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Abstract: Brain tissue segmentation is an important component of the clinical diagnosis of brain
diseases using multi-modal magnetic resonance imaging (MR). Brain tissue segmentation has been
developed by many unsupervised methods in the literature. The most commonly used unsupervised
methods are K-Means, Expectation-Maximization, and Fuzzy Clustering. Fuzzy clustering methods
offer considerable benefits compared with the aforementioned methods as they are capable of
handling brain images that are complex, largely uncertain, and imprecise. However, this approach
suffers from the intrinsic noise and intensity inhomogeneity (IIH) in the data resulting from the
acquisition process. To resolve these issues, we propose a fuzzy consensus clustering algorithm that
defines a membership function resulting from a voting schema to cluster the pixels. In particular,
we first pre-process the MRI data and employ several segmentation techniques based on traditional
fuzzy sets and intuitionistic sets. Then, we adopted a voting schema to fuse the results of the
applied clustering methods. Finally, to evaluate the proposed method, we used the well-known
performance measures (boundary measure, overlap measure, and volume measure) on two publicly
available datasets (OASIS and IBSR18). The experimental results show the superior performance of
the proposed method in comparison with the recent state of the art. The performance of the proposed
method is also presented using a real-world Autism Spectrum Disorder Detection problem with
better accuracy compared to other existing methods.

Keywords: brain tissue segmentation; consensus clustering; segmentation; magnetic resonance image

1. Introduction

Segmenting brain tissue is the process of subdividing the image of the brain into major
components such as Cerebrospinal Fluid (CSF), Gray Matter (GM), and White Matter (WM).
The step of brain tissue segmentation is fundamental in diagnosing and monitoring a wide
range of neurological diseases. Several researchers have strived to develop automatic brain
tissue segmentation in the last two decades [1–4].

Brain tissue segmentation has been developed by many unsupervised methods in
the literature. The most commonly used unsupervised methods are: K-Means [5–7],
Expectation-Maximization [8], and Fuzzy Clustering [9,10]. Fuzzy clustering methods offer
considerable benefits compared with the aforementioned methods as they are capable of
handling brain images that are complex, largely uncertain, and imprecise.

Even thoug, traditional Fuzzy C-Means (FCM) showcases outstanding results on brain
image segmentation, it has some limitation such as being sensitive to noise due to the use
of the Euclidean distance metric and neighbourhood information ignorance. The FCM
computes the distance between cluster center and voxels using a Euclidean distance mea-
sure. Euclidean distance is very sensitive to noise which results in the deterioration of
segmentation results. In the literature, we found many variants of FCM methods that
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are developed to address the aforementioned shortcomings. To address the noise sensi-
tivity, researchers added the spatial information into the FCM objective function [11,12].
The addition of a spatial function to an objective function helps to reduce the impact of
noise and also helps to enhance performance. The spatial information may be local or
global [13]. On the other hand, to address the limitations of Euclidean distance, many
researchers developed a kernel version of FCM and named it Kernel FCM (KFCM) [14,15].
KFCM adopts kernel function as a distance measure. The kernel function transfers the
input data to higher dimensional kernel space and makes the clustering task easier. The
aforementioned FCM variant methods are based on a traditional fuzzy set. In a fuzzy set,
the non-membership value is always the complement of the membership value. However,
in real time, this assumption fails due to hesitation. The hesitation arises due to uncertainty
in defining the membership function. To handle this hesitation, Atanassov [16] developed
an advanced fuzzy set called Intuitionistic Fuzzy Set (IFS). In IFS, the non-membership
value is computed using the fuzzy complement generator functions. In recent times, re-
searchers have given more attention in developing IFS-based clustering methods [17–20].
Chaira [18] developed an Intuitionistic Fuzzy C-Means (IFCM) where the intuitionistic
fuzzy entropy is added to the conventional FCM objective function. The intuitionistic fuzzy
set handles the uncertainty which originates while defining a membership function by
considering the hesitation degree. To handle noise and uncertainty during segmentation,
Verma et al. [21] considered both the pixel and local neighborhood information. The main
benefit of this method is that it is non-parametric.

