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Abstract—Most of the methods to index iris biometric signa-
tures were designed for decision environments with a clear sepa-
ration between genuine and impostor matching scores. However,
in case of less controlled data acquisition, images will be degraded
and the decision environments poorly separated. This paper
proposes an indexing / retrieval method for degraded images and
operates at the code level, making it compatible with different
feature encoding strategies. Gallery codes are decomposed at
multiple scales, and according to their most reliable components
at each scale, the position in an n-ary tree determined. In
retrieval, the probe is decomposed similarly, and the distances
to multi-scale centroids are used to penalize paths in the tree.
At the end, only a subset of the branches is traversed up to
the last level. When compared to related strategies, the proposed
method outperforms them on degraded data, particularly in the
performance range most important for biometrics (hit rates above
0.95). Finally, according to the computational cost of the retrieval
phase, the number of enrolled identities above which indexing is
computationally cheaper than an exhaustive search is determined.

Index Terms—Iris Recognition, Indexing / Retrieval, Wavelet
Decomposition / Reconstruction.

I. INTRODUCTION

Biometrics is used in various scenarios with satisfactory
results (e.g., refugee control, security assessments and foren-
sics). Among various traits, the iris is one of the most
popular, due to several important properties: 1) it is an internal
organ, naturally protected and visible from the exterior; 2) its
texture has a randotypic chaotic appearance that is apparently
stable over human lifetime; 3) it provides high accuracy and
extreme robustness against false matches, even in national-
scale scenarios; and 4) it enables real-time data processing,
mainly due to the binary nature of iris codes.

The nationwide deployment of iris recognition systems is
considered a success. In the last information update about
the UAE system [2], over 2 million identities were included
on its watch-list, and more than 350,000 deportees were pre-
vented from entering the Emirates. The Unique Identification
Authority of India [17] is deploying the system at the largest
scale, with more than 300 million persons enrolled and adding
about one million new identities per day, performing 6e14 daily
cross-comparisons to search for duplicate identities.

According to the most acknowledged iris recognition
method [1], matching IrisCodes primarily involves the ac-
cumulation of bitwise XOR operations. However, despite the

Copyright c© 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
Author is with the Department of Computer Science, IT - Instituto de
Telecomunicações, University of Beira Interior, 6200-Covilhã, Portugal.
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extreme computational effectiveness of this matching scheme,
the time required for exhaustive searches grows linearly with
the number of enrolled identities. Also, the time required for
de-duplication searches grows quadratically with respect to
the size of the database, which is specially concerning in
nationwide scales.

As noted by Hao et al. [6], indexing is a specific case of
the general nearest neighbor search problem, and motivated
several proposals in the last years (section II). However, most
of these methods were designed for decision environments of
good quality, with a clear separation between the genuine and
impostor matching scores.

In this paper, we are mainly interested in decision envi-
ronments with a significant overlap between the genuine and
impostors matching scores, corresponding to systems that op-
erate in less controlled data acquisition protocols. We propose
an indexing / retrieval method that runs at the code level, i.e.,
after the feature encoding process. Codes are decomposed in
a coarse-to-fine scheme, and their position in an n-ary tree
determined. In retrieval, the probe is decomposed in a similar
way, and the distances to multi-scale centroids are obtained,
penalizing most of the paths in the tree and traversing only a
subset of nodes down to the leaves. When compared to related
works, the main contributions of the proposed method are
three-fold: 1) it is compatible with different signature encoding
methods; 2) it outperforms the state-of-the-art approaches in
poor quality data, particularly in the performance range that
is meaningful for biometrics (hit rates above 0.95); and 3)
it has a reduced computational cost: compared to exhaustive
searches, indexing becomes advantageous when more than a
few thousands identities are enrolled.

