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Quality Assessment of Degraded Iris Images
Acquired in the Visible Wavelength

Hugo Proença

Abstract—Data quality assessment is a key issue, in order
to broad the applicability of iris biometrics to unconstrained
imaging conditions. Previous research efforts sought to use visible
wavelength (VW) light imagery to acquire data at significantly
larger distances than usual and on moving subjects, which makes
this real world data notoriously different from the acquired in
the near infra-red (NIR) setup. Having empirically observed that
published strategies to assess iris image quality do not handle the
specificity of such data, this paper proposes a method to assess the
quality of VW iris samples captured in unconstrained conditions,
according to the factors that are known to determine the quality
of iris biometric data: focus, motion, angle, occlusions, area,
pupillary dilation and levels of iris pigmentation. The key insight
is to use the output of the segmentation phase in each assessment,
which permits to handle severely degraded samples that are likely
to result of such imaging setup. Also, our experiments point
that the given method improves the effectiveness of VW iris
recognition, by avoiding that poor quality samples are considered
in the recognition process.

Index Terms—Iris recognition, Visible-light iris images, Image
quality assessment, Biometrics.

I. INTRODUCTION

Due to the effectiveness proven by the deployed iris recog-
nition systems, the popularity of the iris biometric trait has
considerably grown in the last few years. As an illustration,
over 50% of the papers cited in a recent survey [5] were
published since 2005. Several reasons justify this interest: (1)
it is a naturally protected internal organ that is visible from
the exterior; (2) it has near circular and planar shape that
turns easier its segmentation and parameterization and (3) its
texture has a predominantly randotypic chaotic appearance that
is stable over lifetime.

Regardless a few recent innovations (e.g., the iris-on-the-
move project [21]), deployed iris recognition systems are
quite constrained: subjects may stop-and-stare close to the
acquisition device while their eyes are illuminated by a near
infra-red (NIR) light source that enables the acquisition of
good quality images. Recently, several research initiatives
sought to increase distance, relax acquisition constraints and
make use of visible wavelength (VW) light imagery, which
broads the applicability of this technology to forensic domains
where the subjects cooperation is not expectable.

When compared to the traditional NIR constrained setup,
the use of VW light and the uncontrolled lighting condi-
tions engender notorious differences in the appearance of the
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(a) Iris spectral radiance [14] (b) VW iris image [32]

Fig. 1. The spectral radiance of the human iris in the VW highly varies
according to the levels of iris pigmentation (figure a), which contributes for
some of the noise factors (A,B,C of figure b) that degrade the quality of
VW iris data. The bottom right corner plots the corresponding noise-free iris
segmentation mask, obtained as described by He et al. [18].

captured data (figure 1). Acquiring images from significantly
larger distances and on moving targets demands simultane-
ously high f-numbers and short exposure times for the optical
system, in order to obtain acceptable depth-of-field values.
These are in direct proportion to the amount of light required
to proper imaging. The American and European standards
councils ([2] and [7]) proposed safe irradiance limits for NIR
illumination of near 10 mW / cm2. In addition to other factors
that determine imaging safety (blue light, non-reciprocity and
wavelength dependence), these limits are a concern, as an
excessively strong illumination can cause permanent eye dam-
age. Moreover, the NIR wavelength is particularly hazardous,
because the eye does not instinctively respond with its natural
mechanisms (aversion, blinking and pupil contraction).

The pigmentation of the human iris consists mainly of two
molecules: brown-black Eumelanin (over 90%) and yellow-
reddish Pheomelanin [29]. Eumelanin has most of its radiative
fluorescence under the VW, which enables to capture much
more detail, but also more noisy artifacts (figure 1b). The fea-
sibility of the VW unconstrained iris recognition remains con-
troversial, specially for high pigmented irises that constitute
the majority of the world’s population, although preliminary
experiments confirm the possibility of performing recognition
in such challenging conditions [34].

As in many applications that deal with real-world data,
segmentation is a major issue and has been motiving growing
research efforts [35]: He et al. [18] used a clustering-based
technique to roughly perform iris localization and an integro-
differential constellation used for fine pupillary and scleric
border detection, which not only accelerates the integro-
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differential operator but also enhances its global convergence.
Proença [33] considered the sclera the most easily distinguish-
able part of the eye and proposed a classification procedure
based in the neural pattern recognition paradigm that runs
in deterministic linear time, making the procedure suitable
for real-time applications. As illustrated in figure 1b, these
methods obtain acceptable results and effectively discriminate
between the unoccluded regions of the iris (noise-free) and all
the remaining data.

Subsequent to segmentation, quality assessment is a fun-
damental task. The goal is to quantify characteristics and
fidelity of the segmented data, particularly in terms of its
utility. This is essential, as performing recognition in too much
degraded data decreases matching accuracy and increases
computational complexity. This paper describes a method to
assess the quality of VW iris images acquired in uncontrolled
lighting conditions, at large (4 to 8 meters) distances and on
moving subjects. When compared with previously published
approaches, several discriminating factors can be pointed:
• The type of data that we aim to deal with. To the best

of our knowledge, all the previously published methods
were devised to NIR data acquired in constrained setups,
while our proposal handles the specificities of real-world
VW data.

• We empirically observed that published methods tend to
fail in assessing the quality of VW data;

• We use the output of the segmentation stage in all qual-
ity assessments, which improves performance in some
assessments (such as focus, described in section III-C)
and makes others easier to assess (such as occlusions,
described in section III-F).

The remainder of this paper is organized as follows: Sec-
tion II summarizes the most recent proposals to assess iris
image quality, grouping them according to various criteria.
In Section III, we describe the proposed method in detail.
Section IV reports the experiments and discusses our results.
Finally, Section V concludes and points further work.

II. RELATED WORK

The concept of good metric is not trivial to determine,
although the best one should maximally correlate with recogni-
tion effectiveness. Previous studies reported significant decays
in effectiveness when data is degraded by each of the factors
listed in Table I. Here, we overview the main techniques used
to assess iris image quality with respect to each factor and
compare them according to the used spectrum of light, the type
of analyzed data (raw image, segmented or normalized iris
region) and their output (local or global), as they operate at the
pixel or image level. We note that most of the methods operate
in NIR images and assess quality in the segmented data (either
in the cartesian or polar coordinate systems). Exceptions are
usually related with focus measurement, obtained by one of
two approaches: (1) measuring the high frequency power in
the 2D Fourier spectrum through a high-pass convolution
kernel or wavelet-based decomposition ([10], [20] and [6]);
(2) analyzing the sharpness of the iris borders through the
magnitude of the first and second order derivatives ([1]

and [45]). Another key characteristic is the level of analysis:
some methods operate globally (at the image level), usually
to determine focus, gaze or motion blur ([20], [24] and [42]).
As image quality varies across the iris, others operate at the
pixel level to determine local obstructions ([1], [22] and [31]).
Motion is estimated by detecting interlaced raster shear that
might be due to significant movements during the acquisition
of a frame ([11], [28], [43] and [49]). Other approaches rely
in the response of the convolution between the image and
directional filters, being observed that linear motion blurred
images have higher central peak responses than sharp ones
([22] and [25]). Gaze is estimated by 3D projection tech-
niques that maximize the response of the Daugman’s integro-
differential operator [22] and by the length of the axes of a
bounding ellipse [49]. Eyelids are detected by means of line
and parabolic Hough transforms [17], active contours [26] and
machine learning frameworks [31] [44]. The modal analysis
of the intensities histogram enables the detection of eye-
lashes [10] [17], as do spectral analysis [28] and edge-based
methods [22]. As they usually are the brightest regions of
images, specular reflections are detected by thresholds [22],
while diffuse reflections are exclusive of VW data and more
difficult to discriminate, being reported a method based in
texture descriptors and machine learning techniques [31].