Recently, researchers have come to realize that a single clustering method might fail
to produce good results with complex data. Hence, they are concentrating on develop-
ing consensus clustering methods [22,23]. Consensus clustering is also known as cluster
ensemble, and its main aim is to find a single partition of data with overlapping clusters.
In the literature, it has been widely agreed that consensus clustering can generate robust
results [24–27]. Motivated by the advantages of consensus clustering, in this paper we are
proposing a brain tissue segmentation method based on consensus clustering. The pro-
posed method consists of two steps: Pre-processing and Segmentation. In pre-processing,
the brain images are pre-processed by employing registration, skull stripping, and bias
field correction. In the segmentation step, initially the brain images are segmented using
four different clustering methods. The two clustering methods are based on a traditional
fuzzy set and the other two are based on an intuitionistic set. In the traditional fuzzy set
category, Robust Spatial Kernel FCM (RSKFCM) [28] and Generalized Spatial Kernel FCM
(GSKFCM) [29] are employed. On the other hand, in the intuitionistic fuzzy set category,
two variants of Modified Intuitionistic Fuzzy C-Means [20] are employed. Furthermore,
the results of four individual clustering methods are combined using a voting schema.
The proposed approach is evaluated on two publicly available MRI datasets: OASIS and
IBSR18 Dataset, and the results are compared using the results with state-of-art methods.
The primary contributions of this paper are as follows:

• Proposed a consensus clustering method for MRI brain tissue segmentation.
• The results of four variants of fuzzy clustering methods are combined to achieve better

results.
• To check the efficacy of the proposed method, we conducted experiments on two

standard brain segmentation datasets.

The remainder of the paper is as follows: Section 2 presents the methodology of the
proposed method. We then introduce the datasets and the evaluation metrics alongside
the implementation details and discussions on the performance of the proposed method in
Section 3. Finally, the conclusion of the paper is presented in Section 4.

2. Methodology

This section presets the methodology of the proposed method. The proposed consen-
sus clustering method comprises two steps: Pre-procesing and Segmentation.
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2.1. Pre-Processing

We perform three pre-processing steps, namely Registration, Bias Field correction, and
Skull Stripping. Registration is the process of spatially aligning two or more images of the
same content taken from a different view and/or at a different time, and alignment of the
multi-modal image of the same patient is required. Bias Field refers to a low-frequency
signal which corrupts the MRI images due to inhomogeneities in the magnetic field of
the MRI machines. Bias field leads to intensity inhomogeneity, and in turn, it affects the
segmentation accuracy. Hence, the bias field needs to be corrected before performing
the segmentation. Skull Stripping is the process of removing non-brain tissues such as
fat, skull, and neck. These non-brain tissues have an intensity that overlaps with the
intensity of the other brain tissues. Thus, the brain tissues have to be extracted before the
brain segmentation. There are many skull stripping methods such as Brain Extraction Tool
(BET) [30], Brain Surface Extraction (BSE) [31], AFNI (“Analysis of Functional NeuroImages”
(AFNI) software package publicly available at https://afni.nimh.nih.gov/ (accessed on 19
April 2022)), BridgeBurner [32], GCUT [33], and ROBEX [34]. Among all these methods,
ROBEX provides significantly improved performance [34].

All the aforementioned steps are optional and depend on the image data used for
the study. Hence, in this paper, different pre-processing steps are performed for differ-
ent datasets. The pre-processed brain images are segmented using consensus clustering.
The following subsection presents a detailed description regarding segmentation.

2.2. Segmentation

The proposed consensus clustering method consists of a combination of traditional
fuzzy sets and intuitionistic sets to not only increase the robustness of the noise but also
use the neighborhood information when forming the clusters. To do so, we use the Robust
Spatial Kernel FCM (RSKFCM) [28] and Generalized Spatial Kernel FCM (GSKFCM) [29]
methods alongside the two variants of the Modified Intuitionistic Fuzzy C-Means [20]
technique. Finally, we fuse the results of the clustering methods using a voting schema.
The next subsections explain the employed clustering methods and the voting schema
in detail.

2.2.1. Robust Spatial Kernel FCM (RSKFCM)

Robust Spatial Kernel Fuzzy C-Means (RSKFCM) [28] is the variant of conventional
Fuzzy C-Means (FCM). RSKFCM addresses the noise sensitivity and neighborhood in-
formation ignorance limitations of FCM. RSKFCM injects the neighborhood information
into the FCM objective function and uses the Gaussian Kernel function instead of the
Euclidean metric.

The main aim of the RSKFCM is to minimize the objective function shown in Equation (1)

J =
c

∑
i=1

n

∑
j=1

wm
ij ‖Φ(xj)−Φ(vi)‖2 (1)

where c is the number of clusters, n is the number of voxels, m is a fuzzifier value, which
controls the fuzziness of the resulting partition, wij is the RSKFCM membership degree
of xj in ith cluster, vi is the ith cluster center, and Φ is an implicit nonlinear map which is
computed as:

‖Φ(xj)−Φ(vi)‖2 = K(xj, xj) + K(vj, vj)− 2K(xj, vi) (2)

where K is the inner product of kernel function, i.e., K(x, y) = Φ(x)TΦ(y). In this paper,
we have adopted the Gaussian kernel function which is defined as:

K(x, y) = exp
(
−‖x− y‖2/

σ2

)
(3)
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In Gaussian kernel, K(x, x) = 1 and K(v, v) = 1, hence the kernel function becomes:

‖Φ(xj)−Φ(vi)‖2 = 2(1− K(xj, vi)) (4)

Substituting Equation (4) in Equation (1), the objective function becomes:

J = 2
c

∑
i=1

n

∑
j=1

wm
ij (1− K(xj, vi)) (5)

The RSKFCM membership function wij is the combination of the kernel membership
function uij, and the neighbourhood function sij and it is computed as.

wij =
up

ijs
q
ij

c
∑

k=1
up

kjs
q
kj

(6)

where p and q are parameters to control the relative importance of the kernel membership
and the neighbourhood membership functions.

