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Abstract

In the biometrics context, the ability to provide the rea-

soning behind a decision has been at the core of major

research efforts. Explanations serve not only to increase

the trust amongst the users of a system, but also to aug-

ment the system’s overall accountability and transparency.

In this work, we describe a periocular recognition frame-

work that not only performs biometric recognition, but also

provides visual representations of the features/regions that

supported a decision. Being particularly designed to ex-

plain non-match (”impostors”) decisions, our solution uses

adversarial generative techniques to synthesise a large set

of ”genuine” image pairs, from where the most similar el-

ements with respect to a query are retrieved. Then, as-

suming the alignment between the query/retrieved pairs, the

element-wise differences between the query and a weighted

average of the retrieved elements yields a visual explana-

tion of the regions in the query pair that would have to be

different to transform it into a ”genuine” pair. Our quan-

titative and qualitative experiments validate the proposed

solution, yielding recognition rates that are similar to the

state-of-the-art, but - most importantly - also providing the

visual explanations for every decision.

1. Introduction

This work describes an integrated framework for peri-

ocular biometric recognition which - apart performing the

recognition task - also provides a visual explanation that

sustains every decision. Considering the biometric recog-

nition ubiquity and dependability [21], our main goal in

this paper is not to propose a better recognition framework

in terms of the error rates, but to particularly diverge of

the black-box paradigm and follow a visually explainable

paradigm, as illustrated in Fig. 1.

0*The code is publicly available at https://github.com/

ojoaobrito/ExplainablePR.git

Figure 1. Key insight of the proposed visual explainable frame-

work: given a pair of images, the system not only reports a bi-

nary decision (”genuine”/”impostor” classes), but also highlights

the regions in each sample that contributed the most in case of

a non-match decision. In this example, yet the iris and skin colour

are similar between samples, the eyebrows and eyelashes shapes

are evidently different, along with a skin spot in the sample illus-

trated at the left side. These are exactly the regions highlighted in

the visual explanations.

Typically, a recognition problem involves a set of unique

and non-transferable features that can unmistakably iden-

tify a subject. Biometric traits, as they are designated in

the field, serve such purposes, as long as they are univer-

sal, distinguishable, resilient to changes and easy to collect

[16]. Upon proving their compliance with these require-

ments, biometric traits can be divided into two major cate-

gories:

1. Physiological features (e.g., the iris, fingerprint and

retina) that are naturally possessed by a given subject;

2. Behavioural biometrics, that yield from the interaction

between a subject and the surrounding environment

(e.g., the gait and handwritten signature) [2].

 https://github.com/ojoaobrito/ExplainablePR.git
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Figure 2. Cohesive perspective of the main pipeline of the proposed solution. The first step (recognition) encompasses a CNN that

distinguishes between ”genuine” and ”impostor” pairs. Then, upon an ”impostor” decision, steps two to five (explanation) find the K

”genuine” synthetic pairs among a large set that most closely resemble the query pair. Assuming the alignment between the query and

the retrieved pairs, the element-wise differences between the query and a weighted average of the retrieved elements provides a visual

explanation of the regions/features in the query that would have to be different to turn the query into a ”genuine” pair.

Concentrating growing interests in the biometrics do-

main, periocular recognition uses the information in the

vicinity of the eye to perform recognition, in which the iris,

sclera, eyebrow, eyelid and skin stand out.

Regarding the concept of explainability and its appli-

cation to recognition problems, it should be noted that

Deep Learning solutions rely on model complexity and

abstraction prowess to become truly accurate. Although

seemingly innocuous, there could be seriously negative

outcomes if such black-boxes gamble on the clearance

of unauthorised people into sensible areas. Hence, it is

particularly important to provide human understandable

explanations of the decisions, which will augment the

overall system accountability and transparency, enabling a

broader range of applications (i.e., forensics). Recently, the

EU, through the GDPR [3], introduced the notion of ”right

to an explanation”. Even though the definition and scope

of such explanations are still subject to debate [10], these

are definite strides towards a formal regulation regarding

the importance given to the concept of explainability.