The suitability of the proposed method to handle degraded
data has its roots in the concepts of coarse-to-fine analysis
(in indexing) and non-excluding branches (in retrieval): 1)
in indexing, IrisCodes are grouped in branches of the tree
according to their multi-scale features, being tree-level and
analyzed-scale in direct relationship. This means that at the
root (maximum) level, IrisCodes are grouped according to
their lowest frequency components. 2) in retrieval, a parallel
searching scheme was devised: starting with a residual value,
the tree is traversed along different branches until the sum
of residual penalizations for each branch guarantees that the
identity of interest will not be found there.

The remainder of this paper is organized as follows: Sec-
tion II summarizes the most relevant iris indexing strategies
published. Section III provides a description of the proposed
method. Section IV presents and discusses the results with re-
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spect to the state-of-the-art techniques. Finally, the conclusions
are given in Section V.

II. RELATED WORK

Indexing / retrieving a biometric identity in a database
is a particularly sensitive task, as failures compromise the
subsequent processing and lead to matching errors. Upon
a query, the indexing techniques attempt to maximize the
number of times that the identity-of-interest is included among
a group of returned identities (hit rate), while maintaining that
group as small as possible (penetration rate).

Table I summarizes the iris indexing methods reported in
the literature, which can be coarsely classified using two
criteria: 1) the light spectrum used in data acquisition (either
at near-infrared or visible wavelengths); and 2) the input,
which is either the iris texture or the biometric signature
(IrisCode). Also, we summarize our viewpoint with respect
to each method in the column ”Pro. / Cons.”, emphasizing the
most relevant advantages (underlined) and drawbacks (regular
font) of each one.

Yu et al. [19] represent the iris data in the polar domain,
divided radially into sixteen regions, and obtain the fractal
dimension for each one. Using first-order statistics, a set of
semantic rules indexes the data into one of four classes. In
retrieval, each probe is matched exclusively against gallery
data in the same class. Fu et al. [4] use color information
and suggest that artificial color filters provide an orthogonal
discriminator of the spatial iris patterns. Each filter is rep-
resented by a discriminator that operates at the pixel level.
Gadde et al. [5] analyze the distribution of intensities and
select patterns with low coefficients of variation (CV) as
indexing pivots. For each image in the polar domain, a radial
division of n-bands is performed and the highest densities of
CV patterns considered. Hao et al. [6] exclusively analyze the
IrisCodes and how their most reliable bits spread, based on
the notion of multi-collisions. In retrieval, a minimum of k
collisions between the probe and gallery codes is required
to consider a potential match. Jayaraman and Prakash [9]
fuse texture and color information: they estimate the color
of the iris in the YCbCr space and determine an index to
reduce the search space. Texture is encoded by the SURF
technique. Mehrotra et al. [11] use SIFT descriptors and their
spatial distribution. To overcome the effect of non-uniform
illumination and partial occlusions, keypoints are extracted
from angularly constrained regions of the iris. In retrieval, the
geometric hashed location of keypoints determines the bin of a
hash table, casting a vote per entry. The most voted identities
are considered the possible candidates. Mehrotra et al. [12]
divide the polar iris data into bands using a multi-resolution
DCT transformation. Energy-based histograms are extracted
from these bands, divided into fixed-size bins, and irises with
similar energy values are grouped. A B-tree is built, in which
leaves contain elements with the same key. For a query,
the corresponding key is generated, and the tree traversed
until a leaf node is reached. The templates stored at that
leaf constitute the set of potential identities. Mukherjee and
Ross [13] address the problem from two different perspectives:

by analyzing the iris texture and the IrisCode. The best results
in the latter case are attained when each code is divided into
fixed-size blocks. First-order statistics for each block are used
as primary indexing value. A k-means strategy divides the
feature space. Qiu et al. [16] create a small dictionary of
visual words (textons), to represent the visual primitives of iris
images. Then, texton histograms are the global features, and
the k-means algorithm groups elements into five categories.
Vatsa et al. [18] represent pixels of the unwrapped iris data
in an 8-D binary feature space. The most significant bits are
used to build four maps from which the Euler numbers are
extracted. Retrieval is done according to the nearest neighbor
technique. Zhao [20] obtains the average RGB values inside
the iris, weighted by the luminance component, and project
these values into independent 1-D spaces. Probes are matched
against gallery elements in the union of identities inside bins
of these spaces. A similar approach is due to Puhan and
Sudha [15]: they obtain the color index (in the YCbCr color
space) and use a semantic decision tree to index the database.