The kernel and neighbourhood membership functions are computed using
Equations (7) and (8)

uij =

(
1− K

(
xj, vi

))−1/(m−1)

c
∑

k=1

(
1− K

(
xj, vk

))−1/(m−1)
; (7)

sij = ∑
k∈Nk(xj)

uik (8)

where Nk(xj) represents neighbourhood voxels of xj. This neighbourhood function repre-
sents the probability that the voxel xj belongs to the ith cluster.

Similar to FCM, RSKFCM also works in an iterative process to update the membership
and cluster center values. The cluster centers are updated using Equation (9)

vi =

n
∑

j=1
wm

ij K(xj, vi)xj

n
∑

j=1
wm

ij K(xj, vi)
(9)

RSKFCM is an iterative process, and it stops when the stopping criteria is satisfied,
i.e., the difference of successive iteration’s objective function value is less than the user-
specified stopping criteria value.

2.2.2. Generalized Spatial Kernel FCM (GSKFCM)

The generalized Spatial Kernel FCM (GSKFCM) [29] is another variant of the conven-
tional FCM. Even though RSKFCM overcomes the limitations of the FCM, the performance
is not good because it injects neighborhood information only into the objective function.
However, the distance function plays a vital role in computing the membership value. Thus,
the addition of neighborhood information can increase the performance. The RSKFCM
also assumes all features have equal importance. However, in a real-world problem, all the
features may not be equally important. GSKFCM overcomes these limitations by injecting
the weighted neighbourhood information into the distance function and employing the
Gaussian kernel as the distance metric.
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The aim of the GSKFCM is to minimize the objective function shown in Equation (10).

J = 2
c

∑
i=1

n

∑
j=1

zm
ij d2

new
(
xj, vi

)
(10)

where zij is the GSKFCM membership function, and it is computed as:

zij =
1

c
∑

k=1

(
d2

new(xj ,vi)
d2

new(xj ,vk)

) 1
(m−1)

(11)

where dnew is the GSKFCM distance function which incorporates the neighbourhood
function into the distance function, and it is computed as:

d2
new
(

xj, vi
)
= d2(xj, vi

)
f
(

pij
)

(12)

where, d2(xj, vi
)

is the Gaussian Kernel distance function shown in Equation (4), and
f (pij) =

1
pij

is the neighbourhood function.
The GSKFCM considers the neighbourhood information and computes the mem-

bership value associated with each voxel as the weighted sum of the traditional FCM
membership value and the membership value of the Nk neighbour points. The neighbour-
hood function (pij) is defined as:

pij =
Nk

∑
k=0

h
(
xj, xk

)
g(uik) (13)

where Nk is the number of neighbourhood voxels, g(uik) = uik is the membership function
(Equation (7)), h(xj, xk) is the distance function which is computed as:

h
(
xj, xk

)
=

(
Nk

∑
l=0

d2(xj, xk
)

d2
(
xj, xl

) )−1

(14)

Substituting Equation (14) in Equation (13), the neighbourhood function becomes:

pij =
Nk

∑
k=0

g(uik)

(
Nk

∑
l=0

d2(xj, xk
)

d2
(
xj, xl

) )−1

(15)

Substituting Equation (12) in Equation (11), the membership function zij becomes,

zij =

 c

∑
k=1

 d2(xj, vi
)

f
(

pij
)

d2
(
xj, vk

)
f
(

pjk

)
 1

(m−1)

−1

(16)

=

(
c
∑

k=1

(
d2(xj ,vi)
d2(xj ,vk)

) 1
m−1
)−1

f
1

1−m
(

pij
)

c
∑

k=1

(
c
∑

l=1

(
d2(xj ,vi)
d2(xj ,vl)

) 1
m−1
)−1

f
1

1−m

(
pjk

) (17)
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where

(
c
∑

k=1

(
d2(xj ,vi)
d2(xj ,vk)

) 1
m−1
)−1

= uij. Then the membership function zij becomes

zij =
uij f

1
1−m
(

pij
)

c
∑

k=1
ujk f

1
1−m

(
pjk

) (18)

Similar to FCM and RSKFCM, GSKFCM operates as an iterative process by updating
membership and cluster center value. The cluster centers are updated using Equation (19)

vi =

n
∑

j=1
zm

ij K
(
xj, vi

)
xj

n
∑

j=1
zm

ij K
(
xj, vi

) (19)

GSKFCM decides the label based on the maximum membership value.

