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Abstract One of the most challenging goals in biometrics research is the devel-
opment of recognition systems to work in unconstrained environments and without
assuming the subjects’ willingness to be recognised. This has led to the concept of
non-cooperative recognition, which broaden the application of biometrics to foren-
sics / criminal seek domains. In this scope, one active research topic seeks to use
as main trait the ocular region acquired at visible wavelengths, from moving tar-
gets and large distances. Under these conditions, performing reliable recognition
is extremely difficult, because such real-world data have features that are notori-
ously different from those obtained in the classical constrained setups of currently
deployed recognition systems. This chapter discusses the feasibility of iris / ocular
biometric recognition: it starts by comparing the main properties of near-infrared
and visible wavelength ocular data, and stresses the main difficulties behind the ac-
curate segmentation of all components in the eye vicinity. Next, it summarises the
most relevant research conducted in the scope of visible wavelength iris recogni-
tion and relates it to the concept of periocular recognition, which is an attempt to
augment classes separability by using - apart from the iris - information from the
surroundings of the eye. Finally, the current challenges in this topic and some direc-
tions for further research are discussed.

1 Introduction

The iris is one of the most valuable traits for human identification and growing
efforts have been concentrated in the development of this technology [7]. Funda-
mentally, three reasons justify this interest: (1) it is a naturally protected internal
organ that is visible from the exterior; (2) it has a near circular and planar shape that
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hugomcp@di.ubi.pt

1



2 Hugo Proença

turns easier its segmentation and parameterization and (3) its texture has a predom-
inantly phenotypic or chaotic appearance that is stable over lifetime. The accuracy
of the deployed iris recognition systems is remarkable: a study of 200 billion cross-
comparisons conducted by Daugman [15] reported false acceptance rates of order
10−6 with false rejections of 1%. Other independent evaluations ([30] and [47])
confirmed these results.

Current systems require high illumination levels, sufficient to maximize the
signal-to-noise ratio in the sensor and to capture images of the discriminating iris
features with sufficient contrast. However, if similar processes were used to acquire
iris images from large distances, acceptable depth-of-field values would demand sig-
nificantly higher f-numbers for the optical system, corresponding directly (squared)
with the amount of light required for the process. Similarly, the motion factor will
demand very short exposure times, which again will require too high levels of light.
The American and European standards councils ([2] and [10]) proposed safe irradi-
ance limits for near-infrared (NIR) illumination of near 10 mW / cm2. In addition to
other factors that determine imaging system safety (blue light, non-reciprocity and
wavelength dependence), these limits should be taken into account, as excessively
strong illumination can cause permanent eye damage. The NIR wavelength is par-
ticularly hazardous, because the eye does not instinctively respond with its natural
mechanisms (aversion, blinking and pupil contraction).

The pigmentation of the human iris consists mainly of two molecules: brown-
black Eumelanin (over 90%) and yellow-reddish Pheomelanin [48]. Eumelanin has
most of its radiative fluorescence under the visible wavelength (VW), which—if
properly imaged—enables the capture of a much higher level of detail, but also of
many more artefacts, including specular and diffuse reflections and shadows. Also,
the spectral reflectance of the sclera is significantly higher in the VW than in the NIR
and the spectral radiance of the iris in respect of the levels of its pigmentation varies
much more significantly in the VW than in the NIR. These optical properties are
the biological roots behind the higher heterogeneity of the VW iris images, when
compared with the traditional NIR data. Also, the types and number of artefacts
likely to appear in VW and NIR data are notoriously different, which justify the
need for specialized recognition strategies.

Fig. 1 illustrates the variations in appearance of NIR and VW images, with re-
spect to the levels of iris pigmentation. These images were acquired using a mul-
tispectral device, in a synchronous way. It is particularly interesting to observe the
inverse relation between the levels of minutia captured in NIR and VW data, with re-
spect to the levels of iris pigmentation: while for light pigmented irises, much more
detail is perceived in VW than in NIR images, it occurs the opposite for heavily pig-
mented irises (leftmost image). Note that this is a particularly concerning problem,
as the large majority of the world population has heavily pigmented irises.
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Fig. 1 Comparison between the appearance of the iris texture acquired in a synchronous way,
using multispectral sensors. The upper row gives the iris data in near-infrared (NIR) wavelengths,
while the bottom row gives the corresponding data in visible wavelengths (VW). Note the inverse
relationship in the NIR and VW data regarding the levels of iris pigmentation and the captured iris
minutia.

2 VW Iris Recognition: Summary of Research Works

Tan et al. [80] performed biometric recognition according to both iris and periocu-
lar data. Global color-based features and local ordinal measures were used to extract
discriminating data from the iris region, later fused to periocular data extracted from
texton representations. Finally, fusion is performed by the sum rule using the nor-
malized scores generated for the different types of features. Wang et al. [85] used
an adaptive boosting algorithm to build a strong iris classifier learned from a set of
bi-dimensional Gabor-based set of features, each corresponding to a specific orienta-
tion and scale and operating locally. Later, given the fact that the pupillary boundary
is especially difficult to segment in VW data, the authors trained two distinct clas-
sifiers: one for irises deemed to be accurately segmented and another for cases in
which the pupillary boundary was not accurately segmented. Santos and Hoyle [71]
fused a set of recognition techniques that can be divided in two main categories:
wavelet-based textural analysis methods applied to the iris region, complemented
by distribution-based (histogram of oriented gradients and local binary patterns)
and scale invariant feature transforms that analyze the periocular region, which was
recently suggested as an important addition for handling degraded samples, essen-
tially because it is less vulnerable to problems resulting from deficient illumination
or low-resolution acquisition. Shin et al. [73] started by classifying the left and
right eyes by their eyelash distributions, which they used to reduce the search space.
Further, they coupled two encoding and matching strategies based in color and tex-
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tural analysis to obtain multiple distance scores fused by means of a weighted sum
rule, which is claimed to improve the separation between match and non-match dis-
tributions. Li et al. [33] used a novel weighted co-occurrence phase histogram to
represent local textural features. This method is claimed to model the distribution
of both the phase angle of the image gradient and the spatial layout, which over-
comes the major weakness of the traditional histogram. A matching strategy based
on the Bhattacharyya distance measures the goodness of match between irises. Fi-
nally, the authors concluded that the performance is improved when a simple image
registration scheme accounts for the image deformation. Marsico et al. [35] pro-
posed the use of implicit equations to approximate both the pupillary and limbic
iris boundaries and perform image normalization. Next, they exploited local feature
extraction techniques such as linear binary patterns and discriminable textons to ex-
tract information from vertical and horizontal bands of the normalized image. Li and
Ma [32] introduced an image registration method based on the Lucas-Kanade algo-
rithm to account for iris pattern deformation. Operating on the filtered iris images,
this method divides the images into small sub-images and solves the registration
problem for each small sub-image. Later, a sequential forward selection method
searches for the most distinctive filters from a family of Gabor filters, concluding
that a very small number of selected features are able to obtain satisfactory per-
formance. Finally, Szewczyk et al. [77] presented a semi-empirical approach based
on a reverse bi-orthogonal dyadic wavelet transform, empirically selecting a com-
pactly supported bi-orthogonal spline wavelet for which symmetry is possible with
FIR filters and three vanishing moments. The authors concluded that such a method
produces a short biometric signature (324 bits) that can be successfully used for
recognition under such challenging conditions, improving its reliability.

Du et al. [19] aimed at robustness and used the SIFT transform and Gabor
wavelets to extract iris features, which were used for local feature point description.
Then two feature region maps were designed to locally and globally register the fea-
ture points, building a set of deformable iris sub-regions that takes into account the
pupil dilation/contraction and deformations due to off-angle data acquisition.