According to the above points, this paper describes a

framework that receives a pair of images and returns a two-

fold output: 1) a binary match/non-match decision, that dis-

criminates between the ”genuine”/”impostor” pairs; and 2)

a visual explanation that highlights the features/regions of

the input data that sustained a particular decision. This

is considered the main contribution of our work, in the

sense that - to the best of our knowledge - it is the first

that creates an accurate and explainable representation of

the reasons behind certain decisions of the recognition sys-

tem. Other contributions include the use of Generative Ad-

versarial Networks (GANs), to synthesise visually pleasant

images pair that faithfully resemble the distribution of the

”genuine” pairs, which augments the variety and flexibility

of the learning set and can be seen as an alternate form of

data augmentation.

Fig. 2 provides a cohesive overview of the framework

that performs the recognition task and provides the cor-

responding explanations: 1) at first, a CNN (of a well

known architecture) is trained to discriminate between

match/non-match decisions. If the pair is deemed to

belong to the ”impostors” distribution, we find its most

similar ”genuine” pairs in a large set of synthetic data. The

insight here is that, even if the query pair has significant

differences between its elements that led to an ”impostor”



decision, the closest synthetic pairs most likely do not (as

they were drawn from the ”genuine” distribution). Then,

assuming that the most likely synthetic pairs and the query

are sufficiently aligned, obtaining the pixel-wise weighted

differences between them will elevate visual disparities.

The remainder of this paper is organised as follows: Sec-

tion 2 summarises the most relevant research in the fields of

periocular recognition and Machine Learning Explainabil-

ity. Section 3 describes our method and Section 4 analyses

the results obtained. Section 5 concludes this paper, while

also providing some final remarks.

2. Related Work

2.1. Periocular Recognition

The seminal breakthroughs in the periocular recognition

problem can be traced to a set of methods termed feature

descriptors. Methods such as HoG, LBP and SIFT were

able to produce simplified data representations by relying

on edges, textures and keypoints, respectively. In [17], the

results from each feature descriptor were fused to faith-

fully discriminate between the ”genuine”/”impostor” pairs.

This work served as basis for subsequent fusion-based ap-

proaches, as in [14]. In [6] a Restricted Boltzmann Machine

was used to learn a probabilistic distribution over the input

data, further discriminated with metric learning and SVMs.

With the effective application of Deep Learning solu-

tions, researchers turned to popular architectures (in par-

ticular Convolutional Neural Networks), to pursuit ever in-

creasing recognition accuracy. Accordingly, in [23] the

main concept involves the use of multiple CNNs that are

specialised in classifying a particular kind of semantic in-

formation (e.g. gender or age). Then, a score fusion pro-

cess yields the final response. In [15], authors enforce a

CNN to ignore the ocular region (due to its likelihood to

contain specular reflections) and rely in the eye’s surround-

ing area (eyebrow, eyelid and skin). [18] created indepen-

dent representations of the iris and periocular regions, that

feed classification modules, whose scores are finally fused

to reach the decision. Using a multi-glance mechanism,

where part of the intermediate components are configured

to incorporate emphasis on the most important semantical

regions (i.e., eyebrow and eye), Zhao and Kumar [24] de-

veloped a recognition model that particularly focus these

regions, enabling the deep Convolutional Neural Network

(CNN) to learn additional discriminative features that im-

prove the recognition capability of the whole model. Re-

cently, [19] attempted to bridge the gap between biometric

recognition and interpretability, by learning feature specific

filters that respond to a range of preferred spatial locations.

[5] propose an integrated solution that leverages the discov-

ery of parts as a form of attention.

2.2. Machine Learning Explainability

In the literature, the existing explainable techniques are

commonly divided in terms of their depth, scope and model

applicability [8], [11]. Depth is related to the length to

which we explain a given model, i.e. whether the technique

limits the model’s complexity to make it more transparent

(intrinsic explainability) or allows complexity and focuses

on explaining exclusively the system outputs (post hoc ex-

plainability). Scope indicates the range that a technique

possesses, i.e., if it explains individual predictions (local)

or the model’s entire behaviour (global). Finally, applica-

bility divides the techniques based on their model affinity,

i.e. whether they are only compatible with a specific family

of models (model-specific) or any kind of model (model-

agnostic). The most commonly cited techniques include

LIME [20] and Shapley codes (SHAP) [9]. The former uses

a surrogate linear model, trained on perturbed data (e.g. dis-

abled clusters of adjacent pixels), to locally approximate the

behaviour of a complex black-box model. The latter uses

game theory and Shapley values, which are assigned to the

features based on how important they are to a given predic-

tion. Additionally, Saliency Maps [22] use the derivative of

a highly complex function (essentially, a CNN) with respect

to a given input image, to determine which pixels need to be

changed the least, while also changing the output class the

most. Finally, for visualisation purposes and, therefore, out-

side the scope of this work, PDP [4] and ALE [1] techniques

are able to produce plots that correlate the independent vari-

ables to a target variable, exploiting the notions of marginal

and conditional distributions, respectively.