2.2.3. Modified Intuitionistic Fuzzy C-Means (MIFCM)

Modified Intuitionistic Fuzzy C-Means (MIFCM) [20] is the variant of the conventional
Intuitionistic Fuzzy C-Means (IFCM) [18], and it is based on an intuitionistic fuzzy set.
In MIFCM, the input data is clustered by optimizing the following objective function shown
in Equation (20)

J =
n

∑
j=1

c

∑
i=1

βm
ij dH(xj, vi) (20)

where xj represents jth voxel, vi refers to ith cluster center, m refers to the fuzzification
value, βij refers to the MIFCM membership value of jth voxel to ith cluster, and dH(xj, vi)
is the modified Hausdorff distance between jth voxel to ith cluster center.

Similar to Fuzzy C-Means, MIFCM optimizes the objective function iteratively by
updating the membership and cluster centers. The MIFCM membership value is updated
using equation

βij = µij + πij (21)

where µij is the membership value and πij is the hesitation value. The membership value
µij is computed as follows:

µij =
1

c
∑

k=1

(
dH(xj ,vi)
dH(xj ,vk)

) 2
m−1

(22)

The hesitation value πij is the combination of the membership and the non-membership
value, and it is computed as:

πij = 1− µij − ηij (23)

where ηij is the non-membership value. To compute the non- membership value, Sugeno’s
and Yager’s intuitionistic fuzzy complement generators are used and the value is computed
using Equations (24) and (25), respectively.

ηij =
1− µij

1 + αµij
(24)

ηij = (1− (µij)
α)

1
α (25)

where α > 0 is constant.
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In this paper, we employed both Sugeno’s and Yager’s complement generators.
MIFCM using Sugeno’s function is named MIFCM_S and similarly MIFCM using Yager’s
function is named MIFCM_Y. Furthermore, cluster centers are updated using Equation (26).

vi =

n
∑

j=1
βm

ij xj

n
∑

j=1
βm

ij

(26)

MIFCM is an iterative process, and it stops when the convergence criteria are satisfied
(i.e., the difference between the objective function value of successive iterations is less than
the user-specified stopping criteria value).

2.2.4. Consensus Clustering Using Voting Schema

In this section, the segmentation results are combined using voting schema. Let n be
the number of voxels presented X = {x1, x2, x3, . . . . . . , xn} and t be the set of clustering
algorithms considered for clustering the n voxels, i.e., Π = {π1, π2., , , , πt}. Each clustering
algorithm πi maps xi to c clusters. The problem of consensus clustering is to find a new
π∗ that best summarizes the clustering ensemble. In the proposed work, the input
brain images voxels are segmented using the above-discussed four clustering algorithms.
After convergence of each algorithm, each voxel is assigned to its corresponding cluster
based on the membership value. Let U1, U2, U3, and U4 represent the membership matrix
of RSKFCM, GSKFCM, MIFCM_S, and MIFCM_Y, respectively. From these membership
matrices, a label for each pixel is computed. The pixel xj is assigned a label of a cluster
for which it has maximum membership value. Let P1, P2, P3, and P4 be the label matrix
created for RSKFCM, GSKFCM, MIFCM_S, and MIFCM_Y, respectively. From these label
matrices, consensus results are produced using a voting method. The pixel xj is assigned

to a cluster based on the maximum number of cluster labels, i.e., label = argmaxi

(
P(i)
(l)

)
,

where l = {1, 2, 3, 4} and 1 ≤ i ≤ c. Algorithm 1 presents the individual steps involved in
the proposed method.

Algorithm 1: Consensus Clustering using voting scheme
Data: Input image X = {x1, . . . , xj, . . . , xn}, Stopping criteria (ε), m, number of

clusters C
Result: Segmentation results, Cluster centers

1 Obtain membership matrix for each clustering algorithm
2 Construct label matrix for each algorithm i.e P1, P2, P3 and P4
3 The pixel xj is assigned to a cluster based on maximum number of cluster label,

i.e., label = argmaxi

(
P(i)
(l)

)
, where l = {1, 2, 3, 4} and 1 ≤ i ≤ c.

4 Update the cluster centers by considering new cluster assignments

3. Experimental Results

This section presents the dataset used for experimentation, the metrics used to evaluate
the proposed method, and the experimental setup followed by results and discussion.

3.1. Datasets

To assess the proposed method, we carried out experiments on two publicly available
standard datasets.