3 Data Acquisition: Frameworks and Major Problems

The term constraint refers to one of the factors that currently deployed systems im-
pose, in order to perform recognition with enough confidence: subjects distance,
motion and gaze direction and lighting conditions of the environment. These con-
straints motivate growing research efforts and became the focus of many recent
proposals, among which the ”Iris-on-the-move” project [46] should be highlighted:
it is a major example of engineering an image acquisition system to make the recog-
nition process less intrusive for subjects. The goal is to acquire NIR close-up iris
images as a subject walks at normal speed through an access control point. Honey-
well Technologies applied for a patent [28] on a very similar system, which was also
able to recognize irises at a distance. Previously, Fancourt et al. [20] concluded that
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it is possible to acquire sufficiently high-quality images at a distance of up to ten
meters. Narayanswamy and Silveira [51] used a wavefront coded optic to deliber-
ately blur images in such a way that they do not change over a large depth-of-field.
Removing the blur with digital image processing techniques makes the trade-off be-
tween signal-to-noise ratio and depth of field linear. Also, using wavefront coding
technology, Smith et al. [75] examined the iris information that could be captured
in the NIR and VW spectra, addressing the possibility of using these multispectral
data to improve recognition performance. Park and Kim [54] acquired in-focus iris
images quickly at a distance, and Boddeti and Kumar [6] suggested extending the
depth-of-field of iris imaging frameworks by using correlation filters. He et al. [23]
analyzed the role of different NIR wavelengths in determining error rates. More re-
cently, Yoon et al. [90] presented an imaging framework that can acquire NIR iris
images at-a-distance of up to three meters, based on a face detection module and on
a light-stripe laser device used to point the camera at the proper scene region. Boyce
et al. [8] studied the image acquisition wavelength of revealed components of the
iris, and identified the important role of iris pigmentation. Although concluding that
illumination inside the 700-900 nm optimally reveals the richness of the iris struc-
ture, they observed that irises with moderate levels of pigmentation could be imaged
in the visible light with good quality.

3.1 Proof-of-Concept

This section reports one possible solution for acquiring data of the ocular region
from moving subjects in outdoor environments and large distances (between 10
and 40 meters), without requiring subjects’ willingness to be recognised. A pro-
totype was developed, with two cameras mounted on the exterior wall of the SOCIA
Lab.: Soft Computing and Image Analysis Lab.1, located in Covilhã, University of
Beira Interior, Portugal. Cameras are at a first-floor level (approximately 5m above
the ground), and pointing towards a parking lot. A master-slave configuration was
adopted, i.e., a wide-view (static) camera (Canon VB-H710F in our prototype) cov-
ers the whole scene and provides data for human detection and tracking modules,
which enables to point the PTZ camera (Hikvision DS-2DE5286-AEL) to subjects’
faces. Fig. 2 illustrates the environmental conditions in this prototype and the data
acquired by both the wide-view and PTZ devices.

In order to automatically obtain information from the subjects faces / ocular
regions, the whole processing chain is composed by five modules: 1) at first, the
SOBS [45] is used to discriminate between the background / foreground objects in
the scene. Next, 2) a human detection algorithm based in the widely known Haar-
based Viola and Jones algorithm [83] enables to obtain a set of regions-of-interest
(ROI), which feed a 3) object tracking module, based in the KLT algorithm [72] and
in the omega-shape of the head and shoulders region as primary source of keypoints.

1 http://socia-lab.di.ubi.pt
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WIDE VIEW
PTZ VIEW

S1

Fig. 2 Image automatically captured using a master-slave configuration, that obtains high-
resolution face images with inter-pupillary distance greater than 60 pixels, being subjects at 40
meters away from the cameras.

This tracker gives as output a set of point lists, each one describing the 2D position
of one subject in the scene. Such positions are used by a 4) time-series predictor that
estimates the subsequent positions of subjects in the scene, which is where the PTZ
should be pointed to. A 5) camera calibration / synchronisation module is capable of
accurately estimating the PTZ pan-tilt parameters without depending on additional
constraints. Our approach exploits geometric cues to estimate subjects height and
avoids depth ambiguity, obtaining the subject’s 3D position in the scene. As main
result of this processing chain, we get images similar to the ones illustrated in the
bottom-left corner of Fig. 2.

In order to establish a baseline comparison between the performance attained by
a face and a ocular recognizers, considering two classical algorithms: 1) the face
recognition strategy proposed by Turk and Pentland [81], which introduced the con-
cept of eigenface that became extremely popular in the computer vision literature;
and 2) the periocular recognition algorithm due to Park et al. [55], defining a grid
around the iris, from where histograms of oriented gradients, local binary patterns
and scale-invariant features are extracted. Data from 25 persons were collected, with
subjects from 15 to 30 meters away from the camera. In this case, only samples with
relatively frontal pose (yaw ±π/10) and neutral expression were kept, resulting in
a total of 78,960 images pairwise comparisons. Fig. 3 compares the Receiver Op-
erating Characteristic (ROC) curves obtained for the face and ocular recognition
experts, being evident the better results of the ocular expert in the low false accep-
tances (FA) region, in contrast to the high FA region, where the facial recognition
expert outperformed. In terms of the Area Under Curve (AUC) values, the ocular
expert got 0.857, and the face expert 0.854, which are too close to provide statis-
tically relevant conclusions about the best trait for this kind of environments. Note
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that in this experiment all subjects had neutral facial expression, which otherwise
would decay more the recognition performance of face than of the ocular region.
Anyway, the main purpose of this experiment was exclusively to obtain a base-
line performance that could be substantially improved by using more sophisticated
recognition algorithms.
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Fig. 3 Comparison between the recognition performance observed for two classical face and ocu-
lar recognition algorithms, using data acquired in outdoor environments, under conditions that are
currently associated to visual surveillance.

3.2 NIR vs. VW Data: Amount of Information Acquired

As illustrated in Fig. 4, four freely available data sets were selected for all exper-
iments reported in this chapter, each one representing a different data acquisition
setup / scenario:

• The University of Bath data set2 contains 32,000 NIR images from 800 subjects.
From these, 6,000 images from 1.000 different classes (eyes) with very good
quality were considered, to represent the optimal conditions for a recognition
system. All irises are sharp, without relevant occlusions and in frontal view.

• The CASIA-Iris-Distance set3 was collected by the CASIA long-range device in
a relatively unconstrained setup. Images feature blink, motion blur, off-axis gaze

2 http://www.smartsensors.co.uk/products/iris-database/
32-000-full-set/
3 http://biometrics.idealtest.org/
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and other small anomalies, representing NIR data of moderate quality. A set of
9,521 images (127 subjects, 814 classes) was used, for which segmentation and
noise detection was confirmed by visual inspection.

• The UBIRIS.v2 [60] dataset has 11,102 images from 261 subjects, acquired at
visible wavelengths between three and eight meters away, under dynamic lighting
conditions and unconstrained setups. Images are high heterogeneous in terms of
quality, with glossy reflections across the iris, significant occlusions due to eye-
lids and eyelashes, off-angle and blurred data. 5,340 images from 518 classes
were selected from this dataset, all of them accurately segmented. All these im-
ages were converted to grayscale.

• The FRGC [56] data set served initially for face recognition experiments and is
a specially hard set for iris recognition, due to its limited resolution. The still im-
ages subset from both the controlled / uncontrolled setups was used. Images are
typically frontal, with varying amounts of light, shadows and glossy reflections
that occlude portions of the irises. 4,360 images from 868 classes were selected
from this data set. All these images were reasonably segmented, according to
visual inspection, and were converted to grayscale.

Fig. 4 Examples of the data sets used in the experiments reported in this chapter. From top to
bottom rows: BATH, CASIA-Iris-Distance, UBIRIS.v2, and FRGC datasets.

The first experiment comprised the comparison between the amount of informa-
tion available in small iris patches, which was measured by the Shannon entropy
criterion, quantifying (in terms of bits) the expected value for the amount of infor-
mation in square regions p× p of the normalized image III:

h(IIIp×p) =−∑
i

P(IIIp×p = i) log2
(
P(IIIp×p = i)

)
, (1)

where P(IIIp×p = i) is the probability for the ith intensity in the patch.
Fig. 5 quantifies the amount of information in p = 9 patches. Even noting that

the comparison between data sets might be unfair (the original images have different
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Fig. 5 Average amount of information (Shannon entropy in 9× 9 patches of the normalised im-
ages) across the different regions of the irises in the BATH, CASIA-Iris-Distance, UBIRIS.v2 and
FRGC datasets. Values are expressed in bits, and enable to perceive the gap of information between
NIR (BATH and CASIA) and VW (UBIRIS.v2 and FRGC) iris data.

resolution), the immediate conclusion is the higher homogeneity of values observed
in NIR data than in the VW case. Note that the average values are also much higher
in NIR than in VW data, which actually implies that the NIR images provide more
heterogeneity in terms of intensities in iris patches than VW data.

