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Email: hugomcp@di.ubi.pt

Abstract. The dramatic growth in practical applications for iris biometrics has
been accompanied by many important developments in the underlying algorithms
and techniques. Among others, one of the most active research areas concerns
about the development of iris recognition systems less constrained to users, ei-
ther increasing the image acquisition distances or the required lighting condi-
tions. The main point of this paper is to give a process suitable for the automatic
segmentation of iris images captured at the visible wavelength, on-the-move and
within a large range of image acquisition distances (between 4 and 8 meters). Our
experiments were performed on images of the UBIRIS.v2 database and show the
robustness of the proposed method to handle the types of non-ideal images resul-
tant of the aforementioned less constrained image acquisition conditions.

1 Introduction

Being an internal organ, naturally protected, visible from the exterior and supporting
contactless data acquisition, the human iris has, together with the face, the potential of
being covertly imaged. Several issues remain to achieve deployable covert iris recog-
nition systems and, obviously, these type of systems will constitute a tradeoff between
data acquisition constraints and recognition accuracy. This area motivates growing in-
terests on the research community and constituted the scope of a large number of recent
publications.

It is expectable that far less constrained image acquisition processes increase the
heterogeneity of the captured images, according to varying lighting conditions, sub-
jects’ poses, perspectives and movements. In this context, the image segmentation stage
plays a major role, as it is the one that more directly should handle this heterogeneity.
Also, as it is one of the earliest stages of the complete recognition process, it acts as
basis of any further stages and any failure will compromise the success of the whole
process.

Figure 1 establishes a comparison between images that typically result of con-
strained image acquisition processes, on the near infra-red wavelength (figure 1a) and
images acquired under less constrained imaging conditions, at-a-distance and on-the
visible wavelength (figure 1b). Apart evident differences in the image homogeneity,
several types of data obstructing portions of the iris texture in the visible wavelength
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(a) Near infra-red image, acquired under high constrained con-

ditions (ICE database [1]).

(b) Visible wavelength image, acquired at-a-distance and on-

the-move (UBIRIS.v2 database [2]).

Fig. 1. Illustration of the typical differences between close-up iris images acquired un-
der high constrained conditions in the near infra-red wavelength (figure 1a) and images
acquired in the visible wavelength, within less constrained conditions (figure 1b).

image can be observed, whose increase the challenges of performing accurate biomet-
ric recognition. Also, less constrained acquisition protocols lead to the appearance of
non-frontal, defocused or motion blurred images.

This work focuses on the segmentation of visible wavelength close-up iris images,
captured at-a-distance and on-the-move, under varying lighting conditions and with
minimal image acquisition constraints. It can be divided into three parts: at first, we
overview the most significant iris segmentation methods, specially those recently pub-
lished, and establish some common and distinguishable characteristics between them.
Later, we empirically describe some of the reasons that makes those methods less suit-
able for the type of images we aim to deal with. Finally, we give a new iris segmentation
method based on the neural Pattern Recognition paradigm that, as our experiments in-
dicate, is suitable to deal with the aforementioned type of images.

The remaining of this paper is organized as follows: Section 2 briefly summarizes
the most cited iris segmentation methods, emphasizing those most recently published.
A detailed description of the proposed method is given in Section 3. Section 4 reports
our experiments and discusses the results and, finally, Section 5 gives the conclusions
and points some directions for our further work.

2 Iris Segmentation

The analysis of the most relevant iris segmentation proposals allowed us to identify
two major strategies to perform the segmentation of the iris: use a rigid or deformable
iris template or use its boundary. In most cases, the boundary approach is very similar
to the early proposal of Wildes [3]: it begins by the construction of an edge-map, fol-
lowed by the application of some geometric form fitting algorithm. The template-based
strategies are in general more specific, although having as common point the maximiza-
tion of some energy model that localizes both iris borders, as originally proposed by
Daugman [4]. These methods were though to operate in noise-free close-up iris images
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captured in the near infra-red wavelength and, specifically the Daugman’s integrodif-
ferential operator, proved their effectiveness on multiple deployed systems that operate
in constrained imaging conditions.

The increase of segmentation robustness to several types of non-ideal images mo-
tivated a large number of proposals in the last few years. However, the large majority
of these methods operate in near infra-red images, whose typically have higher contrast
between the pupil and the iris regions and induces the usual option of start by the seg-
mentation of the pupillary border. Oppositely, visible wavelength images usually have
less contrast between the pupil and the iris, which explains the inversion in the order of
the borders’ segmentation.