3.1.1. OASIS

The Open Access Series of Imaging Studies (OASIS), is a publicly available standard
MRI dataset (See the “Open Access Series of Imaging Studies” (OASIS) project’s web site at
https://www.oasis-brains.org/ (accessed on 19 April 2022)). This dataset consists of 416
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cross-sectional data from subjects aged between 18 and 96. The images in the dataset are of
1.25 mm thickness and of 256× 256× 128 resolution.

3.1.2. IBSR18

The Internet Brain Segmentation Repository (IBSR18) (See the “Internet Brain Segmenta-
tion Repository” (IBSR) project’s web site at https://www.nitrc.org/projects/ibsr/ (accessed
on 19 April 2022)) was created by the Center for Morphometic Analysis at the Massachusetts
General Hospital. IBSR18 contains 18 T1 weighted MR brain images and their corresponding
segmentation ground truth images. The images have 1.55 mm thickness with a resolution
of 256× 256× 128. All the images are bias field corrected using the Autoseg method de-
veloped by the University of North Carolina at Chapel Hill (See the “AutoSeg” repository
https://www.nitrc.org/projects/autoseg/ (accessed on 19 April 2022)).

3.2. Evaluation Metrics

Usually, the segmentation results are evaluated for CSF, GM, and WM tissues using
the following three evaluation metrics: overlap measure, boundary measure, and volume
measure. In this paper, we evaluate our proposed method using all three measures.

Dice similarity Coefficient (DC): Dice similarity coefficient [35] is used to estimate the
spatial overlap between the ground truth and the segmentation results, using the following
equation.

DC =
2 ∗ |Seg_Im ∩ GT_Im|
|Seg_Im|+ |GT_Im| (27)

where Seg_Im is the segmentation result of the proposed method, and GT_Im is the ground
truth. Higher DC represents more accurate segmentation.

Hausdorff Distance (HD): The Hausdorff distance [36] is used as the boundary mea-
sure, and it is calculated between the ground truth points ϕ and the segmented points ϕ̂
using the following equation:

HD = max
ϕ̂∈Seg_Im

min
ϕ∈GT_Im

|ϕ̂− ϕ| (28)

The original Hausdorff distance is affected by outliers [37]. Thus, to reduce the influ-
ence of outliers, we used the 95th percentile of the Hausdorff distance. In the following,
therefore, HD refers to the 95th percentile of the Hausdorff distance, and lower HD repre-
sents a more accurate result.

Absolute Volume Difference (AVD): Absolute Volume Difference is a volume measure
used to compute volume difference between the ground truth and the obtained results. It
is computed as follows:

AVD =
|Seg_Im| − |GT_Im|

|GT_Im| (29)

Lower AVD indicates a more accurate segmentation.

3.3. Experimental Setup

In this paper, we set the fuzzifier m value as two, stopping criterion ε to 0.0001, and
initialized cluster centers randomly. We used voxel intensity as a feature. We let the window
size Nk vary in {3, 5, 7}. From the experiments, it is found that when K = 3, performance is
better. Therefore, we set K = 3 in all the experiments. In addition, to set the value of α, we
varied α from 0.1 to 1. From the experiments, it is found that when α = 0.9 performance
is better, and this value was used in all the experiments. To assess the performance of the
proposed method, we used 10-fold cross validation. The proposed model was implemented
and experimented in MatLab 2016a.
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3.4. Results

This section presents the results on the OASIS and IBSR18 datasets. The performance
of the proposed method is compared with state-of-the-art methods. In addition, the per-
formance is also compared with the latest version of standard brain segmentation tools
such as FSL[38], SPM12 [39] and FreeSurfer [40]. The following methods are considered for
comparison:

• HMRF-EM [8]: This method combines hidden Markov random field (HMRF) with an
EM algorithm for MRI image segmentation. The main advantage of this method is
it derives how the spatial information is encoded through the mutual influences of
neighboring sites.

• FAST-PVE [41]: This method uses Markov random field(MRF) for brain tissue seg-
mentation. To increase the speed, this method uses fast iterated conditional modes to
solve MRFs.

• MSSEG [42]: This method deal with images in the presence of WM lesions. This
approach integrates a robust partial volume tissue segmentation with WM outlier
rejection and filling, combining intensity and probabilistic and morphological prior
maps.

• R-FCM [43]: This method models the intensity inhomogeneities as a gain field that
causes image intensities to smoothly and slowly vary through the image space. It
iteratively adapts to the intensity inhomogeneities and is completely automated.

• SFCM [44]: This method generalizes the objective function of a conventional FCM by
incorporating a spatial penalty on the membership function.

• FANTASM [45]: This method is the extension of an adaptive FCM. In this method,
an additional constraint is placed on the membership functions that force them to be
spatially smooth.