Also, we observed that the pupillary regions are the most valuable in NIR images,
which is not evident in VW. Regarding the FRGC dataset, there are two regions near
the pupillary boundary with values notoriously higher than the remaining regions.
We confirmed that they are due to frequent reflections not detected by the noise-free
segmentation phase. Also, we noticed that in the FRGC set the bottom parts of the
irises have evidently smaller amounts of information than the upper parts, probably
due to the lighting sources from above that cause shadows in these regions.
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4 Iris Segmentation

4.1 Comparison of NIR vs. VW Issues

In order to acquire iris data from large distances and under unconstrained protocols,
acceptable depth-of-field values demand high f-numbers for the optical system, cor-
responding directly (squared) with the amount of light required. Similarly, the mo-
tion factor demands very short exposure times, which again increases the amounts
of light required. It is known that excessively strong illumination cause permanent
eye damage and the NIR wavelength is particularly hazardous, because the eye does
not instinctively respond with its natural mechanisms: aversion, blinking, and pupil
contraction.

The above points were the major motivations for using visible-light to in-the-
wild iris biometrics, even though such light spectrum increases the challenges in
performing reliable recognition. As stated above, the pigmentation of the human
iris enables to capture much higher level of detail in VW than in NIR, but also more
noisy artefacts, including specular and diffuse reflections and shadows. In practice,
this supports the uniqueness of the iris texture acquired in the visible-light spectrum
(in a way similar to the empirically suggested for the near-infrared setup in previous
studies [15]), but also stresses the difficulties in obtaining good quality data.

4.2 Why Is It So Difficult?

There are four families of factors that affect the quality of VW iris biometric data
not acquired under the classical stop-and-stare protocol: A) blur; B) occlusions;
C) perspective and D) lighting. By working in a broad range of distances and on
moving targets, blurred (A.1) and low-resolution (A.2) images are highly probable.
Also, portions of the iris texture are occluded by eyelids (B.1), eyelashes (B.2) and
glossy reflections (B.3) from the surrounding environment. Camera-to-subject mis-
alignments may occur, due to subjects gaze (C.1) and pose (C.2). Finally, variations
in light intensity (D.1), type (D.2) and incident angles (D.3) reinforce the broadly
varying features of this kind of data.

Considering that periocular biometrics uses data not only from the iris but also
from the surroundings of the eye (e.g., eyelids, eyebrows, eyelashes and skin), par-
ticular attention should be paid to additional data degradation factors, such as (E.1)
makeup, (E.2) piercings and (E.3) occlusions (e.g., due to glasses or hair).

Fig. 6 illustrates the four families of factors that primarily affect the quality of
data that is not acquired under the classical stop-and-stare protocol. By working in
a broad range of distances and on moving targets, blurred (I.a) and low-resolution
images (I.b) are highly probable. Also, portions of the iris texture are occluded by
eyelids, eyelashes (II.c) and by glossy reflections from the surrounding environment
(II.d). Camera-to-subject misalignments might occur, due to varying subjects gaze
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(III.e) and pose (III.f). Finally, variations in light intensity, type and angle (IV. g and
h) reinforce the broadly varying features of the resulting data.

I. Amount of Information I.a) blur I.b) resolution

II. Occlusions II.c) eyelids II.d) glossy reflections

III. Perspective III.e) gaze III.f) pose

IV. Lighting IV.g) absence IV.h) saturation

Fig. 6 Four major types of variability in ocular data acquired in non-constrained setups. The
amount of information highly varies, due to optical defocus, motion blur and data resolution (group
I). Portions of the iris texture are often occluded by eyelids, eyelashes and reflections (group II)
and subjects are misaligned with respect to cameras (group III). Finally, light sources of different
type, intensity and 3D angles may exist in the environment (group IV).

4.3 Iris Segmentation: Summary of Research Works

Segmentation is undoubtedly perhaps the most concerning phase of the processing
chain, in terms of the ability of the whole system to deal with data that is degraded,
due to the unconstrained acquisition setup. Also, as it is one of the earliest phases
of the recognition process, it is the one that more directly has to deal with data
variability and supports the whole process, with any error in segmentation (even
small inaccuracies in one of the detected boundaries), easily propagating though the
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processing chain and substantially increasing the recognition error rates [62]. Here
we briefly summarise some of the most relevant research in the iris segmentation
topic, not only covering methods for VW data, but also describing the approaches
designed for NIR images, in order to stress the typical differences between both
kinds of methods.

In Table 1 we give an overview of the main techniques behind several recently
published iris segmentation methods. We compare the methods according to the
data sets used in the experiments, categorized by the order in which they segment
iris borders. The ”Experiments” column contains the iris image databases used in the
experiments. ”Pre-processing” lists the image preprocessing techniques used before
segmentation. Ord. Borders lists the order in which the iris borders are segmented,
where P denotes the pupillary borders and S denotes the scleric iris borders (x→ y
denotes the segmentation of y after x and x,y denotes independent segmentation, i.e.,
when no information from one parameterised border is used in the segmentation of
the other). Pupillary Border and Scleric Border columns refer to the main methods
used to segment that iris border.

Noting that the significant majority of the methods were designed to work with
NIR images. These methods expect to find typically a high contrast between the
pupil (almost black) and the iris, which justifies the order in which almost all of
these NIR method segment both boundaries (P→ S). In contrast, methods that were
particularly designed to handle VW data almost invariantly segment the outer iris
boundary first, and then use this information to constrain the region where the pupil-
lary boundary is searched, as there is almost no contrast between the pupil and the
iris, in case of heavily pigmented irises, imaged with reduced amounts of light.
Among the relevant innovations in this topic, techniques such as the use of active
contour models, either geodesic ([70]), based on Fourier series ([16]) or based on the
snakes model ([3]) can be highlighted. Noting that these techniques require previous
detection of the iris to properly initialize contours, they are associated with heavy
computational requirements. Modifications to known form fitting methods have also
been proposed, essentially to handle off-angle images (e.g., [95] and [82]) and to im-
prove performance (e.g., [44] and [18]). Finally, the detection of non-iris data that
occludes portions of the iris ring has motivated the use of parabolic, elliptical and
circular models (e.g., [4], and [18]) and the modal analysis of histograms [16]. Even
so, in unconstrained conditions, several authors have suggested that the success of
their methods is limited to cases of image orthogonality, to the non-existence of sig-
nificant iris occlusions, or to the appearance of corneal reflections in specific image
regions.

5 Image Quality Assessment

The concept of good metric is not trivial to determine, although the best one should
maximally correlate with recognition effectiveness. Previous studies reported sig-
nificant decays in effectiveness when data is degraded by each of the factors listed
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Table 1 Summary of the most relevant iris segmentation techniques.

Method Experiments Preprocessing Ord.
Bor-
ders

Pupillary Border Scleric Border

Zuo et al. [95] CASIA.1,
ICE, WVU
(NIR)

Specular reflections detected
(threshold), PDE and im-
painting

P→ S Randomized Elliptical Hough Transform Weighted Integro-differential operator

Puhan et al. [66] UBIRIS
(VW)

Image binarization (thresh-
old of the local Fourier spec-
tral density)

S - Construction of a set of unidimensional
signals, gradient analysis

Ross and Shah [70] CASIA.1,
WVU (NIR)

2-D Median filter P→ S Binarization (threshold), Circular Hough
Transform

Geodesic Active Contours

Poursaberi and
Araabi [57]

CASIA.1
(NIR)

Negative image, impainting P Iterative expansion/shrink of the detected
border based on morphological operators

-

Morimoto et al. [49] Non-specified
(NIR)

Not described P→ S Images difference Images cascade at different scales, Sobel
edges detection, elliptical form fitting

Liu et al. [44] ICE (NIR) Not described P→ S Angular constrained Canny edge detection,
Hough-based transform

Hough-based form fitting, hypothesis and
test process

Kennell et al. [40] BATH (NIR) Histogram equalization, im-
age binarization (threshold)

P→ S Morphological operators, integro-
differential operator

Image binarization based on pixels+ neigh-
borhood variance, form fitting

Vatsa et al. [82] UBIRIS, CA-
SIA.v3 (NIR,
VW)