Regarding the basis methodologies, various innovations were proposed, as the use
of active contour models, either geodesic (e.g., [5]), based on Fourrier series (e.g., [6])
and on the snakes model (e.g., [7]). Here, the previous detection of the eye is a require-
ment to properly initialize contours and the heavy computational requirements can also
be regarded as a weak point. Also, modifications to known form fitting processes were
proposed, essentially to deal with off-angle images (e.g., [8] and [9]) and to improve
performance (e.g., [10] and [11]).

The detection of non-iris data that obstructs the discriminating information moti-
vated the use of parabolic, elliptical and circular models (e.g., [12], and [11]) and the
modal analysis of histograms [6]. In this compass, several authors constraint the suc-
cess of their methods to image orthogonality, to the non-existence of significant iris
obstructions or to the appearance of corneal reflections in specific image regions.

3 Proposed Method

Captured Image

Feature Extraction 1

(Sclera stage)

Feature Set 1

x1, y1, ..., z1

x2, y2, ..., z2

xn, yn, ..., zn

Neural network classification
Sclera Map

Feature Extraction 2

(Iris Stage)

x′1, y′1, ..., z′1

x′2, y′2, ..., z′2

x′n, y′n, ..., z′n
Feature Set 2 Neural network classification

Iris Map

Fig. 2.Block diagram of the proposed iris segmentation method.
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Figure 2 gives the block diagram of the proposed segmentation process, that can
be divided into two major stages: sclera detection and iris segmentation. Having found
that the sclera region usually remains as the most distinguishable under varying lighting
conditions, we propose a feature extraction stage that will provide enough discriminant
information to localize the sclera. Later, we take profit of the mandatory adjacency be-
tween the sclera and the iris and, together with a new feature set extracted from the
original image, perform the detection of the regions that correspond to the noise-free
iris pixels. It should be stressed that this process comprises three tasks that are typi-
cally separated in the specialized literature: iris detection, segmentation and detection
of noisy regions. As it is shown in the experiments section, starting from a relatively
small set of manually classified images that constitute the learning set, it is possible to
use machine learning methods that will robust and quickly discriminate between the
noise-free iris regions (used in the subsequent recognition stages) and the remaining
data. In the following, we detail each feature extraction stage and the used classification
models.

3.1 Feature Extraction

Regarding the feature extraction, we had a primary concern: to exclusively evaluate
features that are possible to compute in a single image scan, which is crucial to enable
the application of the method to real-time applications. Previously, Viola and Jones [13]
proposed a set of simple features, reminiscent of Haar basis functions, and used an
intermediate image representation to compute them in a single image scan. Based on
their definition we propose the extraction of a set of central moments within small image
regions, based on the pixels intensity in different color spaces.

For a given imageI, Viola and Jones defined anintegral imageII

II(x, y) =
x∑
1

y∑
1

I(x′, y′) (1)

wherex andy denote respectively the image column and row. Also, they proposed
a pair of recurrences to compute the integral image in a single image scan

s(x, y) = s(x, y − 1) + I(x, y) (2)

II(x, y) = II(x− 1, y) + s(x, y) (3)

Based on the concept of integral image, the average intensityµ of the pixels within
any rectangular regionRi, delimited by its upper-left(x1, y1) and bottom-right(x2, y2)
corner coordinates, can be obtained accessing exclusively four array references. Let
Ti = (x2 − x1) × (y2 − y1) be the total of pixels ofRi.



Segmenting visible wavelength close-up iris images 5

µ(Ri) =
1
Ti

x2∑
x1

y2∑
y1

I(x, y)

=
1
Ti

(
x2∑
1

y2∑
y1

I(x, y) −
x1∑
1

y2∑
y1

I(x, y)

)

=
1
Ti

(
x2∑
1

y2∑
1

I(x, y) −
x2∑
1

y1∑
1

I(x, y)

−
( x1∑

1

y2∑
1

I(x, y) −
x1∑
1

y1∑
1

I(x, y)
))

=
1
Ti

(
II(x2, y2) + II(x1, y1) − II(x2, y1) − II(x1, y2)

)
(4)

Similarly, the standard deviationσ of the intensity of the pixels withinRi is given
by

σ(Ri) =

√√√√ 1
Ti

x2∑
x1

y2∑
y1

(
I(x, y)− µ

)2

=

√√√√ 1
Ti

x2∑
x1

y2∑
y1

(
I(x, y)2 − 2 I(x, y) µ + µ2

)

=

√√√√ 1
Ti

( x2∑
x1

y2∑
y1

I(x, y)2 − 2 µ

x2∑
x1

y2∑
y1

I(x, y) + Tiµ2
)

=
√

1
Ti

(
II(x, y)2 − 2 µII(x, y) + Tiµ2

)
(5)

whereµ is given by (4),II(x, y) is obtained from (3) andII(x, y)2 is similarly
obtained, starting from an image where the intensity values appear squared.