• PVC [31]: This method uses a partial volume model for MRI brain tissue segmenta-
tion. First, it classifies nonbrain tissue using a combination of anisotropic diffusion
filtering, edge detection, and mathematical morphology. Further, the local estimates
are computed by fitting a partial volume tissue measurement model to histograms of
neighborhoods about each estimate point. Voxels in the intensity-normalized image
are then classified into six tissue types using a maximum a posteriori classifier.

• SPM5 [46]: This method is based on a mixture of Gaussians. In addition, it is extended
to incorporate a smooth intensity variation and nonlinear registration with tissue
probability maps.

• GAMIXTURE [47]: This method employs finite mixture models (FMMs) for brain
tissue segmentation. To deal with FMM complex optimization, this method employs a
global optimization algorithm that uses blended crossover and a new permutation
operator.

• ANN [48]: This method is based on a self-organizing map (SOM). Initially, the feature
vector is extracted from the intensity of the pixel and its n nearest neighbors. Further,
to improve the robustness, statistical transformation is applied to the extracted feature
vector. Finally, each pixel is classified using SOM.

• KNN [49]: This method uses K-NN for brain tissue segmentation.
• BrainSuit09 [50]: This is an automatic brain image analysis tool. The tool provides a

sequence of low-level operations in a single package that can produce accurate brain
segmentation in clinical time.

• SVPASEG [51]: This method uses local image models for brain tissue segmentation.
This model combines the local models for tissue intensities and Markov Random
Field (MRF) into a global probabilistic image model. Finally, the parameters for the
local intensity models are obtained without supervision by maximizing the weighted
likelihood of a certain finite mixture model.

• EGC-SOM [52]: This method uses self-organizing maps (SOM) for brain tissue seg-
mentation. Initially, first- and second-order features are extracted using overlapping
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windows. Further, evolutionary computing is used for feature selection. Finally, map
units are grouped using SOM.

• RF-CRF [53]: This method uses a conditional random field with a random forest for
brain tissue segmentation. This method uses intensities, gradients, probability maps,
and locations as features.

3.4.1. Results on OASIS Dataset

The OASIS dataset contains the images which are already skull stripped. Bias field
correction was performed using the ROBEX tool [34]. Figure 1 shows the qualitative
segmentation results obtained using the proposed method. We compared the results of
the proposed method with the three state-of-the-art methods, i.e., HMRF-EM [8], FAST-
PVE [41], and MSSEG [42]. All three methods’ codes are available on the authors’ websites.
The comparison of their results is presented in Table 1. We notice that the proposed
model has better performance with regard to CSF, GM, and WM when compared to the
other methods.

Figure 1. Segmentation results on OASIS dataset: first column, original image; second column,
ground truth; and third column, segmentation result fused on ground truth.

Table 1. Results comparison with state-of-the-art methods on OASIS dataset (Mean ± std).

Method
CSF GM WM

DC HD AVD DC HD AVD DC HD AVD

HMRF-EM [8] 61.47 ± 2.32 7.17 ± 1.62 12.51 ± 8.57 79.65 ± 4.26 5.14 ± 1.62 4.11 ± 8.04 83.82 ± 4.02 5.09 ± 1.31 3.33 ± 8.64
FAST-PVE [41] 54.08 ± 3.61 7.17 ± 1.51 12.51 ± 7.28 78.97 ± 2.24 5.14 ± 0.92 4.11 ± 6.34 85.11 ± 2.61 5.09 ± 1.11 3.33 ± 6.24

FSL [38] 79.72± 3.64 4.78 ± 1.92 9.36 ± 5.32 87.84 ± 2.37 5.33 ± 0.81 5.37 ± 6.57 88.51 ± 2.31 5.13 ± 1.34 8.18 ± 4.95
SPM12 [39] 80.46 ± 4.02 6.71 ± 2.01 20.77 ± 6.04 89.52 ± 1.52 3.91 ± 0.76 3.67 ± 4.82 88.11 ± 2.42 4.54 ± 0.95 2.7 ± 5.24

FreeSurfer [40] 84.33 ± 3.96 4.4 ± 2.04 4.33 ± 4.06 91.47 ± 2.44 4.18 ± 0.59 2.63 ± 4.91 90.48 ± 1.31 3.8 ± 0.59 2.77 ± 5.64
MSSEG [42] 89.95 ± 1.62 4.18 ± 1.62 4.71 ± 1.62 91.24 ± 1.62 4.31 ± 1.62 2.87 ± 1.62 89.58 ± 1.62 4.39 ± 1.62 2.91 ± 1.62