3. Proposed Method

3.1. Learning Phase

The main components of the proposed method comprise

three well known models: the DenseNet-161, Mask R-CNN

and StyleGAN2. The first one (DenseNet-161) is trained to

solve an identity verification problem, while the segmenta-

tion model (Mask R-CNN) is fine-tuned to produce high-

quality masks for the iris and eyebrow. Finally, the GAN

model (StyleGAN2) learns how to create synthetic data that,

while closely resembling the distributions in the training set,

is diverse enough to approximate unseen subjects. Addi-

tionally, a fourth, auxiliary model (ResNet-18) is fitted to

discriminate between images from the left and right sides of

the face. Although trained separately, all the models learn

from the same training split, which excludes a set of disjoint

IDs that are reserved for performance evaluation purposes.

Regarding the model used in the verification task

(DenseNet-161), it should be stated that it has mach more

parameters than the network used by Zhao and Kumar [23]

in their solution. This might be the fact that sustained

slightly better recognition performance of our model with



respect to the baseline (Sec. 4.3), but also at the expense

of a substantial higher computational cost of classification

than the baseline, which might be impracticable in some

cases.

3.2. Inference Phase

Once trained, our method is conceptually divided into

five major steps, as depicted in Fig. 2. Firstly, the

DenseNet-161 model is used to verify the claimed identity:

upon receiving a pair of images, the model discriminates

between ”genuine”/”impostor” pairs. If the pair is deemed

to be ”impostor”, the remaining steps create a visually in-

terpretable explanation of that decision.

The second step takes the query pair and, using Mask

R-CNN, segments the irises and eyebrows regions. Next,

step three uses the StyleGAN2 generator to create a large,

synthetic set of exclusively ”genuine” pairs (i.e. where both

images belong to the same person). For each of these syn-

thetic pairs, the ResNet-18 model determines its side con-

figuration (i.e. whether images regard the left or right side

of the face) and, as before, masks are obtained by the seg-

mentation model.

After obtaining the synthetic data and their correspond-

ing masks, the synthetic dataset is indexed based on the co-

ordinates of the center of the iris, which will enable faster

search in the retrieval step. To that end, the clustering al-

gorithm K-Means is trained on a subset of the iris segmen-

tation masks to obtain three centroids, one for each major

iris gaze family (i.e. left, centre and right). This way, we

index the available pairs based on their combination of iris

positions (e.g. left-left, right-centre . . . ). By doing so, when

searching, we can just rely on the synthetic pairs that share

the same combination as the test pair, saving time and use-

less calculations.

Upon settling for a portion of the synthetic dataset that

closely meets the iris position constraint, the segmentation

masks are further used to determine which synthetic pairs

have the iris and eyebrow approximately overlapped to the

query. This is an important requirement to obtain visually

pleasant explanations, given that pixel-wise differences are

extremely sensitive to differences in phase (i.e., component

misalignment). Accordingly, we obtain a similarity score

sX between each synthetic neighbour and the query using:

sX = ωmasks ∗ ||query pairA − neighbourX||2, (1)

being ||.||2 the ℓ − 2 norm and ω. a weight that considers

component misalignment. This way, we obtain a weighted

distance between each synthetic neighbour and the first im-

age of the query pair. ωmasks values serve to favour pairs

that have good alignment, considering 1 − IoU(., .), i.e.,

the complement of the intersection-over-union of the syn-

thetic/query segmentation masks. In practice, we search

amongst the (large) thousands of synthetic pairs, the closest

to the query pair in terms of the first image. Therefore, given

that the second image of the query pair is from a different

subject, it will most likely have features that are different

to the synthetic neighbours, which are exactly the kind of

dissimilarities that make up the final explanations.

This way, the K closest neighbours are sorted accord-

ing to their element-wise distance to image B, using (2).

Finally, to produce the final explanation, the K best neigh-

bours are used to obtain the pixel-wise differences against

the query pair image B. In practice, a neighbour distance

is subtracted from the total sum of distances, creating an

inverted distance. This assures that the contribution of the

closest synthetic neighbours to the final result is more im-

portant than of those with bigger distances.