3.2 Sclera Stage

Based on the described average (µ) and standard deviation (σ) values within image
regions, on the detection of the sclera we use a feature set with 11 components. For
each image pixel we extract{x, y , hµ,σ

0,3,7(x, y), uµ,σ
0,3,7(x, y), crµ,σ

0,3,7(x, y)}, wherex
andy denote the pixel’s position,h(., .), u(., .), andcr(., .) denote regions of the hue,
chrominance and red croma image components and the subscripts denote the respective
radius values of such regions, centered at the respective pixel. The used color compo-
nents were empirically selected, based on observations of their discriminating capacity
between the sclera and the remaining data, as illustrated in figure 3.
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(a) Hue component. (b) Crominance component. (c) Red croma component.

Fig. 3. Illustration of the discriminating capacity of the color components used in the
detection of the sclera regions. It is evident that pixels belonging to the sclera have
respectively higher (figures 3a and 3b) and lower (figure 3c) intensity values than the
remaining pixels. Also, we observed that this separability tends to remain stable, even
on high heterogeneous images as those that constitute the scope of this work.

3.3 Iris Stage

In the detection of the noise-free iris regions we also used the previously described aver-
age (µ) and standard deviation (σ) values, together with the information that came from
the previous sclera detection stage, taking profit of the mandatory adjacency between
the iris and the sclera. Here, our main concern was to use components of various color
spaces that maximize the separability between the sclera and the iris. For each image
pixel we extracted{x, y, sµ,σ

0,3,7(x, y), uµ,σ
0,3,7(x, y), sc←,→,↑,↓(x, y), }, wheres(., .),

andu(., .) are regions of the saturation and color chrominance image components and
the subscripts denote the respective radius values of such regions, centered at the re-
spective pixel. Again, the used color components were empirically selected, based on
observations of their respective discriminating capacity between the sclera and the iris,
as illustrated in figure 4.sc(., .) denotes a feature map that measures the proportion
of pixels belonging to the sclera in the left (←), right (→), upper (↑) and bottom (↓)
directions, regarding the reference pixel(x, y). This maps are specially relevant to pro-
vide information about the relative localization between the iris and the sclera, as it is
illustrated in figure 4b.

sc←(x, y) = µ
(
Rsc

(
(1, y − 1), (x, y)

))
(6)

sc→(x, y) = µ
(
Rsc

(
(x, y − 1), (W, y)

))
(7)

sc↑(x, y) = µ
(
Rsc

(
(x− 1, 1), (x, y)

))
(8)

sc↓(x, y) = µ
(
Rsc

(
(x− 1, y), (x,H)

))
(9)

whereµ(.) is given by (4) andRsc

(
(., .), (., .)

)
denote regions of the sclera map

(figure 4a) delimited respectively by its top-left and bottom-right corner coordinates.
W andH are respectively the image width and height.

As we describe in the next section, for the purpose of classification we used feed-
forward neural networks, whose are known to be extremely fast classification models.
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(a) Output of the sclera detection

stage.

(b) sc←(x, y) map. (c) Saturation component. (d) Color chrominance component.

Fig. 4.Features used in the detection of the iris regions.

Thus, apart the accuracy and robustness factors, when comparing with the large majority
of the iris segmentation methods described in section 2, the computational performance
of the proposed method is regarded as a significant advantage.

3.4 Supervised Machine Learning Process

In both classification stages of the proposed segmentation method we followed the neu-
ral pattern recognition paradigm. This is justified by the networks ability to discriminate
data in high complex hyperspaces, providing good generalization capacity and usually
without requiring any user-parameterized thresholds.

We used multilayered perceptron feed-forward networks with one hidden layer,
varying in our experiments the number of neurons of the hidden layer. We adopted
the convention that the input nodes are not counted as a layer. All the used networks
have as many neurons in the input layer as the dimension of the feature space and a
single neuron in the output layer, due to the desired binary classification task.