Not described P→ S Rough estimation according to an elliptical
model, followed by a modified Mumford-
Shah functional

Process similar to the pupillary border

Proena and Alexan-
dre [58]

UBIRIS
(VW)

Histogram equalization S→ P Feature extraction (pixel position + inten-
sity) and fuzzy clustering to reduce image
heterogeneity, Canny edges detection and
circular Hough transform

Process similar to the pupillary border

Zaim [91] CASIA.1
(NIR)

Morphologic operators to
eliminate eyelashes

S→ P Split and merge process to localize regions
of uniform intensity

Image normalization based on pupil coor-
dinates, Sobel filtering, detection of hori-
zontal edges in the normalized image

Broussard et al. [9] BATH (NIR) Not described P,S Extraction of local texture features, feed
forward neural network

Process similar to the pupillary border

He and Shi [22] Non-specified
(NIR)

Image binarization, morpho-
logic operations

P→ S Geometrical projection methods, Sobel fil-
tering, form fitting

Canny edge extraction, Hough transform

Basit and Javed [4] BATH (NIR) Image binarization, morpho-
logic operations

P→ S Iterative bijections-based method Maximization of the difference of intensi-
ties of radial direction

Arvacheh and
Tizhoosh [3]

CASIA.1
(NIR)

Not described P→ S Near circular active contour model
(snakes), interpolation process to improve
performance

Integro-differential operator

Daugman [16] ICE (NIR) Not described P→ S Active contours based on Fourier series,
modeled with 17 discrete Fourier coeffi-
cients

Active contours based on Fourier series,
modeled with 4 discrete Fourier coeffi-
cients

He et al. [24] CASIA.1
(NIR)

Not described P→ S Adaboost based object detection, iterative
circumference shifting

Image normalization, Sobel and Canny fil-
tering, line fitting

Zheng et al. [93] SJTU (VW) Conversion into Hsv color
space

P→ S Assume existence of specular reflec-
tions, maximization of integral projections,
integro-differential operator

Iterative shift, shrink and expand circum-
ference process to minimize average inten-
sity

Xu and Shi [87] CAS-PEAL
(VW)

Not described P→ S Integral projection functions, median filter-
ing, circumference shifting based on aver-
age intensity minimization

Sobel filtering, Edges weighting according
to position and curvature

Honeywell
International [29]

CASIA.1
(NIR)

Not described P Search for radial texture discontinuities -

Dobes et al. [18] AR, CVL
(VW)

Histogram equalization,
Gaussian blur

S - Canny edges detection, Angular con-
strained Hough transform

Shuckers et al. [74] WVU (NIR) Remove specular reflections
(threshold), impainting

P→ S Elliptical integro-differential operator Elliptical integro-differential operator

Tan et al. [78] UBIRIS.v1,
UBIRIS.v2

Image clustering to perform
rough eye localization

P, S Integro-differential constellation Integro-differential constellation

Proenca[61] UBIRIS.v2,
FERET,
FRGC (VW),
ICE 2006
(NIR)

Sclera Detection S→ P Local hue, blue luminance, red chroma,
neural network classification, constrained
polynomial fitting

Local hue, blue luminance, red chroma,
neural network classification, constrained
polynomial fitting

in Table 2. Here, we overview the main techniques used to assess iris image qual-
ity with respect to each factor and compare them according to the spectrum of light
used, the type of analyzed data (raw image, segmented or normalized iris region) and
their output (local or global), as they operate at the pixel or image level. We note
that most of the methods operate on NIR images and assess quality in the segmented
data (either in the cartesian or polar coordinate systems). Exceptions are usually re-
lated with focus measurement, obtained by one of two approaches: (1) measuring
the high frequency power in the 2D Fourier spectrum through a high-pass convo-
lution kernel or wavelet-based decomposition ([16], [31] and [11]); (2) analyzing
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the sharpness of the iris borders through the magnitude of the first and second order
derivatives ([1] and [92]). Another key characteristic is the level of analysis: some
methods operate globally (at the image level), usually to determine focus, gaze or
motion blur ([31], [38] and [84]). As image quality varies across the iris, others op-
erate at the pixel level to determine local obstructions ([1], [36] and [59]). Motion is
estimated by detecting interlaced raster shear that might be due to significant move-
ments during the acquisition of a frame ([17], [34], [86] and [97]). Other approaches
rely on the response of the convolution between the image and directional filters, be-
ing observed that linear motion blurred images have higher central peak responses
than sharp ones ([36] and [39]). Gaze is estimated by 3D projection techniques that
maximize the response of the Daugman’s integro-differential operator [36] and by
the length of the axes of a bounding ellipse [97]. Eyelids are detected by means of
line and parabolic Hough transforms [25], active contours [41] and machine learning
frameworks [59] [89]. The modal analysis of the intensities histogram enables the
detection of eyelashes [16] [25], as do spectral analysis [34] and edge-based meth-
ods [36]. As they usually are the brightest regions of images, specular reflections are
detected by thresholds [36], while diffuse reflections are exclusive of VW data and
more difficult to discriminate, being reported a method based in texture descriptors
and machine learning techniques [59]. Proença proposed a method [63] to assess the
quality of VW iris samples captured in unconstrained conditions, according to the
factors that are known to determine the quality of iris biometric data: focus, motion,
angle, occlusions, area, pupillary dilation and levels of iris pigmentation. The key
insight is to use the output of the segmentation phase in each assessment, which per-
mits to handle severely degraded samples that are likely to result of such imaging
setup.

6 Feature Encoding

Feature encoding is a particularly interesting sub-topic in the unconstrained recog-
nition domain, due to the reduced quality of the data that is expected to be acquired.
Here, a fundamental property of the iris texture should be considered, being one of
the major reasons that justify the interest on this trait for this kind of scenarios: most
of the discriminating information between the iris texture of different subjects lies
in the lowest and middle-low frequency components, which are (luckily) those that
are most easy to capture under outdoor environments and unconstrained acquisition
protocols.

A particularly interesting advance is the use of Multi-Lobe Differential Filters,
which are claimed to adapt better than the traditionally used Gabor filters to data
of reduced quality and can be used at reduced computational cost. On the other
way, they lie in a parameterisation space of much higher dimension than the one of
Gabor filters, making more difficult to obtain good parameterisations for a specific
recognition system / environment.
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Table 2 Overview of the most relevant methods published to assess the quality of iris biometric
data.

Method Experiments Data Sets Images Analysis Quality Assessment
Abhyankar and
Schuckers[1]

CASIA.v3, BATH,
WVU and Clarkson
(NIR)

Segmented Local, global Occlusion (frequency analysis); focus (second order derivatives); contrast (hard
threshold) and angular deformation (assigned manually)

Chen et al. [11] CASIA.v3, WVU (NIR) Segmented Local, global Focus and amount of information (2D isotropic Mexican hat wavelet-based
frequency analysis)

Daugman and
Downing[17]

ICE (NIR) Raw data Global Effect of image compression; motion (interlaced raster shear)

Daugman [16] ICE-1 (NIR) Segmented Local, global Focus (magnitude of the response to a 5×5 high-pass kernel); off-angle (pro-
jective deformation that maximizes the circular shape of the pupil); eyelashes
(intensities histogram modality)

Grabowski et al. [21] - Segmented and
normalized

Global Focus (entropy in the iris ring)

He et al. [25] CASIA.v3 (NIR) Segmented Local Eyelid (line Hough transform); eyelashes (intensities histogram modality)
Hollingsworth et
al. [26]

Univ. Notre Dame (NIR) Segmented Global Effect of pupil dilation

Jang et al. [31] Yonsei (NIR, UBIRIS.v1
(VW)

Raw data Global Focus (ratio between the higher and lower frequency components, resultant of
the dyadic discrete wavelet transform)

Kalka et al. [36] CASIA.v3, WVU, ICE
(NIR)

Segmented Local, global Focus (response to the Daugman’s 8×8 high pass kernel); occlusion (morpho-
logically dilated horizontal edges); motion blur (response to directional filters
in Fourier space); off-angle (maximization of the circular integro-differential
operator); specular reflection (threshold); lighting variation (intensities vari-
ance within small iris blocks); iris size (proportion of occluded pixels)