3.3. Implementation Details

The DenseNet-161 model was trained for 15 epochs with

a learning rate of 0.0002 and a batch size of 64 image pairs.

The Adam algorithm was used for the weight optimisation

process (with default β1 and β2 values). A similar training

setup was used to train the ResNet-18 model, albeit for a

smaller number of epochs (i.e. 5). For the Mask R-CNN’s

training process, we kept its default values, using a learning

rate of 0.001, a batch size of 1 and 30 epochs worth of train-

ing (in this case, fine-tuning from the COCO pre-trained

weights). Regarding the StyleGAN2 architecture, the used

training step comprised a total of 80.000 iterations and a

batch size of 8. After converging, the generator is capable

of synthesising realistic looking images, such as the roughly

400.000 pairs that make up the artificial dataset. Finally, for

the number K, that determines how many synthetic pairs

should be kept, we used a default value of 15.

4. Experiments and Discussion

4.1. Datasets and Working Scenario

As mentioned above, the proposed framework is com-

posed of two modules: 1) one for recognition; and 2) the

other for explanation purposes. Regarding the former, the

chosen CNN is solely trained on the UBIPr dataset [13],

which provides the ID annotations used in the identity veri-

fication problem. Regarding the explanation step, it mainly

relies on a combination of UBIPr and FFHQ [7]. Despite

not being directly applicable to the context of this work (i.e.

it contains full face images, thus requiring extra steps to

extract the periocular region), the FFHQ dataset contains

a large variety in terms of periocular attributes, some of

which are scarcer in the UBIPr dataset. In practice, a small,

but curated, portion of the FFHQ samples was used to cre-

ate a data super set. Regardless of their source, all images

were resized to a common shape, depending on the task (i.e.

512x512x3 for Mask R-CNN, 256x256x3 for StyleGAN2

and 128x128x3 for the CNNs).



As it is usual in the biometric recognition context, it is

important to define proper working modes and world set-

tings, for which the system is built. With respect to the

working mode, our model runs in verification mode (also

referred to as one-to-one), where the system validates a

claimed identity [16]. As for the world setting, we assume

an open-world setting, meaning that unseen subjects can be

faithfully handled in the inference step.

4.2. Explainability Evaluation

Our explainability chain starts by the train of a

DenseNet-121 model to perform the verification task.

This model can be further paired to either LIME, SHAP

or Saliency Maps to create comprehensive comparison

schemes, to which we add the method described in [5].

Fig. 4 provides several examples of the synthetic ”genuine”

images pairs generated from the GAN model. Apart their

obvious visual realism, it is important that this set contains

samples with the most likely known data covariates for the

periocular region: varying gazes, wide-opened/closed eyes,

varying poses, partial occlusions, and even varying facial

expressions. Failing in incorporating such diversity will de-

termine that the closets synthetic pairs of a query will still

be notoriously different from it, and that the visual repre-

sentations obtained will have poor realism.

Fig. 3 displays the expected results from a visually ex-

plainable system. In practice, LIME tries to keep the most

important super-pixels, SHAP highlights those it deems im-

portant in red tones and Saliency Maps produce greyscale

explanations. As for the method by Huang and Li, it gener-

ates a heat-map in which red tones elevate important areas.

Focusing on the common pairs between all methods, the

left sample is essentially different with regards to eyebrow

thickness and presence/absence of a noticeable skin spot.

As for the right one, the most obvious disparities have to do

with the eyebrow areas. Overall, our results are the most

informative, when compared with the remaining four solu-

tions. While LIME and SHAP do a decent job, Saliency

Maps provide a faint explanation. It is Huang and Li’s

method that comes closer to our level of visual appeal, by

clearly highlighting portions of the eyebrow and a portion

of subject A’s skin spot, in the left pair. Moreover, when

given the right sample, it generates a solid red area com-

prising subject B’s eyebrow. However, upon closer inspec-

tion, our results show more appealing visual cues: in the

left sample, distinct red tones on top of A’s skin spot and

eyelashes, as well as, reiterated eyebrow differences in the

right sample with highlights in both eyebrows, rather than

just one. As for the remaining samples, the third (just below

the first) is clearly explained by highlighting the entirety of

both skin areas, which are obviously different between im-

ages A and B. Finally, in the fourth pair it is also shown

how the eyelids differ, by colouring that periocular compo-

nent on subject B’s image, and, in the fifth sample, subjects

B’s eyebrow and iris are accurately shown in red.