Table I enables to perceive how heterogeneous are the tech-
niques used in indexing / retrieval proposals. It is interesting
to note that most techniques use data acquired at visible
wavelengths, which is justified by the analysis of color-based
features. However, this kind of techniques lack in terms of
generalization, as they cannot be used in near-infrared data.
Also, some of these methods use keypoints-based feature
descriptors (e.g., SIFT, SURF), which might be problematic
due to two reasons: the significant computational cost of these
techniques and their sensitivity to slight changes in focus, that
are frequent in iris data.

III. PROPOSED METHOD

A. Indexing

1) Codes Decomposition / Reconstruction: Let si denote
an IrisCode from the ith subject. As illustrated in Figure 1,
the rationale is to obtain coarse-to-fine representations of s as
a function of the level l in the tree (s(l)). These representations
are grouped according to their similarity in the L2 metric
space, and stored in each node. A node is considered a leaf
when its centroid c is at a sufficiently small distance from all
elements, i.e., ||s(l)

i − c||2 ≤ ν, ∀i.
Let φ(x) =

∑
k∈Z h(k)

√
2φ(2x − k) and ψ(x) =∑

k∈Z g(k)
√

2φ(2x − k), where h(.) and g(.) are low-pass
and high-pass filters. According to Mallat’s multiresolution
analysis [10], the operator representation of these filters is:

H(k)
a =

∑
n

h(n− 2k)an

G(k)
a =

∑
n

g(n− 2k)an,
(1)

where H
(k)
a and G

(k)
a are one-step wavelet decompositions.

Let len(s(n)) = N = 2n be the length (in our experiments,
n = 11) of the signal s represented at scale n by a linear
combination of φ filters:
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TABLE I
OVERVIEW OF THE MOST RELEVANT RECENTLY PUBLISHED IRIS INDEXING METHODS. NIR STANDS FOR NEAR-INFRARED AND VW FOR VISIBLE

WAVELENGTH DATA.

Method Type Data (Spectrum) Preprocessing Summary Pro. / Cons.
Fu et al. [4] Color Own (VW, 9 images) Segmentation Artificial color filters, pre-tuned to a range of colors.

C-means to define classes. Pixel-by-pixel Euclidean dis-
tance to clusters used in indexing

Computational cost,
Independent of the iris encoding technique;
exclusive for color data, requires high-quality data,
experiments on a reduced dataset

Gadde et al. [5] Texture,
IrisCode

CASIA-V3 (NIR) Segmentation,
normalization

Estimation of intensity distribution, binarization, count-
ing binary patterns with less coefficient of variation,
division into radial bands, density estimation

compatible with different iris encoding techniques,
robustness to changes in illumination; robustness to
parameterization (number of bands)

Hao et al. [6] IrisCode 632 500 UAE IrisCodes Segmentation,
normalization, feature
extraction

Selection of most reliable bytes, bits decorrelation (in-
terleaving and rotations), partition of identities into
beacons, detection of multiple collisions

computational cost, robustness to parameterization; re-
quires binary signatures

Jayaraman and
Prakash [9]

Color,
Texture

UBIRIS.v1, UPOL (VW) Segmentation Color analysis in YCbCr space. SURF keypoint descrip-
tion, Kd-tree indexing

Independent of the iris encoding technique; exclusive
for color data, computational cost

Mehrotra et al. [11] Texture CASIA.1, ICE, WVU (NIR) Segmentation Keypoints localization, geometric analysis, hash table
construction

Independent of the iris encoding technique,
robustness to changes in rotation; computational cost;
robustness to changes in focus

Mehrotra et al. [12] Texture CASIA, Bath, IITK (NIR) Segmentation,
normalization

Multi-resolution decomposition (DCT). Energy of sub-
bands extracted in Morton order, B-tree indexing