III. PROPOSED METHOD

A global perspective of the proposed method is given in
figure 2. The input is a VW iris sample and its corresponding
segmentation mask, obtained according to the method of [18].
The center of the iris (xc, yc) is roughly found and used
to parameterize the deemed biologic pupillary and limbic
iris boundaries ({xpi, ypi} and {xsi, ysi}). These boundaries
permit to assess the quality of severely degraded samples that
will be extremely difficult to handle by traditional approaches.
For comprehensibility, the generated quality scores are denoted
everywhere by ”α” and a subscript: αf for focus, αm for
motion blur, αa for off-angle, αo for occlusions, αp for iris
pigmentation, αc for pixel count (area) and αd for pupillary
dilation. As it is given in Table I, these quality factors are
known to be strong correlated with recognition effectiveness
and its assessment is made in a specific way for iris data.
Other factors (such as Gaussian or salt and pepper noise) that
are assessed in iris data as in any other type of images were
not the scope of this work.

A. Estimation of the Iris Center

The convergence property of convex surfaces is the key
insight this phase. The external boundary of the iris is pre-
dominantly convex, which was used to trace rays that pass
through it and bend perpendicularly, converging into a focal
point that gives an estimate of the iris center. As shown
in figure 3, this gives a rough estimate of the true center,
even in cases where the amount of unoccluded iris is very
small. This approximation is acceptable because it is used
as reference point by the shape descriptor that parameterizes
the iris boundaries (normalized cumulative angular), which is
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TABLE I
OVERVIEW OF THE MOST RELEVANT METHODS THAT WERE RECENTLY PUBLISHED AND ASSESS THE QUALITY OF IRIS BIOMETRIC DATA.

Method Experiments Data Sets Images Analysis Quality Assessment
Abhyankar and
Schuckers[1]

CASIA.v3, BATH, WVU and
Clarkson (NIR)

Segmented Local, global Occlusion (frequency analysis); focus (second order derivatives); contrast (hard threshold) and
angular deformation (assigned manually)

Chen et al. [6] CASIA.v3, WVU (NIR) Segmented Local, global Focus and amount of information (2D isotropic Mexican hat wavelet-based frequency analysis)
Daugman and
Downing[11]

ICE (NIR) Raw data Global Effect of image compression; motion (interlaced raster shear)

Daugman [10] ICE-1 (NIR) Segmented Local, global Focus (magnitude of the response to a 5×5 high-pass kernel); off-angle (projective deformation
that maximizes the circular shape of the pupil); eyelashes (intensities histogram modality)

Grabowski et al. [15] - Segmented and normalized Global Focus (entropy in the iris ring)
He et al. [17] CASIA.v3 (NIR) Segmented Local Eyelid (line Hough transform); eyelashes (intensities histogram modality)
Hollingsworth et
al. [19]

Univ. Notre Dame (NIR) Segmented Global Effect of pupil dilation

Jang et al. [20] Yonsei (NIR, UBIRIS.v1 (VW) Raw data Global Focus (ratio between the higher and lower frequency components, resultant of the dyadic discrete
wavelet transform)

Kalka et al. [22] CASIA.v3, WVU, ICE (NIR) Segmented Local, global Focus (response to the Daugman’s 8 × 8 high pass kernel); occlusion (morphologically
dilated horizontal edges); motion blur (response to directional filters in Fourier space); off-
angle (maximization of the circular integro-differential operator); specular reflection (threshold);
lighting variation (intensities variance within small iris blocks); iris size (proportion of occluded
pixels)

Kang and Park [23] CASIA.v2(NIR) Raw data Global Focus (magnitude of the response to a 5 × 5 high-pass kernel)
Kang and Park [24] CASIA (NIR) Segmented Local Eyelids (parabolic form fitting); focus (magnitude of the high frequency components; eyelashes

(adaptive criteria according to the image blurring, convolution kernel for multiple eyelashes,
first order differential for separable eyelashes)

Kang and Park [25] CASIA.v3 (NIR) Segmented Local, global Iris size; reflections (threshold); eyelids (parabolic form fitting scheme); eyelash (template
matching based on continuity); motion blur (directional filters) and focus (frequency analysis)

Krishen et al. [26] ICE (NIR) Segmented and normalized Local Eyelids and eyelashes (gradient vector flow-based active contours method); focus (Gaussian
mixture model learned from a set of image intensity histograms)

Nandakumar et
al. [30]

WVU (NIR) Segmented and normalized Local, global Focus and amount of information (2D isotropic Mexican hat wavelet-based frequency analysis)

Lu et al. [28] CASIA.v3 (NIR) Segmented and normalized Local, global Focus (energy of the frequency components resultant of a wavelet packet decomposition );
motion blur (average difference of intensities between adjacent rows); eyelids (hard threshold)
and eyelashes (frequency analysis in the upper and lower iris extremes)

Proença and Alexan-
dre. [31]

UBIRIS.v1 (VW) Segmented and normalized Local Glossy and specular reflections, eyelids and eyelashes (extraction of an 8D feature set, neural
network classification scheme)

Wan et al. [42] SJTU-IDB (NIR) Raw data Global Focus (magnitude of the response to a 2D isotropic Laplacian of Gaussian kernel)
Wei et al. [43] CASIA.v2 (NIR), UBIRIS.v1

(VW)
Raw data and segmented Global Focus (magnitude of high frequency components); motion blur (average difference of intensities

between adjacent rows) and occlusions (thresholds)
Ye et al. [44] CASIA, CASIA.v2 (NIR) Raw data Global Iris occlusions and focus (pixels intensity feed neural network that detects the iris contour. A

second network gives the data quality).
Zhang and Salgani-
coff [45]

- Segmented Global Focus (sharpness of a portion of the pupillary border, based in the gradients’ magnitude)

Zuo and Schmid [48] CASIA.v2, WVU (NIR) Segmented Global Pupil size (threshold); pupillary and scleric borders sharpness (cumulative gradient along the
boundaries) and ROI homogeneity (difference between average intensities of the iris, pupil and
sclera)

Zuo and Schmid [49] ICE, MBGC (NIR) Segmented Local, Global Interlacing (average difference between odd and even rows); illumination (average intensity of
the segmented iris); lighting (intensity variance over small iris blocks); occlusions (proportion
of occluded iris pixels); area (pixel count); pupil dilation (proportion between the iris and pupil);
off-angle (ratio between the major and minor axis of a bounding ellipse) and blur (magnitude
of the high frequency components)

Captured VW Image Segmented Data

Iris Segmentation

He et al. [18]

Area

Assessment

Angular

Assessment

Parameterization Bio.