When objectively measuring the differences between the

explanations provided by the proposed method and the

baselines (LIME, SHAP, Huang and Li (HL) and Saliency

Maps (SM)), we used a set of 10 heterogeneous test queries

and measured the pixel-wise explanation coefficients re-

turned by each technique, which correspond to the impor-

tance (weight) given by each method to a particular image

position for a decision. Next, considering that any mean-

ingful correlations between the responses of two methods

would have to be linear, we measured the Pearson’s linear

correlation between pairs of techniques:

rxy =

∑

i(xi − x̂)(yi − ŷ)
√
∑

i(xi − x̂)2
∑

i(yi − ŷ)2
, (2)

where xi/yi denote the ith scores provided by each tech-

nique and the .̂ symbol denotes the mean value. This way

rxy measures the similarity between explanations provided

by the x and y techniques: values close to 0 will correspond

to more independent explanations, while values towards 1
will hint at semantic similarities between such explanations.

The results are provided in the confusion matrices shown

at Fig. 5, where the main diagonal provides the distribu-

tions of the scores generated by each technique and the

remaining cells provide the scatter plots between pairs of

techniques with the Pearson’s correlation value rxy given

at the top left corner of each cell (’SM’ stand for Saliency

Maps and ’HL’ denotes the Huang and Li solution)). All

these techniques report a local numeric value that corre-

sponds to the role/importance of each region in the final

decision. The exception is LIME, where the pixels are bi-

nary discriminated into ”visible”/”occluded’. In this case,

we considered that ”visible” will be equal to 1, while ’oc-

cluded” will be equal to 0. Overall, we observed that the

techniques provide relatively independent responses for the

importance given to each pixel in the final decision. In-

terestingly, in some cases, there are even negative corre-

lation values between two methods (e.g., HL and LIME

or SM and LIME). There are other pairs of solutions that

achieved almost full independence between their responses

(the Shapley/Ours methods), which points for completely

different strategies being used to define the explaining re-

gions/features. Still considering our method, its levels of

correlation were kept relatively low with respect to the re-

maining methodologies, achieving values of 0.24 with re-

spect to the method of Huang and Li (the most correlated),

and 0.1 for Saliency maps. Still, we concluded that the pro-

posed solution is extracting semantic information (e.g., fea-

tures and regions) of the vicinity of the human eye that is

evidently different of the kind of information emphasised

by any of the remaining methods, which supports the use-

fulness of the solution described in this paper.
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Figure 3. Examples of the results attained by three standard interpretability techniques (LIME, SHAP and Saliency Maps), a state-of-the-art

interpretable deep model for fine-grained visual recognition (i.e. [5]) and our method. Notice how our results are clearer in highlighting

the components that justify every non-match decision (e.g., skin texture and color, eyebrows/eyelashes size and distribution, irises color

and even skin spots).



Figure 4. Examples of the synthetic image pairs in our dataset,

generated according to a GAN model. These elements are drawn

exclusively from the ’’genuine” distribution. Upon a query, the

most similar synthetic pairs with respect to the query are found,

which will provide the features/regions that would transform the

query into a ”genuine” comparison.

Figure 5. Pearson correlation values between the pixel-wise re-

sponses provided by the method proposed in this paper (Ours) and

four baselines techniques (LIME, SHAP, Huang and Li (HL) and

Saliency Maps (SM)).

4.3. Recognition Accuracy Evaluation

At first, note that we do not aim at providing a better

recognition framework than the state-of-the-art, in terms

of the recognition rates. Even though, our main pur-

pose in this section was to perceive if the proposed recog-

nition/explanation network is able to achieve competitive

recognition performance with respect to state-of-the-art im-

plementations.

We compare the recognition effectiveness of the pro-

posed method with respect to a well known periocular

recognition model (due to Zhao and Kumar [23], considered

to represent the state-of-the-art). Using the UBIRIs.v2 set

[12] and the learning/evaluation protocols described in [23],

we obtained the results summarised in Table 1. Also, we

provide ROC values of the proposed strategy, that can be

fairly combined with the similar ROC plot provided by the

original authors of the baseline in [24].