RSKFCM [28] 90.06 ± 2.79 4.06 ± 1.61 4.31 ± 4.52 92.31 ± 2.61 4.21 ± 0.46 2.31 ± 3.42 90.51 ± 1.52 4.31 ± 0.42 2.81 ± 5.29
GSKFCM [29] 91.23 ± 2.82 4.08 ± 1.53 4.28 ± 3.26 92.51 ± 2.32 4.13 ± 0.42 2.11 ± 3.61 90.62 ± 1.61 4.28 ± 0.68 2.71 ± 5.41
MIFCM_S [20] 89.21 ± 3.02 4.23 ± 1.42 4.51 ± 3.14 89.81 ± 2.41 4.41 ± 0.31 2.97 ± 3.59 87.28 ± 1.71 4.59 ± 0.82 3.01 ± 5.16
MIFCM_Y [20] 92.65 ± 3.06 3.96 ± 1.46 3.91 ± 3.02 93.64 ± 2.51 4.23 ± 0.32 2.16 ± 3.42 92.61 ± 1.68 4.31 ± 0.84 2.17 ± 5.24

Proposed Method (consensus clustering) 93.64 ± 2.15 3.16 ± 1.31 3.85 ± 2.06 94.71 ± 2.30 4.01 ± 0.21 2.06 ± 2.96 93.17 ± 1.32 4.26 ± 0.81 2.07 ± 4.21

3.4.2. Results on IBSR18 Dataset

The images in the IBSR18 are already bias field corrected. Hence, we have not applied
any bias field correction technique. We conducted the experiments by removing the skull
using a ground truth mask. Figure 2 shows the qualitative segmentation results obtained
using the proposed method. The main limitation of the IBSR18 dataset is that it considers
sulcal CSF as GM. The authors in [54] compared 10 existing methods without considering
the sulcal CSF. Following [55,56], in our study we did not removed the sulcal CSF. We
have compared the results of the proposed method with state-of-the-art methods. As all
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the considered methods have used DC alone as an evaluation metric, Table 2 shows the
results only on the DC of the IBSR18 dataset. From this comparison, it is clear that the
proposed model has better performance concerning CSF, GM, and WM when compared to
the other methods.

Figure 2. Segmentation results on IBSR18 dataset: first column, original image; second column,
ground truth; and third column, segmentation result fused on ground truth.

Table 2. Result comparison with state-of-the-art methods on IBSR18 dataset only in terms of DC.

Method
GM WM CSF

mean std mean std mean std

R-FCM [43] 65.00 0.05 75.00 0.05 NA NA
NL-FCM [43] 72.00 0.05 74.00 0.05 NA NA

FCM [43] 74.00 0.05 72.00 0.05 NA NA
HMRF-EM [8] 74.60 0.04 89.60 0.02 12.60 0.05

SFCM [44] 70.60 0.06 86.60 0.03 16.60 0.07
FANTASM [45] 71.60 0.06 88.60 0.03 11.60 0.06

PVC [31] 70.60 0.08 83.60 0.07 13.60 0.06
SPM5 [46] 68.60 0.07 86.60 0.02 10.60 0.05

GAMIXTURE [47] 78.60 0.08 87.60 0.02 15.60 0.09
ANN [48] 70.60 0.07 87.60 0.03 11.60 0.06
KNN [49] 79.60 0.03 86.60 0.03 16.60 0.07

BrainSuit09 [50] 72.00 0.09 83.00 0.08 NA NA
SVPASEG [51] 81.60 0.03 88.60 0.02 16.60 0.07

SPM8 [39] 81.60 0.02 88.60 0.01 17.60 0.08
EGC-SOM [52] 73.00 0.05 76.00 0.04 NA NA
HFS-SOM [52] 60.00 0.09 60.00 0.08 NA NA
FAST-PVE [41] 78.00 0.08 86.00 0.04 NA NA

FAST-PVE(S-ICM) [41] 78.00 0.08 86.00 0.04 NA NA
RF-CRF [53] 96.10 0.01 92.00 0.02 92.00 0.03
RF-CRF1 [53] 94.00 0.01 89.00 0.02 88.00 0.03

FSL [38] 78.13 0.04 85.94 0.13 75.02 0.04
FreeSurfer [40] 79.62 0.06 86.17 0.12 76.42 0.06

SPM12 [39] 82.30 0.04 89.82 0.02 78.62 0.14
RSKFCM [28] 96.68 0.09 93.55 0.10 93.41 0.08
GSKFCM [29] 96.72 0.03 93.58 0.02 93.43 0.02
MIFCM_S [20] 96.74 0.41 93.62 0.43 93.86 0.71
MIFCM_Y [20] 96.82 0.15 93.64 0.15 94.02 0.15