Boundaries

(xc, yc )

{xpi, ypi}
{xsi, ysi}

Focus

Assessment
Motion Assessment

Iris Pigmentation

Assessment

Occlusions

Assessment

Pupillary Dilation

Assessment

Estimation Iris

Center

Input Data

αf αm αp αo

αc αa

αp

Fig. 2. Cohesive perspective of the proposed quality assessment method. The iris segmentation mask is used to roughly estimate the center of the iris. This
value is used as reference point to reconstruct the deemed biological iris boundary and to assess each of the seven quality measures.

invariant to the reference point as long as it is inside the desired
contour.

Let I be an iris image (h rows × w columns) and M the
binary mask that gives the non-parameterized segmentation of
its noise-free iris regions (bottom right corner of figure 1). Let
e = {e1, . . . , en} be the set of edge pixels of M , each ei
with coordinates (ex, ey). Let −→vi be a vector tangent to the iris
boundary at ei and ⊥ −→vi its perpendicular. A line li through
point ei and perpendicular to −→vi is given by:

li = (bx, by) + t ⊥ −→vi (1)

with t ∈ R. Let l = {l1, . . . , ln} be the set of lines traced
from e. We define an indicator function χ1(x, y, li)→ {0, 1}
that verifies wether the pixel (x, y) belongs to li:

χ1(x, y, li) =

{
1, ∃ t ∈]0,

√
h2 + w2] : (x, y) ∈ li

0, otherwise
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The center of the iris (xc, yc) is estimated as the point where
the maximal number of li intersect, i.e., where the accumulated
value of χ is maximal.

(xc, yc) = arg max
x,y

∑
x

∑
y

n∑
i=0

χ1(x, y, li) (2)

where (xc, yc) give the coordinates of the iris center. Fig-
ure 3 gives two examples of this procedure: images in the
left column have notoriously different proportion of noise-
free iris and images in the right column give the accumulated
χ1(x, y, li) values. In both cases, the estimated center of
the iris (denoted by the interception of the dashed lines) is
acceptably close to the actual center.

Good quality iris ∑
x

∑
y

∑n
i=1 χ1(x, y, li)

Highly occluded iris

Fig. 3. Estimated iris center (interception of the dashed lines) in a relatively
unoccluded iris (upper row) and a heavily occluded one (bottom row). Images
of the right column give the accumulated χ1(x, y, li) values.

B. Parameterization of the Biological Iris Boundaries

Efficient parameterization of the iris boundaries that are
behind occlusions is a key issue regarding iris image quality
assessment. Such boundaries not only permit to infer gaze, but
also to estimate the proportion of occluded iris. This phase
can be divided into two steps: (1) discriminate between the
boundaries that correspond to iris biological borders and those
that delimitate noisy regions; (2) reconstruct the biological iris
boundary, according to the former boundary segments. The key
insight is that biological boundaries can be faithfully described
by periodic signals, which justifies the use of Fourier series
for such purpose. Let (xc, yc) be the center of the iris and
f(xc, yc, θ) = ((xc − xθj )2 + (yc − yθj )2)0.5.M(xθj , yθj ) the
Euclidean distance between (xc, yc) and the noise-free iris
pixels in a given direction θj , where (xθj , yθj ) are given by:

(xθj , yθj ) = (xc, yc) + t [0, 1]

[
cos(θj) −sin(θj)
sin(θj) cos(θj)

]
with t ∈]0,

√
h2 + w2]. Let bs = {bs1, . . . , bsn} and bp =

{bp1, . . . , bpn}, bi with coordinates (xi, yi), be the noise-free iris
pixels at respectively the farthest and closest distances from
(xc, yc) in regularly spaced directions θi = 2πi

n , i = 1, . . . , n.

(xsi , y
s
i ) = arg max

xθi ,yθi
f(xc, yc, θi), (xpi , y

p
i ) = arg min

xθi ,yθi
f(xc, yc, θi)

(3)
bs and bp give the outer and inner iris boundaries, and

the former is illustrated in figure 4a. Special attention should
be paid to extremely occluded irises, where some of the bi
might not exist and should be discarded of further processing
by a simple semantic rule. Next, the cumulative angular
function [47] is used as shape descriptor of each type of
boundary, defined as the amount of angular change from an
arbitrary starting point:

γ(t) =

∫ Lt
2π

0

k(r) dr − k(0) + t (4)

where t ∈ [0, 2π] and k(r) describes changes in direction
at point t with respect to changes in arc length L. Here, if
the boundary is a perfect circle, the corresponding angular
description γ(t) will be 0, ∀t ∈ [0, 2π]. An illustration of the
γ(t) values is given in figure 4b. Segments of the boundary
that correspond to biological borders are discriminated by
statistical estimation of the γ(t), ∂γ(t)

∂t and ∂2γ(t)
∂t2 values.

As illustrated in figures 4b-4d, biological boundaries have
evident smoother values and lower energy, which gives raise
to different values of the objective function:

O(t) = β0 γ(t) +

2∑
i=1

βi
∂iγ(t)

∂ti
(5)

where βi are regularization constants empirically obtained.
Arguments of the first quartile of O(t∗) — t∗ regularly spaced
in [0, 2π] — are deemed to belong to the biological border and
their coordinates (column and row) are illustrated by the dot
and cross data points of figure 4e. The reconstruction of the
complete biological border starts from these coordinates and
is regarded as a nonlinear regression of a Fourier series of
order r, given by:

c(x) =
a0
2

+

r∑
k=1

(ak cos(xωk) + ar+k sin(xωk)) (6)

Constraining the fundamental frequency to ω = 1 assures
closure and completeness of the obtained contour. For each
boundary, both the column and row coordinates are fitted
similarly. Given a set of t∗/4 data points xi, the goal is to
optimize the parameter vector −→a = (a1, . . . , a2r+1) so as to
minimize the sum of squares of the deviations:

S2(−→a ) =

t∗/4∑
i=1

(yi − c(xi))2 (7)

where yi is the desired value at xi and c(xi) the actual
response. Requiring the zero-gradient condition to hold at the
minimum:

∇S(−→a ) = JT (yi − c(xi)) = 0 (8)

where J is the Jacobian. Let b(−→a ) = −∇S(−→a ) =
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−JT (yi − c(xi)), the zero gradient is given by b(−→a ) = 0,
which is solved iteratively using the Newton-Raphson itera-
tions and starting from an initial guess of −→a , corrected to
−→a + ∆−→a . The increment ∆−→a satisfies the linear equation
J∗(−→a ) ∆−→a = −b(−→a ), where J∗ is the Jacobian of b:

J∗ij =
∂ bi
∂aj

=
−∂2S
∂ai∂aj

= −Hij (9)

As J∗ = −H , ∆−→a satisfies the system of linear equations:

H∆−→a = b (10)

∆−→a = b H−1 (11)

∆−→a = H−1 JT (yi − c(xi)) (12)

Assuming moderate non-linearity, a reasonable approxima-
tion of H is given by JTJ , obtaining the next generation of
the parameter vector −→a . This is repeated until convergence is
reached, i.e., ||∆−→a || < α, being α a very small positive value.
An illustration of the reconstructed biological iris boundary is
given in figure 4f.