Independent of the iris encoding technique ; computa-
tional cost; uneven analysis of iris data

Mukherjee and
Ross [13]

Texture,
IrisCode

CASIA-V3 (NIR) Segmentation,
normalization

1) sub-blocks division, top-n similarity between blocks,
tree partition; 2) sublocks partition, k-means clustering

Independent of the iris encoding technique,
computational cost; sensitive to parameter values
(number clusters)

Puhan and
Sudha [15]

Color UBIRIS.v1, UPOL (VW) Segmentation Conversion to YCbCr, semantic decision tree Independent of the iris encoding technique; exclusive
for color data, sensitive to parameter values (number
indexes)

Qiu et al. [16] Texture CASIA.1, ICE, WVU (NIR) Segmentation,
normalization

Extraction of texton histograms, Chi-square dissimilar-
ity, K-means clustering

Independent of the iris encoding technique,
robust to global changes in illumination; computational
cost, sensitive to the number of categories chosen

Vatsa et al. [18] Texture CASIA.1, ICE, WVU
(NIR), UBIRIS.v1 (VW)

Segmentation,
normalization

8-bit planes of the masked polar image, extraction of
topological information (Euler numbers), nearest neigh-
bor classification

Independent of the iris encoding technique,
computational cost; requires accurate segmentation,
sensitive to iris rotation

Yu et al. [19] Texture CASIA.1, ICE, WVU (NIR) Segmentation,
normalization

Definition of radial ROIs, extraction of local fractal
dimensions, semantic decision tree

Independent of the iris encoding technique;
computational cost, sensitiveness to parameters (rules)

Zhao [20] Color UBIRIS.v2 (VW) Segmentation, noise detec-
tion

Estimation of luminance, color compensation, average
color, projection and quantization into three 1D feature
spaces, union of identities from corresponding bins

Independent of the iris encoding technique; exclusive
for color data, sensitiveness to parameters (interval
length)

s, ξ(0) > 0

4
||s(4) − c1||2 ||s(4) − ck||2

||s(4) − c2||2
ξ

(1)
1 > 0

ξ
(1)
2 < 0 ξ

(1)
3 < 0

ξ
(2)
3 > 0

ξ
(3)
2 > 0

3

||s(3) − c′3||2
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′′
2 ||2

[i3, i4]
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Result: [i1, i2, i3, i4]
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Fig. 1. Cohesive perspective of the indexing structure and of the retrieval algorithm. For a query s with residual ξ(0), the distance between the decomposition
of s at top level (s(4)) to the centroids ci is used to generate the new generation of residuals (ξ(1). ). For any branch with negative values, the search is
stopped, meaning that subsequent levels in the tree are not traversed (illustrated by gray nodes). When traversing the tree, every identity found at any node
while ξ(.). > 0 is included in the retrieved set.
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s(n) =
∑
n

a
(n)
k φnk. (2)

At each iteration, a coarser approximation s(j−1) =
H s(j), j ∈ {1, . . . , n}, is obtained: d(j−1) = G s(j) are the
residuals of the transformation s(j) → s(j−1). The discrete
wavelet transformation of s(n) is:

s(n) ≡ [d(n−1),d(n−2), . . . ,d(0), s(0)], (3)

where
(∑n−1

i=0 len(d(i))
)

+ len(s(0)) = len(s(n)) = 2n.

In reconstruction, s(n) can be approximated at different
levels using H∗ and G∗ filters:

(H∗a)(n) =
∑
k

h(n− 2k)ak

(G∗a)(n) =
∑
k

g(n− 2k)ak,
(4)

where s(n) =
∑n−1
j=0 (H∗a)(j)(G∗a)(j)d(j) +

(H∗)(n)(G∗a)(n)s(0). Considering that IrisCodes are binary,
the Haar wavelet maximally correlates them and its filter
coefficients are h = [ 1√

2
, 1√

2
], g = [ 1√

2
,− 1√

2
], with similar

reconstruction coefficients h∗ = h and g∗ = −g. Under this
strategy, H acts as a smoothing filter and G as a detail filter.