A bootstrapping-like strategy was used, by sampling

90% of the available data in UBIRIS.v2 and dividing the re-

sulting samples between two disjoint sets: 80% for training

and the remaining 20% for test. The models were trained

separately in each sample and the performance evaluated in

the corresponding test set, from where the EER and AUC

scores were obtained. This process was repeated 10 times,

to perceive the mean ± standard deviation values for both

metrics. Overall, results were satisfactory, particularly con-

sidering that - due to our modular design - the recognition

module of the proposed framework can be easily replaced

by any other, while keeping its explainability abilities.

Method EER AUC

Ours (open-world) 0.108± 3e−2 0.813± 5e−2

Ours (closed-world) 0.087± 2e−2 0.910± 2e−2

Zhao and Kumar [23] 0.109± 2e−3 −

Table 1. Comparison between the recognition rates attained by the

proposed method (in both world settings) and a state-of-the-art

method (strictly operating in an open-world setting). Results are

given for the same learning/test sets of the UBIRIS.v2 dataset.

For reference purposes, Fig. 6 provides the Receiver Op-

erating Characteristic (ROC) curve for our solution. When

comparing to the corresponding results reported by authors

in [23] in the same set, a close recognition summary per-

formance between both methods can be derived (as seen in

Table 1). Overall, we observed a similar performance be-

tween these techniques in this dataset, supporting the idea

that our solution is able to approach state-of-the-art recog-

nition rates.

Figure 6. Receiver Operating Characteristic (ROC) curve obtained

for the proposed method, using the UBIRIS.v2 set and a simi-

lar empirical protocol as Zhao and Kumar [23]. The ROC curve

equates to EER and AUC values of 0.108 and 0.813, respectively.



Figure 7. Typical changes in the results when two key parameters

of the proposed method are varied. The red square indicates which

image is being explained (i.e. B), while the red dashed squares

provide the default values used. In general, increasing K up to 15

allows for smoother explanations, as does keeping a large dataset.

Reducing the latter tends to produce less sensitive results, substan-

tially decreasing the plausibility of the explanations generated.

4.4. Ablation Studies

For our ablation experiments, we identified two hyper-

parameters of our method that might play the most signif-

icant roles in the final effectiveness of the whole solution:

1) the number of neighbours retrieved (K) from the syn-

thetic set for every query; and 2) the length of the synthetic

set itself. This section discusses how changes in these val-

ues affect the quality of the generated explanations in a less

than optimal way (as seen in Fig. 7).

4.4.1 Number of Neighbours

The value K determines how many synthetic pairs are con-

sidered with respect to a query. Overall, we observed that

smaller values lead to more sensitive and jagged results. Up

to a certain point (e.g. 15), increasing K typically enables

to obtain smoother explanations, due to the larger number

of samples taken into account when averaging the closest

neighbours. This trend, however, starts returning incremen-

tal improvements (notice in Fig. 7, where K >= 50 pro-

gressively stops presenting a prominent tone on the eyelid).

4.4.2 Length of the Synthetic Dataset

This is the most sensitive parameter of our solution. Consid-

ering that it is important to find ”genuine” pairs that closely

resemble a query, it is particularly sensitive to assure that all

typical periocular data variations are faithfully represented

in the synthetic set, assuring that the retrieved elements (i.e.,

the most similar) will have its major components (iris, eye-

brows and eyelids) aligned to the query itself. If this condi-

tion is not satisfied, the explanations loose their biological

plausibility and effectiveness. Fig. 7 illustrates how smaller

synthetic sets lead to less evident explanations, especially

around the eyelid and the eyebrow.

5. Conclusions and Further Work

This paper described an integrated framework, based in

well known deep-learning architectures, to simultaneously

perform periocular recognition and - most importantly - to

provide visual explanations of the regions/features that sus-

tained every non-match decision, which we consider to be

the cases where explanations are the most required. Accord-

ing to the powerful generative ability of GANs, we create a

very large set of synthetic pairs that follow the ”genuine

distribution”. At inference time, for every ”impostor” com-

parison we are able to perceive the regions and features that

failed the most (i.e., those that most evidently were differ-

ent from a subset of the ”genuine” synthetic pairs). This

enables to generate pleasant explanations, where each com-

ponent of the target region appears with a different colour

depending on how it influenced the final decision. Impor-

tantly, the modular nature of our method ensures that the

periocular region can be replaced by other biometric traits

(e.g., the face) without compromising the explanations.

As future work, we are developing a strategy for also

providing intuitive explanations of the ”genuine” observa-

tions, where the strategy has to be very different from the

idea behind the ”impostors” insight used in this paper.
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