
Interestingly, the improvements in performance were more
evident in the UCF-Crime set than in Fights, even consid-
ering that our method was designed having in mind the spe-
cific detection of fights. Sultani et al. was the runner up
approach in most cases, which accords the previously re-
ported results. However, the gap observed between the re-
sults reported here and in [14] enables to conclude about
an extreme sensitivity of this technique to the amounts of
data used for learning purpose. All the other methods were
considered to completely fail in the detection of abnormal
actions, at least with these amounts of learning data, and
for heterogeneous environments as the considered here. In
our view, the application of single-class learning techniques
would be appropriate exclusively when providing learning
data that features the exact same lighting conditions and
camera pose as the test set.

4.2.2 Late Fusion Ensemble

The linear correlation between the responses produced by
all the methods is shown in the left plot of Fig. 6. A 8 ×
8 matrix is provided, describing the Person correlation val-
ues between ours WS/SS models, Sultani et al. (S), Hasan
et al. (H), Ravanbakhsh et al. (R), Wang et al. (W), Chong
and Tay (C) and SVM classification (V). The upper diag-
onal provides the values for UCF-Crime, while the Fights
values are in the lower diagonal of the matrix. The lev-
els of correlation in both sets were roughly the same, even
though slightly higher values were observed for the Fights
set. Also, the SVM classifier was - overall - the method that



Figure 6: At left: linear correlation (Pearson coefficient)
between the responses given by the methods analyzed. At
right: improvements in performance for the Fights and
UCF-Crime sets when using a Random Tree ensemble that
fuses at the score level the output of the WS/SS/[14] experts
(continuous lines) with respect to the best individual expert
(dashed lines).

got the lowest average levels of correlation with respect to
the remaining techniques.

Such relatively low levels of linear correlation motivated
us to exploit the improvements in performance due to a late
fusion scheme (Random Forest [1]). We created fifty boot-
strap samples, each composed of 90% of the learning in-
stances (drew with repetition) and created a decision tree
for each sample. Each tree receives the scores provided by
the three best performing algorithms (our SS+WS models
plus [14]). Then, in inference time, the final score is given
by the mean prediction among all the decision trees. The
results are provided at the right plot in Fig. 6 and turn ev-
ident the improvement in effectiveness with respect to the
best individual expert, attaining AUC values of about 0.819
(Fights) and 0.769 (UCF-Crime). The overall performance
values are sumarized in Table 1 for all the methods tested
individually and also for the ensemble.

Finally, as an ablation experiment, Fig. 7 enables to per-
ceive the important role of the novel term added to the Sul-
tani et al. [14]’s loss. Both plots compare the results ob-
served when λ3=0, i.e., when the entropy term is not used
to span the scores in the unit interval (corresponding to Sul-
tani et al.’s original formulation, in dashed lines). The con-
tinuous lines give the results when λ3 ∈ [0, log(ep+1)

30 ] (ep:
epoch). It is obvious that the entropy term improved the
overall performance, both in the Fights and UCF-Crime
sets. However, we note that improvements were particu-
larly evident for moderate FAR values ([0.1, 0.6] interval),
which is not the most useful region for the deployment of
this kind of systems. We are currently working on the devel-
opment of alternative solutions to extend the improvements
in performance also for very low FAR values.

Method AUC EER TPR@FPR=0.001

Fights
Hasan et al. [5] 0.528 ± 0.003 0.466 ± 0.002 0.001 ± 9e−4

Ravanbakhsh et al. [11] 0.533 ± 0.003 0.484 ± 0.002 0.002 ± 0.001

Wang et al. [17] 0.540 ± 0.002 0.475 ± 0.002 0.004± 0.001

Chong and Tay [2] 0.541± 0.003 0.480 ± 0.001 0.010 ± 0.003

Binary SVM Classifier 0.556 ± 0.003 0.443 ± 0.003 0.004 ± 0.002

Sultani et al. [14] 0.787 ± 0.002 0.294 ± 0.002 0.014 ± 0.002

Proposed Method 0.819 ± 0.001 0.284 ± 0.001 0.046 ± 0.007

Fusion (SS+WS+[14]) 0.846 ± 0.001 0.216 ± 0.001 0.049 ± 0.001

UCF-Crime
Hasan et al. [5] 0.573 ± 0.001 0.424 ± 0.001 0.003 ± 0.001

Ravanbakhsh et al. [11] 0.642 ± 0.001 0.376 ± 0.001 0.008 ± 0.003

Wang et al. [17] 0.539 ± 0.001 0.472 ± 0.001 0.002 ± 0.001

Chong and Tay [2] 0.532 ± 0.002 0.484 ± 0.001 0.001 ± 7e−4

Binary SVM Classifier 0.604 ± 0.001 0.441 ± 0.001 0.002 ± 9e−4

Sultani et al. [14] 0.668 ± 0.001 0.375 ± 0.001 0.001 ± 8e−4

Proposed Method 0.744 ± 0.001 0.305 ± 0.001 0.002 ± 0.001

Fusion (SS+WS+[14]) 0.769 ± 9e−4 0.266 ± 9e−4 0.002 ± 7e−4

Table 1: Performance summary of the proposed method
with respect to the state-of-the-art. The final rows in each
dataset provide the performance of an ensemble Random
Forest that fuses at the score level the responses of our
SS/WS models to [14].

Figure 7: Ablation studies: results when λ3=0, i.e., when
the entropy term is not used to span the scores in the unit
interval (dashed lines). The continuous lines correspond to
the results when λ3 is defined as given in Sec. 4.1.

5. Conclusions and Further Work

In this paper we described a self-supervised learning
scheme composed of two experts (based in the weakly and
self-supervised paradigms) feeding data to each other. Un-
der this paradigm, we use two Bayesian frameworks to filter
the input instances of the weakly and self-supervised ex-
perts, and iteratively augment the available learning data.
Most importantly, we used a late fusion ensemble strat-
egy (Random Forest of 50 decision trees) that fuses at the
score level the outputs of the three best performing mod-
els tested. This ensemble outperforms the state-of-the-art
in both datasets, decreasing the equal error rates from 15%



(UCF-Crime) to 24% (Fights). As an additional contri-
bution, we announced the free availability of the Fights
dataset, fully annotated at the frame level. The source code
of the method and the datasets are freely available, and can
be used to support further developments in the problems of
human activity analysis/abnormal events detection.
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