When reconstructing a signal at a given level, the detail
coefficients of small magnitude can be disregarded, as they
intuitively do not have a major role in the signal. This is
possible because wavelets provide an unconditional basis,
i.e., one can determine whether an element is important by
analyzing the magnitudes of the coefficients used in the linear
combination of the basis vectors.

The threshold (λ) for the minimal magnitude of the coeffi-
cients considered was found according to the idea of universal
threshold, due to Donoho and Johnstone [3]. Here, detail coef-
ficients with a magnitude smaller than the expected maximum
for an independent and identically distributed (Normal dist.)
noise sequence were ignored:

λ =
√

2 log(n)σ̂, (5)

where 2n is the length of the original signal and σ is given
by:

σ =

√√√√ 1

N/2− 1

N/2∑
i=1

(d
(l)
i − d̄)2, (6)

where d(l)
i denotes the ith wavelet coefficient at level l and d̄

is the mean of coefficients. Figure 2 illustrates representations
at different levels l, (l ∈ {0, 1, . . . , 10}) of an IrisCode s.
The coarsest representation s(10) retains the lowest frequency
components of the signature (intensities are stretched for
visualization purposes) and is used in the root of the tree.
The finest representation s(0) is used in the leaves.

As Figure 3 turns evident, s(l) are increasingly smoothed
versions of s. The leftmost plot shows the average residuals
between s and its reconstructions at level l (horizontal axis),

IrisCode s

s(0)

s(1)

... ...

s(10)

w h

h
2

h
4

h
210

w
210

Fig. 2. Representation of an IrisCode (upper image) at different levels,
retaining coarse (bottom image) to fine information from the input code.
The s(10) representation is used in the root of the tree and the remaining
representations at the deeper levels. Intensities and sizes are stretched for
visualization purposes.

being evident that residuals increase directly with respect to
the decomposition level. The center and rightmost plots give
histograms of the residuals for the coarsest (center) and finest
scales (right), enabling to perceive that the reconstruction at
the coarsest scale is essentially a mean of the original signal.

2) Determining the Number of Branches per Node: Having
a set of signals s(l) in a node, a clustering algorithm finds their
centroid c and creates a partition, according to the distances
to that centroid. Also, if ||s(l)

i −c||2 ≤ ν,∀i, the process stops
at level l for that branch, and the node is considered a leaf.

The number of clusters determines the number of branches
in each node of the tree. In order to obtain the optimal value, a
comparison between the proportion of variance in the data with
respect to the number of clusters was carried out. Intuitively,
for a too small number of clusters, new partitions reduce
the variance significantly, but if the number of clusters is
too large, adding a new one almost doesn’t change variance.
Hence, the number of clusters was considered optimal when
this marginal gain decreases more significantly. Let k be the
number of clusters. The proportion of the variance explained
is characterized by a F-test:

F (k) =
(m− k)

∑k
j=1mj ||s(j) − s||2

(k − 1)
∑k
j=1

∑k
i=1 ||si(j) − s(j)||2

, (7)

where si(j) is the ith element in the jth cluster, s(j)

is the sample mean in that cluster, mj is the number of
codes in a cluster (m =

∑
mj) and s the overall mean.

Considering
(
kt, F (kt)

)
points on a curve, the value with

minimal curvature corresponds to the number of clusters at
which the marginal gain drops more. Parameterizing the curve(
x(t), y(t)

)
=
(
kt, F (kt)

)
, t = {1, 2, . . .}, using quadratic

polynomials: {
x(t) = a3t

2 + a2t+ a1

y(t) = b3t
2 + b2t+ b1.