C. Focus Assessment

As Table I summarizes, the Fourier domain is the most
frequently used in focus assessment. The rationale is that
focused data contains more high frequency components than
blurred one. Daugman pointed out that defocus is equivalent
to multiplying the 2D Fourier transform of a perfectly focused
image by the 2D Fourier transform of a Gaussian kernel [9].
Thus, focus of an image I can be assessed by measuring its
amount of high frequencies, i.e., the accumulated power of the
convolution between I and a high-pass kernel H:

αf =

∫
x

∫
y

|I ∗H|2dxdy (13)

This measure performs well if images are dominated by
the iris. Otherwise, if the iris is just a small part of the data
— dominated by eyelashes or hair that are full of minutia
— it tends to fail, which is particularly probable in uncon-
trolled image acquisition setups. Hence, focus is exclusively
assessed in the region segmented as noise-free iris (using the
segmentation mask M ), avoiding the described problem. Also,
assuming that segmentation inaccuracies predominate near the
boundaries, we compared the results obtained when using
exclusively the most interior regions of the noise-free irises
(obtained by morphologic erosion of M and illustrated in the
top images of figure 5), that have higher probability of actually
being noise-free. Let Mp be an iris segmentation mask eroded
by a circular structuring element of radius p. In order to keep
the proportion of iris removed by erosion independent of the
iris size, the radius of the structuring element is given by:

p = arg min
p′

∑
x

∑
y

Mp′(x, y)

M(x, y)
< T, p′ = 1, . . . , n (14)

where T is an empirically adjusted threshold. In the ex-
periments, we used a data set of 1 000 focused images

of the UBIRIS.v2 database D1 and convolved them with
Gaussian kernels G(s, σ), (s, σ) = (5i, 2i), i = 2, . . . , 4,
obtaining three increasingly defocused versions of the data set:
{D2, D3, D4}. As it is given in the bottom row of figure 5,
we compared the αf values obtained by the Daugman [9] and
Kang and Park [23] kernels when using: (1) the whole image;
(2) the whole iris and (3) the most interior iris regions as input
data. The plot at the bottom left corner gives the proportion
between the average αf values of consecutive data sets, i.e.,∑4

2 di−1/di, where di = 1
n

∑
αf (i) is the average focus value

in the Di data set. Maximal separation was obtained around
T = 0.4 (Daugman kernel) and T = 0.3 (Kang and Park
kernel), which is justified by the smaller size of the latter
kernel. Plots at the center and right contextualize the results,
comparing the di values obtained when using the whole image
(dashed lines), the whole iris (continuous lines) and the interior
iris regions (with T = 0.35, dotted lines) as source data. It can
be confirmed that both spectral measures perform acceptably
in VW data and that results were consistently improved when
exclusively the most interior iris regions were used as input
(defocused versions of Di obtained the lowest focus scores).

D. Motion Assessment

There are various causes for motion blurred iris images,
corresponding to the different types of movements in the
scene: subjects, heads, eyes and eyelids, causing motion to be
non-linear and particularly hard to determine and compensate
for. In previous works, an oversimplification was made and
assumed that motion is linear across the image, which cannot
be guaranteed in unconstrained acquisition setups. Instead,
we exclusively assumed that motion is linear in the iris
ring and concerned about the detection of linear motion blur
inside an iris bounding rectangle B(x, y). The rationale is
that linearly motion-blurred data has frequency responses with
visible parallel strips of direction θ that correspond to the
motion direction. As suggested by Kalka et al. [22], the
width and power of these strips provide an estimate of the
amount of motion. We used the concept of power cepstrum
C(B) = |F (log(|F (B(x, y))|))|2, illustrated in three images
of figure 6: a sharp and two motion-blurred. The primary
direction of motion is deemed to be the one that minimizes
the power of the derivatives of C(B) along a direction
θi ∈ [0, 2π].

θm = arg min
θi

G(σ, r) ∗
∑
x

∑
y

( ∂

∂θi
C(x, y)

)2
(15)

∂
∂θi
C(x, y) gives the partial directional derivative of C

along the θi direction (θ ∈ [0, π]), obtained as described
in [39]. The amplitude αm of the partial directional derivatives
in [0, 2π] gives the motion quality score, as illustrated in
figure 6d:

αm = max
θi

∑
x

∑
y

( ∂

∂θi
C(x, y)

)2
−min

θi

∑
x

∑
y

( ∂

∂θi
C(x, y)

)2
(16)
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(a) bs (b) γ(t∗) (c) ∂γ(t)
∂t
∗G(σ, r)

t

γ(t∗o)

(f) Reconstructed boundary

Biological
Noisy

(e) Fourier regression

Columns

Rows

(d) ∂2γ(t)

∂t2
∗G(σ, r)

Fig. 4. Estimation of the biological scleric border. The boundary points that are farthest from the iris center at each direction (figure a) are used to obtain the
cumulative angular description γ(t∗) of the contour (figure b) and its first and second order derivatives (figures c and d). The selection of the regions deemed
to belong to the iris biological boundary (cross and circular data points of figure e) enables the reconstruction of the deemed biological border through a
regression of a Fourier series (figure f).

Noise-free iris mask Interior (p = 3, T = 0.19) Interior (p = 5, T = 0.31) Interior (p = 9, T = 0.56) Interior (p = 15, T = 0.76)

Di separation Daugman kernel Kang and Park kernel

Fig. 5. The upper row shows an iris mask and its increasingly most interior iris regions. The bottom left figure shows the separation between the focus
scores obtained in defocused versions of the training data set, in respect to different values of T . The bottom center and right plots illustrate the improvement
observed when just the most interior iris regions are used as source data (dotted lines), instead of the whole image (dashed lines) or whole iris (continuous
lines).

E. Off-Angle Assessment

Assuming the circularity of the pupil as a measure of the
off-angle, Kalka et al. [22] and Dorairaj et al. [13] projected an
integro-differential operator at multiple yaw and pitch angles,
yielding an optimization process in a 5D hyperspace with

significant computational efforts. Daugman [10] used Fourier
series expansions of the 2D coordinates of the pupillary bound-
ary, which contain shape distortion information that is related
to deviated gaze. Expressing the pupillary boundary as a set of
coordinate vectors X(t) and Y (t), the direction and magnitude
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(a) No motion (b) Blurred, (θ, α) = (π
2
, 0.22)

(c) Blurred, (θ, α) = (π
4
, 0.21) (d) Directional derivatives

αm(1) αm(3)

αm(2)

Fig. 6. Power cepstrum of a sharp iris (figure a) and of two motion blurred
irises (figures b and c). Figure d gives the accumulated image derivatives along
θ directions, where the minimum values indicate the primary blur direction.
The amplitude of this signal is also used to discriminate between motion
blurred and sharp irises, as αm(2), αm(3) � αm(1).