Our choice is justified by three fundamental learning theory issues: model capacity,
computational and sample complexity. At first, regarding model capacity, it is known
that this type of networks can form arbitrary complex decision boundaries. Also, they
are accepted as high performance classification models, which is not affected by the size
of the training data. Finally, regarding the sample complexity, the use of the backpropa-
gation learning algorithm propitiates good generalization capabilities using a relatively
small set of images in the learning stages, as it is detailed in the experiments section.

4 Experiments

This section describes the experiments that were performed in the evaluation of the
proposed classification method. We detail the used data sets and the process that enabled
us to automatically obtain the error rates.

4.1 Data Sets

Our experiments were performed in images of the UBIRIS.v2 [14], a multi-session
iris images database which - singularly - contains data captured in the visible wave-
length, at-a-distance and on on-the-move subjects, being its images acquired within
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non-constrained and varying lighting conditions. The significantly higher range of dis-
tances between the subjects and the imaging framework (from four to eight meters) is
one of the major distinguishable points between the UBIRIS.v2 database and others
with similar purposes. Through visual inspection, fourteen different factors that dete-
riorate the image quality were detected and classified into one of two categories:local
or global, as they affect exclusively image regions or the complete image. The first cat-
egory comprises iris obstructions, reflections and partial images, while the later com-
prises the poor focused, motion-blurred, rotated, off-angle, improper lighting and out-
of-iris images. A comparison between a close-up iris image with good quality (upper-
left image) and images that contain at least one of the aforementioned noise factors is
given in figure 5.

Fig. 5. Examples of close-up iris images acquired at varying distances (between four
and eight meters), from on-the-move subjects, under high dynamic lighting conditions
and without requiring subjects cooperation.

4.2 Ground Truth

In the evaluation of the proposed method we used the data sets delivered to partici-
pants of the NICE.I contest [2], whose are part of the complete UBIRIS.v2 iris image
database. Both the learning and test data sets comprise 500 close-up iris images and
500 correspondent binary maps that were made by humans and distinguish between the
noise-free regions of the iris and all the remaining types of data.

Images have fixed dimensions of400 × 300 pixels, giving a total of 60 000 000
pixels per data set. Considering the process of noise-free iris segmentation as a binary
classification task, this value allowed us to obtain 95% confidence intervals for the
results given in this paper of approximately±1, 29%× 10−2.

4.3 Learning Algorithms

Both learning stages of our classification models were based in the backpropagation
algorithm. Originally, this learning strategy updates the network weights and biases in
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the direction of the negative of the gradient, the direction in which the performance
function E decreases most rapidly, beingE a squared error cost function given by
1
2

∑p
i=1 ||yi−di||2, whereyi anddi are respectively the network and the desired outputs

andp the number of train patterns given to the network in the learning stage. There are
many variations of the backpropagation algorithm, which fundamentally aim to increase
the learning performance, resulting in the network convergence performance from ten
to one hundred times faster.

Typicall variants fall into two categories: the first one uses heuristic techniques, as
the momentum technique or the varying learning rates. The second category uses stan-
dard numerical optimization techniques, as the search across the conjugate directions
(with Fletcher-Reeves [15] or Powell-Beale [16] updates) or quasi-Newton algorithms
(Broyden, Fletcher, Goldfarb, and Shanno [17] and one-secant [18] update rules) that,
although based on the Hessian matrix to adjust weights and biases do not require the
calculation of second derivatives, this matrix at each iteration of the algorithm.

In the following section we give results about the error rates obtained by each of the
used backpropagation variants, both in the learning and classification stages, regarding
the number of images used in the learning process and the networks’ topology.

4.4 Results and Discussion

The method proposed in this paper has - at least - 3 parameters that have impact in its
final accuracy: the used learning algorithm, the networks’ topology and the amount of
data (number of images) used to learn. As an exhaustive search for the optimal config-
uration leads to a 3D search and an impracticable number of possibilities to evaluate,
we decided to start with the selection of the most suitable backpropagation learning
algorithm for this type of problem. We built a set of neural networks with what we con-
sidered to be an apriorireasonable topology(3 layers with a number of neurons in the
input and hidden layers equal to the dimension of the feature space) and used 30 images
in the construction of the learning set, from which we randomly extracted 50 000 in-
stances, half-divided between positives (iris) and negatives (non-iris) samples. Table 1
gives the obtained results. ”Learning Error” columns give the averages errors obtained
in the learning stages, ”Time” the average elapsed time of the learning processes (in
seconds), ”Classification Error” the average error obtained in the test set images. ”’Sc”
and ’Ir’ denote respectively the sclera and iris classification stages. All the values are
expressed in confidence intervals of 95%.