(8)

Using the previous (t − 1) and next (t + 1) points with
respect to each position t, the least squares strategy is used to
obtain the a. and b. coefficients:
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Decomposition Level (l) ||s − s(1)||2 ||s − s(11)||2

∑ l j=
1
||
s
−

s
(
j
)
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2
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ob

.
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Fig. 3. Average sum of residuals between an IrisCode s and its representations at different levels (s(l) (leftmost image). The images at the center and far
right give the histograms of the residuals for decompositions/reconstructions at the finest (center) and coarsest (right) levels.

Υa =

t+1∑
t0=t−1

(
yt0 −

(
a1 + a2xt0 + a3x

2
t0

))2

. (9)

Setting ∂Υ
∂aj

= 0 yields

 3
∑
xt0

∑
x2
t0∑

xt0
∑
x2
t0

∑
x3
t0∑

x2
t0

∑
x3
t0

∑
x4
t0

a1

a2

a3

 =

 ∑
yt0∑

xt0yt0∑
x2
t0yt0

 (10)

By solving the system of linear equations for a., the
coefficients of the polynomials are found (and is analogous
for b. values). The curvature κ at each point kt corresponds
to:

κ(kt) =
x(t)′y(t)′′ − y(t)′x(t)′′√

(x(t)′2 + y(t)′2)3
, (11)

where primes denote derivatives with respect to t. In our
case, x′(t) = 2ta3 + a2, x′′(t) = 2a3, y′(t) = 2tb3 + b2 and
y′′(t) = 2b3. Hence, (11) can be written as:

κ(kt) =
(2ta3 + a2)2b3 − 2a3(2b3 + b2)(
(2ta3 + a2)2 + (2tb3 + b2)2

) 3
2

. (12)

Because we are primarily interested in the curvature at each
point, t can be set to 0, obtaining:

κ(kt) =
2(a2b3 − a3b2)

(a2
2 + b22)

3
2

. (13)

Finally, the position with minimal curvature is deemed to
be the optimal number of clusters for that node:

k̂ = arg min
t
κ(kt). (14)

Figure 4 shows an example of the method that finds the
number of clusters. Here, the F (kt) values were obtained
for t ∈ {2, . . . , 11} (continuous lines). The dashed line
corresponds to the κ(kt) values. The minimum curvature of
the interpolating polynomials was observed at k̂ = 8. In this
case, F (kt) bends clockwise when the proportion of explained

variance no longer increases. According to (14), this is the
point of minimal curvature and is used as the number of
clusters for a node.

F (kt)

κ(kt)

k̂

Number Clusters

V
ar

ia
nc

e
E

xp
la

in
ed

Fig. 4. Illustration of the strategy to determine the number of clusters
at each node. For (kt ∈ {2, . . . , 11}), the amount of variance explained
F (kt), is denoted by circular data points. Quadratic polynomials were fitted
to interpolate this data (continuous lines), from where the curvature at each
point was found (dashed line). The number of clusters k̂ = 8 corresponds to
the point where the gain in the explained variance no longer increases, i.e.,
where the curvature value κ(kt) attains a minimum.

B. Retrieval

As below described, one of the most relevant properties
of the proposed method is its non-exclusiveness in terms of
the paths in the tree traversed for a query. This parallel
searching scheme is particularly important for our purposes,
as it contributes for the robustness against degraded data.

Retrieval requires a query signature s and a residual value
ξ > 0. The idea is to iteratively decrease the residuals for each
branch (ξj is the residual for the jth branch of a node) and
stop when ξj < 0. At each node, the `2 distance between the
reconstructed signal s(l) and a cluster centroid ci is subtracted
from ξj , considering the maximum distance between ci and
all the identities in that branch. Formally, let q(s, ξ(0)) be the
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query parameters. Let s(l) be the reconstruction of s at level
l. The next generation of residual values ξ(l+1) is given by:

ξ(l+1)
. = ξ(l) −max

(
0, ||s(l) − c

(l)
i ||2−

max
(
||s(l)

b − c
(l)
i ||2,∀b ∈ {1, . . . , ti}

))
, (15)

being c
(l)
i the ith cluster at level l and s

(l)
b the remaining

signatures (total ti) in that branch of the tree. The set of
identities retrieved is given by:

q(s, ξ(l)) =

 [{i.}, q(s, ξ(l+1)
j )],∀j, , if ξ(l) > 0 ∧ l > 1

{i.} , if ξ(l) > 0 ∧ l = 1
∅ , if ξ(l) ≤ 0

(16)
where [, ] denotes vector concatenation, ξ(l)

j denotes the
residual value for the jth branch at level l and {i.} is the
set of identities in a node.