of the gaze deviation are contained in the form of Fourier
coefficients on the harmonic functions cos(t) and sin(t) that
— linearly combined — represent X(t) and Y (t). Algebraic
manipulation estimates from four Fourier coefficients two gaze
deviation parameters θ and γ. Our aim is to obtain a unique
value that gives the magnitude of the deviation (used as
quality score) and other one that corresponds to its major
direction. The rationale is that the degree of circularity of
the scleric boundary should be inversely correlated to off-
angle acquisition. For such, we used the concept of minimal
bounding rectangle and compared the length of its sides.
Let b∗ = {b∗1, . . . , b∗n} be the coordinates of the biological
scleric boundary, that delimitates a convex polygon P . As
proposed in [16], (xm, xM , ym, yM ) are the coordinates of
the four extreme points of P , where m and M stand for
the minimum and maximum values. Let lj : 1 ≤ j ≤ 4,
be four line segments through the extreme points and θ the
minimal rotation such that one lj coincides with a line segment
defined by (b∗i , b

∗
i+1). Let lθj : 1 ≤ j ≤ 4 be the versions of lj

rotated by θ. Minimizing the area of the enclosing rectangle
is equivalent to keep the minimum of successive rotations,
until the lines have been rotated by an angle greater than
90 degrees. Let l∗j : 1 ≤ j ≤ 4 be the line segments that
delimitate the minimum enclosing rectangle of extreme points
(xj , yj) : 1 ≤ j ≤ 4. Let dM and dm be the lengths of
these line segments, such that dm ≤ dM . The magnitude
of the deviation αa : Rn×2 →]0, 1] and its major direction
θa : Rn×2 → [−π, π] are obtained as follows:

(αa, θa) =
(
1− dm

dM
, arctan(−→v )

)
(17)

where −→v =
(xi,yi)−(xj ,yj)

dM
, such that y(j) ≤ y(i) and

((xi − xj)2 + (yi − yj)2)0.5 = dM . Figure 7 illustrates three
iris images and the corresponding off-angle scores: image in
the left column was frontally captured and the others resulted
of moderated (central column) and severe deviations (right
column) in image acquisition.

F. Occlusions Assessment

An estimate of the amount of iris that is occluded by other
types of data is obtained by comparing the area inside the
deemed biologic iris ring (inside the scleric {s∗1, . . . , s∗n} and
outside the pupillary contour {p∗1, . . . , p∗m}), and the area of
the noise-free iris segmentation mask. Assuming the convexity
of the polygon defined by the set of vertices {b∗1, . . . , b∗n}, a
pixel is on the interior of this shape if it is always on the same
side of all line segments defined by (b∗i , b

∗
i+1), b∗i = (xi, yi).

Let zi = f(x, y, b∗i , b
∗
i+1) : N6 → R, be a function that

relates the position of (x, y) to the straight line defined by
zi = (y − yi)(xi+1 − xi)− (x− xi)(yi+1 − yi).

An indicator function that discriminates between pixels
inside and outside the iris ring is given by:

χ2(x, y) =

{
1 , if ∀j, j′ : zsj .z

s
j′ > 0 ∧ ∃k, k′ : zpk.z

p
k′ < 0

0 , otherwise
(18)

where j, j′ ∈ {1, . . . , n} and k, k′ ∈ {1, . . . ,m}. Function
o : Nw×h × Nw×h → [0, 1] has direct correspondence to the
proportion of iris occluded by noise:

αo(I,M) =
1

n

∑
x

∑
y

(
χ2(x, y)−

(
χ2(x, y) M(x, y)

))
(19)

where n is the area of the iris ring. Figure 8 gives some
examples of this procedure: white pixels denote regions seg-
mented as noise-free that are inside the deemed biological
boundaries; dark and light gray regions respectively denote
occluded iris pixels and regions outside the deemed biological
boundaries. It can be confirmed that assessments match the
intuitive human perception, either for almost unoccluded,
moderately or severely occluded iris images.

G. Levels of Iris Pigmentation

The spectral radiance of the iris in respect of its level of
pigmentation has greater variance in the VW than in the NIR,
which increases the heterogeneity of the captured data: light
pigmented irises provide more detail than heavy pigmented,
although the number of visible crypts, arching ligaments,
freckles and contraction furrows significantly varies between
subjects. Also, the appearance of the striated anterior layer
that covers the trabecular meshwork depends of the amount
of light used in the acquisition process. Here, we propose
a strategy to assess the levels of iris pigmentation based in
the observation that local hue and value across the iris vary
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(αa, θa) = (0.02, 2.52)

dM
dm

−→v

(αa, θa) = (0.13, 0.29)

dM

dm

−→v

(αa, θa) = (0.20, 1.43)

dM

dm

−→v

Fig. 7. Examples of the proposed off-angle assessment, for aligned, moderately and severely deviated iris images.

αo = 0.032 αo = 0.178 αo = 0.345 αo = 0.485

Fig. 8. Examples of the proposed iris occlusions assessment, for practically unoccluded, moderately and severely occluded iris images. White regions were
segmented as noise-free and are inside the deemed biological boundaries. Dark and light gray regions respectively denote noisy iris pixels and regions outside
the biological boundaries.

accordingly to its levels of pigmentation. Also, we consider
the average brightness of a region deemed to contain the
sclera, adjusting for different lighting conditions. Let Ihsv
be the iris image represented in the HSV color space. Let
{e1, . . . , en} be the set of edge pixels of M that are farthest
from (xc, yc) in n regularly spaced directions (n ∈ [0, 2π]).
Let d = {d1, . . . , dw} : w =

∑n−1
i=1 i, be the Euclidean

distances between elements of e. The third quartile of d
corresponds to the farthest distances between edges, which
associated vectors tend to point to the direction of the sclera
(avoiding eyelids and eyelashes occlusions). The direction of
the sclera is given by the mean direction of the vectors drawn
from these farthest points, i.e., −→v = 4

w

∑w/4
i=1 (xi−xj , yi−yy).

Thus, (xc, yc)± k−→v delimitate an image strip that spreads in
direction −→v and is illustrated in the left column of figure 9.
Let B be a binary mask, such that B(x, y) = 1 inside the band
and 0 otherwise. The levels of iris pigmentation are obtained
by relating the hue and value of the iris and of the sclera pixels
inside this band:

αp(I) =
m1

∑
x

∑
y

(
Ihv(x, y) M(x, y) B(x, y)

)
β m2

∑
x

∑
y

(
Ihv(x, y) B(x, y) (1−M(x, y))

)
(20)

where m1 =
∑∑

B(x, y)(1 − M(x, y)) and m2 =∑∑
B(x, y)(M(x, y)). Ihv() gives the pixel hue and value

and β ∈ [0, 1] is a regularization term. According to a set
of manually classified 300 iris images of light and heavy
pigmented irises, a k nearest neighbors strategy classifies the
sample into one of k classes wi: wi = kl/(kl + kw), where
kl and kh represent the number of light and heavy pigmented
irises in the nearest neighbors. The plot at the right of figure 9
gives the αp values of the training set, where circular and cross
data points represent light and heavily pigmented irises.