Kang and Park [37] CASIA.v2(NIR) Raw data Global Focus (magnitude of the response to a 5×5 high-pass kernel)
Kang and Park [38] CASIA (NIR) Segmented Local Eyelids (parabolic form fitting); focus (magnitude of the high frequency com-

ponents; eyelashes (adaptive criteria according to the image blurring, convo-
lution kernel for multiple eyelashes, first order differential for separable eye-
lashes)

Kang and Park [39] CASIA.v3 (NIR) Segmented Local, global Iris size; reflections (threshold); eyelids (parabolic form fitting scheme); eye-
lash (template matching based on continuity); motion blur (directional filters)
and focus (frequency analysis)

Krishen et al. [41] ICE (NIR) Segmented and
normalized

Local Eyelids and eyelashes (gradient vector flow-based active contours method); fo-
cus (Gaussian mixture model learned from a set of image intensity histograms)

Nandakumar et
al. [50]

WVU (NIR) Segmented and
normalized

Local, global Focus and amount of information (2D isotropic Mexican hat wavelet-based
frequency analysis)

Lu et al. [34] CASIA.v3 (NIR) Segmented and
normalized

Local, global Focus (energy of the frequency components resultant of a wavelet packet de-
composition ); motion blur (average difference of intensities between adjacent
rows); eyelids (hard threshold) and eyelashes (frequency analysis in the upper
and lower iris extremes)

Proena and Alexan-
dre. [59]

UBIRIS.v1 (VW) Segmented and
normalized

Local Glossy and specular reflections, eyelids and eyelashes (extraction of an 8D
feature set, neural network classification scheme)

Proença. [63] UBIRIS.v2 (VW) Segmented Local, Global Focus (response kernel), motion (directional derivative analysis), angle (analy-
sis of bounding box), iris pigmemntation (HSV analysis)

Wan et al. [84] SJTU-IDB (NIR) Raw data Global Focus (magnitude of the response to a 2D isotropic Laplacian of Gaussian ker-
nel)

Wei et al. [86] CASIA.v2 (NIR),
UBIRIS.v1 (VW)

Raw data and
segmented

Global Focus (magnitude of high frequency components); motion blur (average differ-
ence of intensities between adjacent rows) and occlusions (thresholds)

Ye et al. [89] CASIA, CASIA.v2
(NIR)

Raw data Global Iris occlusions and focus (pixels intensity feed neural network that detects the
iris contour. A second network gives the data quality).

Zhang and Salgani-
coff [92]

- Segmented Global Focus (sharpness of a portion of the pupillary border, based in the gradients’
magnitude)

Zuo and Schmid [96] CASIA.v2, WVU (NIR) Segmented Global Pupil size (threshold); pupillary and scleric borders sharpness (cumulative gra-
dient along the boundaries) and ROI homogeneity (difference between average
intensities of the iris, pupil and sclera)

Zuo and Schmid [97] ICE, MBGC (NIR) Segmented Local, Global Interlacing (average difference between odd and even rows); illumination (av-
erage intensity of the segmented iris); lighting (intensity variance over small
iris blocks); occlusions (proportion of occluded iris pixels); area (pixel count);
pupil dilation (proportion between the iris and pupil); off-angle (ratio between
the major and minor axis of a bounding ellipse) and blur (magnitude of the
high frequency components)

6.1 Gabor vs. Multi-Lobe Differential Filters

The discriminating power provided by each region of VW and NIR iris images was
assessed, with respect to two families of filters: 1) Gabor kernels, which faithfully
model simple cells in the visual cortex of mammalian brains [13] and are used in the
most acknowledged iris recognition algorithm; and 2) Multi-lobe differential filters
(MLDF), which were recently reported as a relevant advance in the iris recognition
field [76].
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The impulse response of a Gabor kernel is defined by the multiplication of a
harmonic and a Gaussian function:

GGG[x,y,ω,ϕ,σ ] = exp
[−x2− y2

σ2

]
exp[2πωiΦ ], (2)

where Φ = xcos(ϕ) + ysin(ϕ), ω is the spatial frequency, ϕ is the orientation
and σ the standard deviation of a Gaussian kernel (isotropic in our experiments,
σ = 0.65ω). A more general form of Gabor filters can be found in the literature
(e.g., [15]), allowing for different scales along the axes (σx and σy). In this chapter,
to keep moderate the dimension of the parameterisation space, only filters with the
same scale along the axes are considered.

Regarding the MLDF filters, they can be parameterised in terms of the number of
positive/negative lobes, location, scale, orientation and inter-lobe distance. To keep
the number of possibilities moderately low, only Gaussian kernels with balanced
number of positive / negative lobes (1/1, 2/2, . . . ) and equal scale for both types of
lobes are considered. Hence, the MLDF filters are expressed by:

m[xj,µj,σj] =
tl

∑
j=1

(−1) j+1 1√
2πσ j

exp
[−(xj−µj)

2

2σ j

]
, (3)

where xj= (x j,y j) is the centre of each of the tl lobes. Next, kkk = {mmm,ggg} filters were
convolved with each normalized iris image III, providing a set of coefficients. The
sign of the coefficients was obtained, i.e., CCC is the vector representation of sgn(III∗ kkk).
In terms of parameterisations tested per filter, for Gabor kernels the wavelength (px.)
ω : {1 : 1 : 14}, the orientation ϕ : {0,π/4,π/2,3π/4} and the Gaussian sigma
σ : 0.65ω . Regarding MLDFs, the number of lobes tl : {1/1,2/2,3/3,4/4} and the
Gaussian sigma σ : {1,2,3,4,5,6}.

Table 3 Types and range of the filters parameters varied in our experiments.

Gabor Filters ggg[., .]

Wavelength (px.) ω : {1 : 1 : 14}

Orientation ϕ : {0,π/4,π/2,3π/4}

Gaussian Sigma σ : 0.65ω

MLDF Filters mmm[., .]

Num. Lobes tl : {1/1,2/2,3/3,4/4}

Gaussian Sigma σ : {1,2,3,4,5,6}

Fig. 7 illustrates the filters used and Table 3 summarizes the range of parameters
considered, with ({a : b : c} denoting values in the [a,c] interval, with steps of size
b).
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ggg[x,y]

|ggg[x,y]|

mmm[x,y] |mmm[x,y]|

Fig. 7 Illustration of the filters used in experiments ({ggg,mmm}) and of the filters that give the contri-
bution of each position in the iris to the coefficient in the iris code {|ggg|, |mmm|}.

Fig. 8 expresses the variations in discriminability with respect to each parame-
ter of the filters. The continuous lines represent the BATH dataset, the dashed lines
with the diamond marks regard the CASIA-Iris-Distance. The UBIRIS.v2 is given
by the dotted lines with triangular marks and the FRGC dataset by the dashed lines
with circular marks. Above each plot we illustrate a normalized iris image and rep-
resent the filters that correspond to the nearby positions in the plot. Generally, the
discriminability was substantially higher for MLDF than for Gabor filters. In case of
the latter filters, larger wavelengths consistently increased the discriminability, es-
sentially because they have a reduced sensitivity to outlier values due to acquisition
artefacts. Orientation is another relevant parameter for Gabor kernels, where filters
that analyze features that spread radially in the normalized data provided much bet-
ter results. Regarding MLDF filters, filters with more lobes got worse results, which
might be due to the cross-elimination effect of differences between lobes. Surpris-
ingly, the variation in results with respect to the sigma of the Gaussian kernel are
not so evident as in the case of Gabor kernels.