Proposed Method (consensus clustering) 97.31 0.01 94.50 0.04 95.68 0.02

3.5. Autism Spectrum Disorder Detection Using Proposed Method

Additionally, the proposed consensus clustering method has been evaluated on a
practical autism spectrum disorder (ASD) detection problem. We used publicly available
Autism Brain Imaging Data Exchange (ABIDE) data for this study. The ABIDE dataset
contains 1112 subjects, 571 of them normal, and 531 of them with Autism Spectrum Dis-
orders. We used 1054 of the 1112 subjects for this study, and the rest were rejected for
improper segmentation using voxel-based morphometry (VBM). In this study, we employ
a feature extraction method based on the VBM [57]. VBM is a fast and automatic method
for determining the difference in gray matter structure between normal and and ASD
patient brains [58]. In our VBM analysis, unified segmentation, smoothing, and statistical
analysis were performed as preprocessing steps. In the unified segmentation step, tissue
segmentation, bias correction, and image registration were combined in a single generative



Appl. Sci. 2022, 12, 7385 12 of 15

model [46]. The segmented and registered gray matter images were then smoothed by
convolving with an isotropic Gaussian kernel. Here, a 10 mm full-width at half-maximum
kernel was employed. A two-sample t-test was performed on the smoothed images, and
gray matter volume was used as the covariate. This VBM analysis revealed significant
gray matter volume increases in the normal persons in comparison with the ASD patients.
The voxel location of significant regions were used as a mask. All segmented gray matter
images were used to extract gray matter tissue probability values using a mask. A total
of 989 features were obtained. and these were used as an input to the proposed method.
Table 3 presents the performance comparison for Autism Spectrum Disorder Detection.
The results of the proposed method are compared with traditional K-Means and variants
of FCM methods. It is observed in Table 3 that the proposed method outperforms other
methods.

Table 3. Performance comparison for Autism Spectrum Disorder Detection.

Method Accuracy Precision Recall

K-Means 52.28 ± 2.35 0.531 ± 0.098 0.542 ± 0.077
FCM 52.36 ± 2.05 0.534 ± 0.081 0.546 ± 0.079

RSKFCM [28] 54.06 ± 1.21 0.548 ± 0.074 0.556 ± 0.068
GSKFCM [29] 54.61 ± 1.61 0.550 ± 0.061 0.557 ± 0.073
MIFCM_S [20] 55.08 ± 1.34 0.551 ± 0.067 0.559 ± 0.085
MIFCM_Y [20] 55.18 ± 1.27 0.556 ± 0.058 0.560 ± 0.054

Proposed Method (consensus clustering) 56.84 ± 1.09 0.565 ± 0.047 0.570 ± 0.049

3.6. Discussion

Brain images are very complex, largely uncertain, and imprecise. The fuzzy clustering
based methods are capable of handling the aforementioned challenges.In this paper, we
have combined the results from four variants of FCM clustering methods. The RSKFCM
and GSKFCM are proven to be less sensitive to noise due to the use of kernel distance and
the addition of neighborhood information. The MIFCM_S and MIFCM_Y are based on an
intuitionistic fuzzy set which considers non-membership value along with membership
value. Thus, in comparison to RSKFCM and GSKFCM, MIFCM methods handled the
uncertainty better and achieved better results. Since we combined the advantages of all
four clustering methods, our proposed consensus clustering method achieved better results
compared to state-of-the-art methods.

On the OASIS dataset, the proposed method outperforms other methods in com-
parison. The OASIS dataset contains skull stripped T1 weighted MRI images. The main
challenge in the OASIS dataset is the presence of WM lesions. The presence of WM lesions
affects the overall segmentation accuracy of the proposed method. On the IBSR18 dataset,
the proposed method outperforms all other methods in comparison. The images in the
IBSR18 dataset are affected by acquisition artifacts which have direct impact on the WM
tissue segmentation. On the other hand, lack of sulcal CSF labelling in the ground truth
affects the GM and the CSF tissue segmentation results. Additionally, the proposed consen-
sus clustering method has been evaluated on a practical autism spectrum disorder (ASD)
detection problem. The proposed method outperforms other clustering algorithms. Even
though the proposed consensus clustering algorithm is capable of handling noise and can
exploit the spatial information in the image, it fails to capture the variations within the
neighbourhood voxels. In addition, the time complexity of the proposed algorithm is more
compared to individual clustering algorithms.

4. Conclusions

In this paper, a new approach for MRI Brain tissue segmentation is presented. The
proposed method is based on the consensus clustering method. In consensus clustering,
the results of four variants of fuzzy clustering methods are combined to achieve better
results. The results of the proposed methods are evaluated using three performance metrics,
i.e., DC, HD, and AVD. The competence of the proposed method is validated using two
publicly available datasets: OASIS and IBSR18. From experimentation, it has turned out
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that our proposed method obtains the best result compared to other contemporary methods
on the OASIS and IBSR18 datasets. Additionally, the proposed consensus clustering method
has been evaluated on a practical autism spectrum disorder (ASD) detection problem.
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