H. Pixel Count, Pupillary Dilation and Amount of Information

Three other factors that are known to play relevant roles
in the recognition effectiveness are discussed in this section:
the area of the noise-free data, the pupillary dilation and the
amount of information within the iris, which were grouped in
a single section due to the simple way they are obtained. The
area of the non-occluded iris region is simply given by the
number of pixels classified as noise-free by the segmentation
algorithm, i.e., αc =

∑
x

∑
yM(x, y). An assessment of

the pupillary dilation αd is given by the ratio between the
area of the polygons defined by the scleric and pupillary
biological boundaries, both estimated in section III-B. Finally,
an estimate of the the amount of information can be given
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B image strips Training set feature values

Fig. 9. Images at the right column illustrate the image band deemed to
contain the sclera. Plot at the center gives the αp values of a training set
of 300 images, where circular and cross points represent light and heavy
pigmented irises.

by the local entropy values in small windows of the iris ring.
However, we decided not to use it as quality score, since we
observed that this value is heavily correlated with the focus
score and relatively invariant to other parameters (such as
acquisition distance and levels of iris pigmentation).

I. Temporal Computational Complexity

The computational complexity of the given method was
a major issue, in order to handle real-time data. Here we
analyze the complexity of each phase and give statistics about
its execution time. It should be noted that values should be
regarded as upper bounds, as they were obtained using an in-
terpreted language and without any performance optimization
concerns. Let I be an RGB image with n = c × r pixels
and M be its corresponding binary segmentation mask (in
our experiments 120 000 = 400 × 300). Although this is a
relatively large value, the phases with highest computational
complexity depend of the number of edge pixels ne of M in θ
directions (ne � n, between 64 and 512 in our experiments).
As these are relatively low values, the increased computational
complexity is not a concern and does not significantly affect
performance.

The estimation of the center of the iris (an evidence-
gathering process) has time complexity of O(n2e). The pa-
rameterization of the iris boundaries receives 2 × ne values,
described by means of the cumulative angular descriptor
(O(n2e)) and used in a nonlinear regression of a Fourier series
with time complexity bounded by O(log(ne) ne). Focus is
assessed by the convolution between the noise-free iris pixels
nf (nf � n) and a high pass kernel, which can be done
in quadratic time with respect to nf (O(n2f )). Motion was
assessed by means of the power cepstrum of the nb pixels
within an iris bounding box (nb ' n

8 ), having time complexity
(O(n2b)) . Off-angle assessment uses the concept of minimal
bounding rectangle and of its minor and major axis, which runs
in time deterministic linear to its input (O(nb)). Occlusions are
assessed by measuring the proportion between two areas: one
given by a point-in-polygon algorithm (linear complexity) and
the other composed by the nf iris pixels (O(n2f )). Finally, the
levels of iris pigmentation are estimated by the average hue
and value in an image band, with respect to a data training
set, which is done in O(n2b)). In our earliest experiments we

used a lazy classification algorithm (nearest neighbors), and
then explicitly defined the decision boundaries, which has
significantly improved performance.

Experiments were performed in a 2.66 GHz iMac with 8GB
1067 MHz DDR3 memory, using an interpreted programming
language and without any performance optimization concerns.
Even so, the observed average execution time for the complete
assessment was 0.68s. ± 0.22 for 200× 150, 1.36s. ± 0.45
for 400 × 300 and 2.74s. ± 0.91 for 800 × 600 images
(95% confidence intervals). These values led us to conclude
that, if appropriate programming languages and hardware are
used, performance should easily be improved by two orders
of magnitude and real-time performance achieved.

IV. EXPERIMENTS

This section describes our experiments during the evaluation
of the proposed method. Several examples are illustrated and
discussed, the used data sets described and the improvements
in recognition effectiveness highlighted. Finally, we discuss
the adaptability of the proposed method to NIR data.

A. Results and Discussion

For the purpose of contextualization, our method was
evaluated in two dramatically different VW iris data sets:
UBIRIS [32] and UPOL [40]. The former fits better the
scope of this work and was used as main experimental data
source. Its images were captured from moving subjects, at
varying distances (4 to 8 meters) and in uncontrolled lighting
conditions, resulting in extremely heterogeneous images with
several factors that degrade their quality. Oppositely, UPOL
images were acquired with an optometric framework and
according to a rigid protocol, which resulted in almost noise-
free images.

In order to avoid that segmentation errors corrupt the results,
a subset of 10 427 images was selected, which under visual
inspection we verified that the method of He el al. [18]
has accurately segmented. We performed quality assessment
in this set, obtaining the histograms given in figure 10. In
order to better match the human perception of quality, scores
were grouped according to their numeric range. Each group
is shown as one bin labeled in the [1, 10] discrete range,
regarded as a quantized and normalized quality score. For
comprehensibility, normalized scores are denoted by α∗ plus
the same subscripts as before. The horizontal range of the
leftmost and rightmost bins extends to include the entire data
range. For focus, motion, off-angle, occlusions, iris area and
pupillary dilation plots, better quality values are given in the
rightmost bars (in the pigmentation plot rightmost bars denote
the lightest pigmented irises). It can be seen that the large
majority of images were classified as focused and without
significant motion-blur. We observed that over 1

3 of them are
off-angle and about 1

2 have moderated to severe iris occlusions.
Most of the subjects (caucasian latin) have dark and medium
dark irises that were captured from varying distances, which
resulted in irises of very different sizes. These results appear to
be in agreement to the acquisition protocol of the data set [32],
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(a) Focus (b) Motion (c) Off-angle

(d) Occlusions (e) Iris Pigmentation (f) Iris Area (g) Pupillary Dilation

Fig. 10. Quality assessments obtained for the UBIRIS.v2 database. For all
plots, better quality are expressed by rightmost bars. For the iris pigmentation
plot, light pigmented irises are represented by rightmost bars.

which we consider a good metric for the effectiveness of the
proposed quality assessment.

Figure 11 gives several examples of our quality assessments,
being shown the original quality score α and the correspond-
ing quantized and normalized value α∗ between parenthesis
(according to the previously found horizontal range values) 1.
The example given in the first column and left row ({1, 1})
is an image of relative good quality, from where 128 points
deemed to belong to the biological boundary were extracted.
These came mostly from the inferior parts of the iris due to
minor occlusions in its upper region, which justifies the good
αo score (9 in 10). Image was classified as focused and the
iris as light pigmented, which matches the human percep-
tion. Examples given in positions {1,2} and {2,2} illustrate
two severely degraded samples, from where the biological
borders were correctly estimated. In both cases the selected
points came from the nasal and temporal boundaries of the
iris, which are known to have smaller probabilities of being
occluded. From our viewpoint, these are good examples of the
effectiveness of the proposed strategy in dealing with severely
degraded data. Image at position {3,1} is from the UPOL
database and is noise-free, which has evident correspondence
in the almost maximal normalized quality scores. Finally,
figure in {3,2} illustrates a failure case due to problems in
discriminating between the biological and noisy boundaries.
This occurs mostly when the noisy boundaries are very smooth
and deemed as biological by the objective function (5). We
hope that a set of semantic rules avoids this problem.