6.2 Analysis of Iris Codes: Comparison Between NIR and VW
Data

The discriminability τ of each bit extracted from NIR and VW images was obtained.
Note that the iris patches evolved in the convolution for each bit contribute to the
result in different degree, according to the magnitude of the kernel at each point, i.e.,
if a kernel has very small value at a specific position, the corresponding intensity
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Fig. 8 Average discriminability τ̄ of the bits in iris codes, regarding filters parameterization. The
upper row regards the Gabor kernels (wavelength and orientation parameters) and the bottom row
corresponds to the MLDF filters (number of lobes and sigma of the Gaussian kernel).

on the patch almost does not affect the result. This way, the contribution of each
location [x,y] in the iris to the bit value is given by:

Ψ [x,y] =
∑i

(
|kkkiii[x− ri,y− ci]| τ(i)

)
∑i |kkkiii[x− ri,y− ci]|

, (4)

where [ri,ci] is the central position of the ith filter kkkiii and τ(i) is the discriminabil-
ity of the ith bit, given by:

τ(i) = P(C(p)
i ⊕C(q)

i = 0 |Ha)−P(C(p)
i ⊕C(q)

i = 0 |H0), (5)

with P(C(p)
i ⊕C(q)

i = 0 |Ha) expressing the probability that the the ith bit of an iris
code is equal in two inter-subject samples, and P(C(p)

i ⊕C(q)
i = 0 |H0) expressing

the same probability for intra-subject samples.
Fig. 9 gives the discriminability provided by each region of the iris in the

Cartesian and polar coordinate systems, when using Gabor filters. Complementary,
Fig. 10 expresses the similar statistics when using MLDF filters. The immediate
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Fig. 9 Average bit discriminability Ψ [x,y] across the iris, using Gabor filters as feature encoders.
Values are given for the Cartesian and polar coordinate systems, for the four data sets considered:
BATH and CASIA-Iris-Distance (NIR) and UBIRIS.v2 and FRGC (VW).

conclusion is that the maximal values are observed for the NIR data sets, both for
Gabor and MLDF filters. Interestingly, in all cases the lower parts of the iris are
better than the upper parts, which are more frequently occluded by eyelids. Glob-
ally, MLDF filters provided more homogeneous values than Gabor filters. For VW
data, regions nearby the pupillary boundary are worse than the middle and outer
bands, probably due to the difficulty in obtaining reliable estimates of the pupillary
boundary in VW images.

Regarding the radial bands in the iris, even though the maximal discriminability
was observed for the middle bands, this might not be due to biological properties
of the iris texture. Instead, the middle bands are the regions where the largest filters
can be applied without surpassing the iris boundaries. As illustrated in Fig. 8, large
filters tend to produce more discriminant bits, which accords with the results given
in [27].

It is interesting to note the reduced correlation between the amounts of informa-
tion in iris patches and the discriminability of each patch. For the BATH data set,
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Fig. 10 Average bit discriminability Ψ [x,y] across the iris, using Multi-Lobe Differential Filters
as feature encoders. Values are given for the Cartesian and polar coordinate systems, for the four
data sets considered: BATH and CASIA-Iris-Distance (NIR) and UBIRIS.v2 and FRGC (VW).

the observed levels of linear correlation between variables h[x,y] and Ψ [x,y] are -
0.12/-0.38 (Gabor/MLDF filters), and -0.40/-0.22 for the CASIA-Iris-Distance set.
Regarding the VW data, values are 0.16/-0.02 for the UBIRIS.v2 and -0.34/-0.41
for the FRGC datasets. These low correlation values in terms of magnitude and sign
(negative in 7/8 of the cases) give space for additional research about iris feature
extraction / matching strategies that profit in a better way from the amount of infor-
mation that is locally available.

In summary, MLDFs appear to provide better performance than Gabor kernels
due to their ability of exploiting non-adjacent patterns. This property is particularly
interesting for tissues with interlacing fibers, such as the human iris; 2) there is
a strong agreement between the best iris regions obtained for MLDF and Gabor
filters, suggesting that the choice for the best regions to perform iris recognition is
relatively independent of the kind of filters used.
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6.3 Codes Quantization: Is Too Much Information Lost?

In the most acknowledged iris recognition algorithm, only phase information is
used in recognition. Amplitude information is not considered reliable, as it depends
of imaging contrast, illumination and camera gain. Accordingly, Hollingsworth et
al. [27] observed that most inconsistencies in iris codes are due to the coarse quan-
tization of the phase response, and disregarded bits from filter responses near the
axes.

A) C∗ = sgn(C)

B) C∗ = 1+er f (αC)
2

C) C∗ = 1
2 +αC

0

1

Fig. 11 Three different strategies for code quantization: A) binary; B) sigmoid function; and C)
linear mapping.

Even considering the above arguments reasonable, we assessed the amounts of
discriminating information contained in the filter responses near the axes. With re-
spect to the traditional strategy of keeping only the sign of coefficients (function A)
in Fig. 11), two other strategies are considered: a linear mapping of the magnitude
of the responses, yielding real-valued coefficients matched by the `2 norm (function
C) in Fig. 11); and a trade-off of both strategies, according to a sigmoid-based trans-
form that maps large magnitude values to the 0/1values, but weights values near the
axes to real values in the [0,1] interval. In this case, the `2 norm was also used as
matching function.

The ROC curves given at the right side of Fig. 12 compare the recognition per-
formance with respect to each quantization strategy and Table 4 summarizes the
results, giving the Area Under Curve (AUC) and the decidability index d’ that, as
suggested by Daugman [14], measures how well separated the genuine / impostor
distributions are:

d′ =
|µG−µI |√
1
2 (σ

2
I +σ2

G)
, (6)
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Fig. 12 Rcognition performance with respect to A), B) and C) code quantization strategies for
BATH (upper-left plot), CASIA-Iris-Distance (upper-right), UBIRIS.v2 (bottom-left) and FRGC
data sets (bottom-right).

where µI =
1
k ∑i dI

i and µG = 1
m ∑i dG

i are the means of the genuine (G) and impostor
(I) scores and σI =

1
k−1 ∑i(dI

i − µI)
2 and σG = 1

m−1 ∑i(dG
i − µG)

2 their standard
deviations.

Two opposite conclusions can be drawn: for Gabor filters, the best results are
observed when using the traditional sign() quantization function. In this case, using
scalars instead of sign bits even decreased the recognition performance. Oppositely,
for MLDF filters, the best results are observed when using the proposed sigmoid
function, i.e., when the coefficients of small magnitude are also considered for the
matching process. This points toward the conclusion that there is actually reliable
discriminating information in the coefficients near the origin. However, these coef-
ficients are less reliable than those with large magnitude, as in no case the linear
mapping strategy got results close to any of the remaining strategies.

Note that the above conclusions result from the reported AUC and d’ values,
which in the large majority of the cases are in agreement. The exceptions occur
mostly in cases where the shape of the genuine / impostor distributions are the far-
thest from Gaussian distributions. For these particular cases, we relied mostly on the
AUC value, as it does not require a specific data distribution to report meaningful
results.
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Table 4 Variations in recognition performance with respect to different strategies for code quanti-
zation.

A) sign() B) sigmoid() C) linear (no quantization)
Dataset Features d’ AUC d’ AUC d’ AUC
BATH Gabor 8.79±0.01 0.994±0.001 7.08±0.01 0.992±0.001 6.52±0.01 0.990±0.001
BATH MLDF 9.15±0.01 0.994±0.001 8.82±0.01 0.993±0.001 5.89±0.01 0.988±0.001
CASIA-Iris-Distance Gabor 3.20±0.01 0.982±0.001 3.16±0.01 0.982±0.001 3.05±0.02 0.971±0.001
CASIA-Iris-Distance MLDF 3.89±0.01 0.990±0.001 4.12±0.01 0.984±0.001 3.13±0.01 0.982±0.001
UBIRIS.v2 Gabor 1.23±0.01 0.813±0.006 1.16±0.02 0.793±0.007 0.82±0.02 0.720±0.006
UBIRIS.v2 MLDF 1.88±0.01 0.904±0.003 1.96±0.01 0.917±0.003 1.02±0.01 0.766±0.009
FRGC Gabor 1.12±0.02 0.792±0.006 1.01±0.02 0.770±0.008 0.83±0.01 0.731±0.007
FRGC MLDF 1.74±0.01 0.892±0.006 1.88±0.02 0.908±0.002 1.47±0.02 0.849±0.007

7 Ocular Recognition

As an attempt to increase the robustness of iris recognition in visible-light data, the
concept of periocular biometrics has emerged, which compensates for the degrada-
tion in iris data by considering the discriminating information in the surroundings of
the eye (eyelids, eyelashes, eyebrows and skin texture). Currently, the most relevant
algorithms work in a holistic way: they define a region-of-interest (ROI) around the
eye and use a feature encoding / matching algorithm regardless of the biological
component in each point of the ROI. However, this augments the probability of sen-
sitivity to some data covariate and the correlation between the scores extracted from
the different points in the ROI.