The above described experiments led us to select the Fletcher-Reeves [15] learning
method for the backpropagation algorithm and use it in subsequent experiments, namely
in the search of the optimal networks’ topology and of the minimum number of images
required in the learning set.

Figure 6 gives 3D graphs that contain the obtained error rates in the test set, ac-
cording to the number of images used in the training set (depth axis) and the number
of neurons of the networks’ hidden layer (horizontal axis). The error rates are averages
from 20 neural networks and are expressed in percentage. Not surprisingly, we observed
that the networks’ accuracy have direct correspondence with the number of neurons in
the hidden layer and with the number of images used in the learning process. However,
we concluded that these error rates tend to stabilize when more than 40 images were
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Learning Algorithm Time (Sc) Learning Error (Sc) Classification Error (Sc) Time (Ir) Learning Error (Ir) Classification Error (Ir)

Fletcher-Reeves [15]2808± 7.35 0.027± 2.1E−4 0.029± 2.7E−4 3320± 8.98 0.020± 1.8E−4 0.021± 1.8E−4

Powell-Beale [16] 2751± 8.20 0.026± 2.3E−4 0.029± 2.7E−4 3187± 9.30 0.020± 2.0E−4 0.022± 2.1E−4

Broydenet al. [17] 4807± 9.14 0.026± 3.2E−4 0.031± 3.5E−4 5801± 10.52 0.019± 2.7E−4 0.023± 2.9E−4

One-secant [18] 2993± 7.13 0.030± 2.2E−4 0.034± 2.4E−4 3491± 8.61 0.024± 2.0E−4 0.031± 2.1E−4

Table 1.Comparison between the average error rates observed in the learning and clas-
sification stages, regarding the variants of the backpropagation algorithm used in our
experiments.

(a) Error rates of the sclera classification stage. (b) Error rates of the iris classification stage.

Fig. 6.Error rates obtained on the test data set, regarding the number of images used in
the learning stage (depth axis) and the number of neurons in the network hidden layer
(horizontal axis, expressed in proportion with the dimension of the feature space). The
error rates are expressed in percentage and are averages of 20 neural networks with the
respective configuration.

used in the training set, with a number of neurons in the hidden layer about1.5 times
the dimension of the feature space. Also, these observations were confirmed either in
the sclera and in the iris classification models.

Interestingly, the lowest error rates were obtained in the iris classification stage,
which we justified by the useful information that iris detection networks receive about
the sclera localization and lessen the difficulty of their classification task. The lowest iris
classification error obtained was about1.87%, which we considered highly acceptable.
This gives about2244 misclassified pixels per image, whose are possible to reduce if
basic image processing methods were applied to the network’s output. For instance,
morphologic operators (erosion) will eliminate small regions of black pixels separated
from the main iris region whose often we observed to be cause of small errors, as it is
illustrated in figure 7.
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(a) Close-up iris image 1. (b) Close-up iris image 2. (c) Close-up iris image 3.

(d) Segmented noise-free iris data 1. (e) Segmented noise-free iris data 2. (f) Segmented noise-free iris data 3.

Fig. 7.Examples of the iris segmentation results obtained by the proposed method. The
upper row contains the original images and the bottom row the correspondent segmen-
tation of the noise-free iris regions.

5 Conclusions

Due to favorable comparisons with other biometric traits, the popularity of the iris
has considerably grown over the last years and substantial attention was paid by both
commercial and governmental organizations. Also, growing efforts are concentrated in
finding the minimum level of image quality that enables recognition with enough con-
fidence.

In this paper we used the neural pattern recognition variant to propose a method
that performs the detection of the eye, the iris segmentation and the discrimination of
the noise-free iris texture, analyzing images acquired on the visible wavelength un-
der less constrained image acquisition processes. Our approach comprises two binary
classification stages. At first, we used the HSV and YCbCr color spaces to provide us
information about the sclera localization. This information is mixed with a new feature
set to discriminate the noise-free iris regions of the images. We concluded that the pro-
posed method accomplishes its major purposes and achieves very low error rates, even
when starting from a relatively small set of images to learn appropriate classification
models.
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