B. Improvements in Recognition Effectiveness

In evaluating the improvements in recognition effectiveness
achieved due to quality assessment, we used the classical
Daugman’s recognition strategy [10], as it is the unique that
is actually functioning in commercially deployed systems and
is clearly the most well known. According to this choice,
the segmented boundaries were normalized to dimensionless
polar coordinates. Then, a bank of Gabor filters was used

1More examples can be found at http://www.di.ubi.pt/∼hugomcp/doc/
examplesVWIQ.htm

to analyze the iris texture and the angle of each phasor
quantized to one of four quadrants. Finally, the fractional
Hamming distance gave the dissimilarity between two irises.
As suggested by Daugman [8], for two-choice decisions (e.g.,
match/non-match) the decidability index d′ measures how well
separated are the two types of distributions and recognition
errors correspond to their overlap area. It is given by:

d′ =
|µE − µI |√
1
2 (σ2

I + σ2
E)

(21)

where µI and µE are the means of the two distributions
and σI and σE their standard deviations.

Our tests were performed in an ”one-against-all” com-
parison scheme. Figure 12 compares the histograms of the
fractional Hamming distances obtained for the match (light
bars) and non-match (dark bars) comparisons without quality
assessment (figure 12a) and when the quality scores are used
to reject samples with q = min{α∗f , α∗m, α∗c , α∗d, α∗p, α∗o, α∗a}
below 5 (figure 12b) and 7 (figure 12c). The line plots
correspond to the fitted Normal distributions and the upper
left corner gives the corresponding decidability index d′. As
general considerations, we observed that values obtained for
the non-match distributions were similar to values reported
for the NIR setup, which points that the probability for a false
acceptance is independent of data quality. Oppositely, there is
a significant movement of the match distributions toward the
non-matches, substantially increasing the probability for false
rejections if traditional acceptance thresholds are used. Due to
this, the decidability of the VW recognition systems is much
lower than the corresponding value reported for the NIR setup.

Interestingly, the observed primary effect of quality assess-
ment was to counterbalance the above referred movement, as
illustrated in figures 12b and 12c. It can be seen that match
distributions tend to become narrower and slight to the right
when samples with quality q < 5 and q < 7 were not used
in the recognition tests. This is reiterated in figure 12d that
compares the match (dashed lines) and non-match (continuos
lines) distributions according to the minimum value of q.
We concluded that quality assessment improves recognition
effectiveness by consistently shifting the histogram of the
match comparisons to the left, which improves the decidability
of the resulting PR systems and is of specially interest for
noisy acquisition environments, where both types of distribu-
tions largely overlap. Moreover, the amplitude of such match
movement appears to be in direct proportion to the minimal
quality of samples.

Figure 13a shows how the true and false matches in
our system would change according to different decision
thresholds, when no quality is considered (continuous line)
and when only samples with q ≥ 5 (dash-dotted line) and
q ≥ 7 (dashed line) are considered for recognition. Here,
we plot the area under curve (AUC) for all three setups,
which significantly augments as the poorest quality samples
are rejected. Figure 13b shows how the decidability values d′

vary with respect to the minimum value of q. The gray regions
denote confidence intervals of 95%. Again, we confirmed that
samples with poor quality considerably shift the histogram of
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(xc, yc) = (244, 184)

128 Biological boundary points

αf = 0.88 (9)

αm = 0.11 (9)

αc = 20669 (9)

Reconstructed boundary
αa = 0.11 (8)

αo = 0.16(9)

αd = 0.27(8)

αp = (1, 0.6) (10)

(xc, yc) = (209, 134)

128 Biological boundary points

αf = 0.83 (9)

αm = 0.02 (10)

αc = 17314 (7)

Reconstructed boundary
αa = 0.11 (8)

αo = 0.35(7)

αd = 0.23(8) αp = (1, 0.6) (10)

(xc, yc) = (243, 156)

128 Biological boundary points

αf = 0.69 (7)

αm = 0.05 (9)

αc = 9250 (3)

Reconstructed boundary

αa = 0.20 (6)

αo = 0.22(7)

αd = 0.23(8)

αp = (0.6, 0.3) (1)

(xc, yc) = (198, 138)

128 Biological boundary points

αf = 0.88 (9)

αm = 0.12 (8)

αc = 2707 (1)

Reconstructed boundary
αa = 0.08 (9)

αo = 0.56(5)

αd = 0.35(7) αp = (0.4, 0.2) (1)

(xc, yc) = (183, 151)

128 Biological boundary points

αf = 1.05 (10)

αm = 0.03 (10)

αc = 57248 (10)

αa = 0.01 (10)

αo = 0.00(10)

αd = 0.27(8) αp = (1.3, 0.27) (7)

(xc, yc) = (197, 158)

128 Biological boundary points

Wrong biological boundary

αf = 0.97 (10)

αm = 0.01 (10)

αc = 23304 (10)

Reconstructed boundary

αa = 0.02 (10)

αo = 0.01(10)

αd = 0.31(7)
αp = (0.5, 0.4) (1)

Fig. 11. Examples of the proposed quality assessments. Seven quality scores are given (focus, motion, off-angle, occlusions, pigmentation, pixel count and
pupillary dilation), along with the corresponding quantized and normalized scores between parenthesis. For the focus, motion, off/angle, occlusions, iris area
and pupillary dilation scores better values correspond to higher scores. For the pigmentation scores, higher values correspond to the lightest pigmented irises.

the match distributions toward the non-matches, and consis-
tently reduce the separability between both distributions. We
know of two possible explanations for the sigmoid appearance
of the decidability curve: (1) for some of the noise factors
(e.g., blur) it appears that just heavily degraded data degrades
performance and (2) the excessive number of beans used
in score quantization leads that data of adjacent normalized
scores has actually very similar quality that, even for humans,
is very difficult to discriminate.

C. Analysis of Individual Factors

The next question to consider is about the effect of each
quality score in recognition effectiveness. For such, we re-
peated the ”one-against-all” recognition setup, but selecting
exclusively samples with minimal quality according to each
type of score. Figure 14 gives the obtained decidability values
with respect to the quantized quality scores α∗ in each type
of assessment (α∗ ∈ [1, 10] as in the previous experiments).
Again, rightmost regions correspond to data with better quality
and the gray regions denote 95% confidence intervals. It
should be noted that although this experiment enables to
perceive how much recognition effectiveness is degraded by

each type of quality score, it cannot be regarded as an effective
evaluation. This will demand a data set with images degraded
exclusively by one factor and UBIRIS.v2 images (as well all
the remaining available data sets) are simultaneously degraded
by various factors.

Even so, several degradation patterns are evident and able
to be discussed. At first, the major effect that gaze deviations
have in recognition effectiveness (figure 14b), when compared
to other factors. We suspect that such perspective deforma-
tions cause significant changes in phase, which significantly
perturb the used feature extraction and matching strategies.
We also confirmed the minor impact of focus in recognition
effectiveness (figure 14a), as it is known that most of the iris
discriminating information spans between 2 and 3 octaves of
the original scale and only severe defocus would notoriously
affect the recognition process. In our opinion this is one of
the biggest advantages of the iris, when compared to other
biometric traits: using the lowest and middle-low frequency
components for recognition improves the robustness to noise
(focus and artifacts).