7.1 Weak / Strong Ocular Experts

Under an atomistic criterion, two experts that use disjoint data can be devised, with
radically different recognition strategies and attaining very different effectiveness.
Here, the term weak is employed to refer to a recognition system that yields a poor
separable decision environment, i.e., where the distributions of the genuine / im-
postor pairwise scores largely overlap. The term strong refers to a system where
the distributions of genuine and impostor scores almost don’t overlap, resulting in a
clearly separable decision environment and low error rates.

In this dual ensemble, the strong expert analyses the multi-spectral information in
the iris texture, according to an automatically optimised set of multi-lobe differential
filters (MLDF). Complementary, the weak expert parameterises the boundary of the
visible cornea and defines a dimensionless ROI that comprises the eyelids, eyelashes
and the surrounding skin. This expert helps to discriminate between individuals and
has three interesting properties: 1) it analyses data that has an appearance indepen-
dent of the iris texture; 2) it shows reduced sensitivity to the most problematic iris
image covariates; and 3) it exclusively analyses traits that cannot be easily forged
by anyone not willing to be recognised, which is in contrast to the traits classically
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used in periocular recognition (e.g., the shape of eyebrows). We encode the shape of
eyelids, the distribution and shape of the eyelashes and the morphology of the skin
wrinkles / furrows in the eyelids, which are determined by the movements of the
orbicularis oculi muscles family. Fig. 13 overviews the information sources used in
such recognition ensemble.

Discriminating Information

Skin Wrinkles / Furrows

Iris Texture (Phase)

Eyelids shape

Eyelashes Distribution

Fig. 13 Overview of the components in the vicinity of the human eye that can be used to extract
discriminating information, useful for biometric recognition purposes.

It is evident that using multiple sources for biometric recognition is not a new
idea, and some controversy remains: is it actually an effective way to improve per-
formance? It is argued that when a stronger and a weaker expert are combined, the
resulting decision environment is averaged and the performance will be somewhere
between that of the two experts considered individually [14]. Due to the way such
a strong / weak ensemble was designed, our experiments support a radically differ-
ent conclusion: even when the fused responses come from experts with very distant
performance, the ensemble attains much better performance than the stronger expert
(iris). This is due to the fact that both experts produce quasi-independent responses
and are not particularly sensitive to the same image covariate, augmenting the ro-
bustness against degraded data.

7.2 Relevant Ocular Recognition Algorithms

Concluded in 2011, the NICE: Noisy Iris Challenge Evaluation [64] promoted the
research about iris / ocular recognition in visible-light data. It received over one
hundred participations and the best performing teams described their approaches



Iris Recognition in Visible Wavelengths and Unconstrained Conditions 25

in two special issues of the Image and Vision Computing4 and Pattern Recogni-
tion Letters5 journals. This event has documented the state-of-the-art recognition
performance, having the best algorithm achieved d-prime values above 2.57, area
under curve around 0.95 and equal error rates of 0.12. This method (due to Tan et
al. [80]) is actually a periocular recognition algorithm: texton histograms and se-
mantic rules encode information from the surroundings of the eye, while ordinal
measures and color histograms analyse the iris. The second best approach was due
to Wang et al. [85] and is quite more classical: it employs an AdaBoost feature se-
lection scheme from a large set of quantized Gabor-based features, matched by the
Hamming distance.

The most relevant recognition algorithms for VW images can be divided with re-
spect to their data source: 1) the iris; or 2) the periocular region. Regarding the first
family, Raffei et al. [67] preprocessed the iris to remove reflections and represented
the normalised data at multiple scales, according to the Radon transform. The score
from each scale was matched by the Hamming distance and fused by weighted non-
linear combination. Rahulkar and Holambe [68] derived a wavelet basis for compact
representation of the iris texture (triplet half-band filters), with coefficients matched
by the minimum Cambera distance. A post-classifier outputs a match when more
than k regions give a positive response. Roy et al. [69] used a feature selection tech-
nique from game theory, based on coefficients from the Daubechies wavelet decom-
position. The Hausdorff distance yields the matching score between two feature sets.
Kumar and Chan [43] approached the problem from the data representation perspec-
tive, having used a quaternionic sparse coding scheme solved by convex optimisa-
tion. Quaternion image patches were extracted from the RGB channels and the basis
pursuit algorithm used to find the quaternion coefficients. In another work [42], the
same authors were based in the sparse representation for classification algorithm,
using the output of a local Radon transform as feature space.

The second family of algorithms considers other data beside the iris (sclera, eye-
brows and skin texture), and its popularity has been increasing since the work of
Park et al. [55]. Bharadwaj et al. [5] fused a global descriptor (GIST) based on
five perceptual dimensions (image naturalness, openness, roughness, expansion and
ruggedness) to circular local binary patterns. The Chi-squared distance matched
both types of features and a fusion scheme (score level) yielded the final match-
ing value.

Crihalmeanu and Ross [12] used the sclera patterns as biometric trait. The sclera
was segmented according to the pixel-wise proportion between the NIR and green
channel values. After enhancing the blood vessels by a line filter, SURF, minutiae
and correlation-based schemes produced the matching scores that were fused sub-
sequently. Similarly, Zhou et al. [94] enhanced the blood vessels in the sclera by
Gabor kernels and encoded features by line descriptors. The accumulated registra-
tion distance between pairs of line segments yielded the matching score. Also, Oh
and Toh [52] encoded the information in the sclera by local binary patterns (LBP) in

4 http://www.sciencedirect.com/science/journal/02628856/28/2
5 http://www.sciencedirect.com/science/journal/01678655/33/8
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angular grids, concatenated in a single feature vector. Then, a normalised Hamming
distance produced the matching score.

In terms of hybrid approaches, Oh et al. [53] combined the sclera to periocular
features. Directional features from the former region were extracted by structured
random projections, complemented by binary features from the sclera. Tan and Ku-
mar [79] fused iris information (encoded by Log-Gabor filters) to an over-complete
representation of the periocular region (LBP, GIST, Histogram of Oriented Gradi-
ents and Leung-Malik Filters). Both representations were matched independently
and fused at the score level.

Table 5 State-of-the-art algorithms for recognising degraded ocular data acquired in visible light
environments.

Method Traits Feat. Encoding Feat. Matching Performance
Bharadwaj et al. [5] Periocular

(Holistic)
GIST, CLBP Chi-square distance 73% rank-1

(UBIRIS.v2)
Crihalmeanu and
Ross [12]

Sclera SURF, Minutiae (vessel
bifurcations)

Euclidean distance, data
correlation

EER < 1.8% (Own
dataset)

Kumar and
Chan [43]

Iris Quaternion Sparse Orien-
tation Code

Shift Alignment 48% rank-1
(UBIRIS.v2)

Kumar et al. [42] Iris Radon local transform Sparse Representation
for Classification

40% rank-1
(UBIRIS.v2), 33%
rank-1 (FRGC)

Oh and Toh [52] Sclera LBP Hamming distance EER 0.47%
(UBIRIS.v1)

Oh et al. [53] Periocular
(Holistic),
Sclera

Multi resolution LBP
(Sclera), Directional
Projections (Periocular)

Hamming and Euclidean
distance

EER 5% (UBIRIS.v2)

Proença [65] Periocular
(Piecewise)

MLDF (iris), shape and
texture descriptors (eye-
lashes, eyelids)

Modified Hamming
(iris), Histogram distance
(eyelids, eyelashes)

EER 2.97%
(UBIRIS.v2)

Raffei et al. [67] Iris Multi-scale local Radon
transform

Hamming distance,
weighted non-linear
score combination

AUC 88%
(UBIRIS.v2)

Rahulkar and Ho-
lambe [68]

Iris Triplet half-band filter
bank

Canbera distance, k-out-
of-n post classifier

Acc > 99%
(UBIRIS.v1)

Roy et al. [69] Iris Daubechies wavelet,
Modified Contribution
feature selection

Hausdorff distance TPR 97.43%@
0.001%FPR
(UBIRIS.v1)

Tan and Kumar [79] Iris, Perioc-
ular (Holis-
tic)

Log-Gabor filters (Iris),
SIFT, GIST, LBP, HOG
and LMF (Periocular)

Chi-square and
Euclidean distances

39.4% rank-1
(UBIRIS.v2)

Tan et al. [80] Iris, Eye Texton Histograms,
Semantic information
(Eye), Ordinal Filters,
Color Histogram (Iris)

Chi-square, Euclidean,
Difusion and Hamming
distances

AUC
95%(UBIRIS.v2)

Wang et al. [85] Iris Gabor filters, AdaBoost
feature selection

Hamming distance AUC 88%
(UBIRIS.v2)

Zhou et al. [94] Sclera Line (sclera vessels) de-
scription

Accumulated line regis-
tration cost

EER 3.83%
(UBIRIS.v2)
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Table 5 overviews the state-of-the-art algorithms in terms of biometric recogni-
tion from VW ocular data. It compares the analysed traits and summarises the tech-
niques used in feature encoding and matching. The error rates reported by authors
are also given (Performance column). However, note the above listed algorithms
might have used different experimental protocols and data subsets, which turns the
direct comparison of the error rates unfair.