Our observations about the degradation in effectiveness due
to pupillary dilations were inconclusive, in opposition with
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(a) Fractional Hamming distances without data quality

assessment.

(b) Fractional Hamming distances between samples with

minimal quantized quality above 5 (q ≥ 5).

(c) Fractional Hamming distances between samples with

minimal quantized quality q above 7 (q ≥ 7).

(d) Fractional Hamming distances with respect to the

minimal quality of samples (q).

Fig. 12. Comparison between the distributions of the fractional Hamming
distances for match (white bars) and non-match (gray bars) distributions,
according to the minimum quality of samples q.

(a) ROC curves corresponding to the distributions illus-

trated in figure 12.

(b) Variation in the PR decidability index d′ according

to the minimal image quality.

Fig. 13. Improvements in recognition performance due to quality assessment.

previously published works (e.g., [19]). We suspect that this
was mainly due to the spectrum of light of our data sets:
in opposition to NIR data, the pupillary boundary of VW
images is much more difficult to segment than the scleric.
For such, significant inaccuracies in the segmentation of the
pupil might have occurred and corrupted the pupillary dila-
tion experiments. Figure 14d confirms that the levels of iris
pigmentation constitute an obstacle to VW iris recognition,
as the decidability values obtained for light pigmented irises
(rightmost data points, mostly blue and light green irises)
were notoriously higher than those obtained when heavily
pigmented images were also used. One probable reason for
this is the spectral absorbance of the predominant pigment
of the human iris (brown-black Eumelanin), that has a peak
in the VW and turns the discriminating patterns of heavily
pigmented irises (ridges, valleys, furrows and crypts) more
difficult to capture.

The experiments about the occlusions and area factors
(figure 14c) enabled us to conclude that effectiveness is
directly correlated to the available area of the iris. This can be
observed just up to a limit (around the 6th quality bean), above
which effectiveness did not consistently improved. Also, the
higher decidability observed for bigger irises may be related
to the fact that images of UBIRIS.v2 that were acquired at
close distances tend to have proportionally less proportion of
occluded iris, due to the specific lighting conditions of the
environment.

(a) Degradation in recognition effectiveness due to focus

and motion blur.

(b) Degradation in recognition effectiveness due to off-

angle and pupillary dilations.

(c) Degradation in recognition effectiveness due to the

available area and iris occlusions.

(d) Degradation in recognition effectiveness due to the

levels of iris pigmentation.

Fig. 14. Degradation in recognition effectiveness due to each of the quality
factors assessed in this paper. Line plots relate the decidability index d′ to
the minimal quantized and normalized quality scores α∗ of the used samples.
The gray regions denote 95% confidence intervals.

Finally, we tested the independence between the generated
quality scores. Table II gives the Pearson’s sample correlation
coefficient r for each pair of quality scores (α1, α2), obtained
for the UBIRIS.v2 data set:

r =

∑n
i=1

(
α1(i)− α1

)(
α2(i)− α2

)(∑n
i=1

(
α1(i)− α1

)2)0.5(∑n
i=1

(
α2(i)− α2

)2)0.5
(22)

where α(i) gives the quality score of sample i and α
its mean value. Moderate to significant correlation was ob-
served between the (focus, motion), (off-angle, occlusions),
(off-angle, area), (occlusions, pupillary dilation) and (area,
pupillary dilations) scores. With exception to the former, all
the remaining have evident biological roots, which contributes
for the successful empirical evaluation of the proposed iris
quality assessments.
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TABLE II
PEARSON’S SAMPLE CORRELATION COEFFICIENTS FOR EACH TYPE OF

QUALITY SCORES.

αf αm αa αo αp αc αd
αf − − − − − − −
αm −0.27 − − − − − −
αa −0.02 0.10 − − − − −
αo −0.01 0.06 0.37 − − − −
αp −0.14 0.04 0.00 0.00 − − −
αc 0.00 0.01 −0.29 −0.03 0.00 − −
αd 0.00 0.00 0.01 −0.24 0.16 −0.39 −

D. Adaptability to Near Infra-Red Images

Even considering that the proposed method was devised to
handle VW data, it might be useful to discuss its adaptability
to NIR data that corresponds to the currently used in the
commercially deployed systems. For such, we adopted a
parameterized segmentation method composed by an elliptical
integro-differential operator [38] that gives the coordinates
of the limbic and pupillary boundaries, and then used active
contours based on Fourier series (with 17 and 4 coefficients for
pupillary and limbic boundaries) for fine representation [10].
Specular reflections were detected by means of hard thresholds
and eyelashes by modal analysis of the intensities histograms
within the iris. Then, based in the NIR sample and its
segmentation mask, all the subsequent phases of the proposed
method perform similarly (as overviewed in figure 2), with
exception to the iris pigmentation assessment that becomes
meaningless. Also, it should be emphasized that some of
the quality assessments outputs have different ranges of the
illustrated in figure 10 and new reference values have to be
obtained. Figure 15 illustrates two quality assessments for
images of the CASIA.v3 (Lamp) and WVU iris databases.
Not surprisingly, the observed pupillary dilation scores were
significantly lower than the typically obtained in VW data
(pupils more dilated), which led us to suspect that there were
reduced amounts of visible light in the acquisition scenes of
such NIR data sets. Further, the improvements in performance
observed when using exclusively the most interior parts of
the iris in focus assessment were confirmed. Also, the phases
described in sections III-D and III-E, that perform with lower
computational cost when comparing to the work described
in [22], appear to produce plausible results in NIR data too.

V. CONCLUSIONS

Due to potential forensic applications, the possibility of
performing iris recognition in uncontrolled lighting conditions
and at larger distances motivates growing research efforts.
Here, quality assessment is a key issue, due to the factors
that typically degrade the quality of data acquired in such
acquisition setup. Most of the published approaches to assess
iris image quality were devised to deal with NIR controlled
data and do not appropriately handle the the specificity of
real-world VW data. This motivated the proposal of an au-
tomated method to assess the quality of such data, in terms
of the factors that are known to be correlated with biometric
effectiveness: focus, motion, angle, occlusions, area, pupillary

(xc, yc) = (214, 188)

128 Biological boundary points

αf = 0.91 (10)

αm = 0.02 (10)

αc = 5896 (2)

Reconstructed boundary
αa = 0.02 (10)

αo = 0.19 (9)

αd = 0.56 (5) αp = (−,−) (−)

(xc, yc) = (190, 109)

128 Biological boundary points

αf = 0.67 (7)

αm = 0.12 (8)

αc = 10215 (3)

Reconstructed boundary

αa = 0.12 (8)

αo = 0.16(9)

αd = 0.42(6)

αp = (−,−) (−)

Fig. 15. Examples of the application of the proposed iris quality assessments
to NIR images of the CASIA.v3 Lamp (left column) and of the WVU (right
column) databases.

dilation and levels of iris pigmentation. The proposed quality
assessment strategy starts by the estimation of the center of the
iris and of its deemed biological boundaries. These are used
to assess each quality factor and generate a numeric value that
— empirically — was observed to be in agreement with the
human visual notion of quality. Also, we reported consistent
improvements in performance due to data quality assessment,
when the poorest quality samples were not considered for the
recognition process.
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