Proença recently proposed a recognition ensemble [65] composed by two ex-
perts. The strong expert analyses the multi-spectral information in the iris tex-
ture, according to an automatically optimised set of multi-lobe differential filters
(MLDF). Complementary, the weak expert parameterises the boundary of the vis-
ible cornea and defines a dimensionless ROI that comprises the eyelids, eyelashes
and the surrounding skin. This expert helps to discriminate between individuals and
has three interesting properties: 1) it analyses data that has an appearance indepen-
dent of the iris texture; 2) it shows reduced sensitivity to the most problematic iris
image covariates; and 3) it exclusively analyses traits that cannot be easily forged
by anyone not willing to be recognised, which is in contrast to the traits classically
used in periocular recognition (e.g., the shape of eyebrows).

The weak expert encodes the shape of eyelids, the distribution and shape of the
eyelashes and the morphology of the skin wrinkles / furrows in the eyelids, which
are determined by the movements of the orbicularis oculi muscles family. With re-
spect to related works, the main advantage of this method is that the responses of
the iris (strong) and ocular (weak) experts are practically independent, in result of
the disjoint regions analyzed and in the fully disparate algorithms used in feature
encoding / matching. This way, even by using relatively simple fusion techniques
that work at the score level, it is possible to use the weak biometric expert as a valu-
able complement of the iris expert, particularly in cases where this expert produces
matching scores that are near the borderline accept / reject regions. This kind of
complementarity between experts is illustrated in Fig. 14, showing pairwise com-
parisons that are intra-subject (upper row) and inter-subject (bottom row), with Ps,
Pw denoting the posterior probability of acceptance (by the strong s and weak w
experts) of the null hypothesis H0 that both images are from the same subject.

Fig. 14 Examples of image pairwise comparisons that fall in the uncertainty region of the strong
(iris) biometric expert (Ps(H0|x) ≈ 0.5) . In most cases, the weak (periocular) biometric expert
provides valuable information Pw to distinguish between intra-subject (green frames) and inter-
subject comparisons (red frames).
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8 Fusion of Multiple Recognition Systems

Considering that the type of biometric recognition systems discussed in this chapter
should work covertly, meaning that no conscious human effort will be required of
subjects during the recognition processes, there is a theoretically interesting possi-
bility of using multiple recognition systems regularly spaced across an airport ter-
minal hallway or a city street. This section reports the (optimistic) performance that
such a recognition ensemble would attain, considering as baseline recognizers the
current state-of-the-art solutions for non-cooperative ocular recognition.

It is known that not all subjects perform consistently in terms of false matches
and non-matches of a biometric system. Based on their intrinsic features, some are
difficult to match (goats), while others are particularly vulnerable to impersonation
(lambs) and consistently increase the probability of false matches [88]. We over-
simplify the problem and regard all subjects of a population P = {s1, . . . ,sn} as
sheep, i.e., subjects that tend to follow the system averages: they match relatively
well against themselves and poorly against others. Let us consider k ocular recog-
nition systems with roughly similar performance, with a sensitivity of α at a false
match rate of β . Here we introduce the concept of exogenous independence, hy-
pothesizing that purposely changing the lighting conditions in the environment (by
using different levels of light or types of illuminants) and the acquisition protocols
(poses, distances) should potentiate the independence between the system outputs.
Assuming that the independence of each system provides an upper bound on the
performance that would be attainable by the fusion of multiple systems, the bino-
mial distribution can be used to obtain the probability that a subject si is screened
by k recognition systems and correctly recognized by k′ of these, 1≤ k′ ≤ k:

P(Rk′) =
k!

k′! (k− k′)!
α

k′ (1−α)k−k′ . (7)

For different values of k′, the probability that a reported match is false is given by
β k′ , assuming that false matches in each of the k recognition systems are indepen-
dent events. Accordingly, a match will be reported iff a minimum of k′ recognition
systems output a match:

P(R≥k′) =
k

∑
j=k′

P(R j)

=
k

∑
j=k′

k!
j! (k− j)!

α
j (1−α)k− j, (8)

provided that all events are mutually exclusive. Considering the average perfor-
mance for a baseline recognizer that fuses at the score level the responses given
by four state-of-the-art algorithms ([80],[85], [71] and [73]), Fig. 15 gives the ex-
pected sensitivity of a multipoint biometric system, with respect to the number of
baseline recognizers used, considering different false match rates. However, note
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that this analysis provides an upper bound estimate of the ensemble performance,
as it assumes that the responses given by individual experts are independent, Even
though, this optimistic assumption would enable to conclude that around five in-
dependent recognition systems would be enough to attain almost full sensitivity at
a false acceptance rate β of 0.01. This value substantially increases when a lower
number of false alarms is convenient (large scale applications), requiring between
thirteen and twenty three independent recognition systems to operate, respectively,
at FAR 1e−4 and 1e−6.

FAR ≈ 0.01

FAR ≈ 1e−4

FAR ≈ 1e−6

Fig. 15 Expected sensitivity of an ensemble of ocular recognition systems working covertly and
consecutively (e.g., in an airport terminal hallway or a city street), with different required values
for the false acceptance rates. Note that this is an optimistic estimate of the ensemble performance,
as it assumes that the responses given by baseline recognizers are statistically independent.

9 Conclusions and Current Challenges

There is no doubt that concerns about the security and safety of crowded urban ar-
eas have been increasing significantly, particularly due to terrorist attacks such as the
2001 New York 9/11, the 2004 Madrid train bombing and the 2013 Boston marathon
attacks. These concerns raised the interests on biometrics and made it one the most
popular topics in the Pattern Recognition / Computer Vision domains. However,
there are still not biometric recognition systems that work effectively using data
acquired in totally uncontrolled environments and without assuming subjects’ will-
ingness to be recognized.
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This chapter discussed such extremely ambitious kind of biometric recognition
and advocated the use of the ocular region as basis trait, due to several reasons:
being a naturally protected internal organ visible from the exterior, it has a near
circular and planar shape that turns easier its segmentation and parameterization.
Also, its texture has a predominantly phenotypic or chaotic appearance that is stable
over lifetime, which - particularly important - discriminating information between
subjects lies in the lowest and middle-low frequency components, i.e., those that are
easier to capture in unconstrained data acquisition protocols. Finally, the ocular re-
gion is less sensitive to facial expressions (than the whole face), and has a relatively
small probability of being occluded due to hair, facial hair and clothing.

We started by summarising the most relevant research works devoted to increas-
ing the recognition robustness with respect to data of reduced quality, and here-
inafter, focused particularly in the major issues behind each of the phases that com-
pose the recognition chain: data acquisition, segmentation, feature encoding and
matching. Also, we summarized some of the most relevant works in the periocular
recognition domain. In this topic, we stressed two key properties of an ocular recog-
nition ensemble: 1) the weak (periocular) recognizer should provide as much inde-
pendent scores (responses) as possible with respect to the strong (iris) recognizer;
and 2) experts should not share particular sensitivity to the same data covariates, in
order to actually improve recognition robustness.

Finally, the obstacles remaining in every phase of a fully non-cooperative ocular
recognition system were discussed, particularly the difficulty in real-time detecting
and segmenting all the components in the ocular region, which is important not
only for developing non-holistic feature encoding / matching strategies, but also to
estimate pose and data quality.
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