Due to the intrinsic properties of wavelet decomposition,
the distance values at the higher scales should be weighted by
w(), as they represent more signal components:

w(l) =
1 + erf

(
α(l − n)

)
2

, (17)

being α a parameter that controls the shape of the sigmoid.
Figure 5 shows one example of the histograms of the cuts in
residuals (ξ(l) − ξ(l+1), horizontal axis) with respect to the
level in the tree. The dashed vertical lines indicate the cuts in
the path that contained the identity of interest. Note that, with
exception of the leaf level (l = 1), no cuts in the residuals
were performed for the interesting path. This is in opposition
to the remaining paths, where cuts occurred at all levels.

l = 4l = 5l = 6

l = 1l = 2l = 3

Fig. 5. Histograms of the cuts in residuals ξ(l) − ξ(l+1) per level during
retrieval. The vertical dashed lines give the cumulative distribution values of
the cuts in the path that contains the identity of interest. Gray bars express
frequencies of the cuts in the remaining paths of the tree.

C. Time complexity

Here we are mainly interested in the time complexity of the
retrieval algorithm, and how the turnaround time depends on
the number of identities enrolled. Let ts, tc and tm denote the

average elapsed time in the iris segmentation, feature coding
and matching stages. Without indexing, the average turnaround
time for an exhaustive search te is given by

te = ts + tc +N 0.5 tm, (18)

where N is the number of identities enrolled by the system.
When indexing at the IrisCodes phase, the average turnaround
time ti corresponds to

ti = ts + tc +N tr +
(
h p+ (1− h)

)
0.5 N tm, (19)

being tr the average turnaround time for retrieval and h and
p the hit and penetration rates.

The left plot in Figure 6 compares the values for the ti and
te turnaround times with respect to the number of identities
enrolled, when using the proposed method. ts and tc were
disregarded because they do not affect the comparison. The
values were obtained by repeatedly assessing the turnaround
times of the proposed method and of exhaustive searches.
The horizontal bars near each point give the range of values
observed, enabling to conclude that the proposed method starts
to be advantageous when more than 54,000 identities are
enrolled (vertical dashed line). Note that this value depends
of the hit / penetration rates considered, which are function
of the data quality. Even though, it is an approximation
of the minimum number of identities that make indexing
advantageous in terms of turnaround time. Also, the Table
given at the right part of Figure 6 compares the expected
values for ti and te (in seconds) for typical scenarios: local,
national, continental and global scales. These values stress the
importance of indexing for operating at large scales.

Advantageous Performance

Scenario Tot. Ids. te (s) ti (s)

Local 10e5 4.95 3.74

National 10e7 495 58.9

Continental 10e9 49e3 927

Global 7 × 10e9 346e3 297e1

Fig. 6. At left: comparison between the turnaround times of an exhaustive
search (red line) and when using the proposed indexing / retrieval strategy
(black line), with respect to the number of identities enrolled in the system.
At right: comparison between the expected turnaround times ti (indexing), te
(exhaustive searches) in four typical scenarios.

D. Performance Optimization

Two parameters affect the performance of the proposed
method: 1) the type of mother wavelet; and 2) the shape of the
w() sigmoid function (17) that determines the cuts in residuals
per level. Figure 7 illustrates the variations in performance
with respect to these choices: the upper plot expresses the
results for different mother wavelets (Haar, Daubechies 2, 4,
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Fig. 7. Effect of the type of mother wavelet used in the decomposition /
reconstruction (upper image) and of the shape of the erf weight function used
in the retrieval phase (bottom image).

and 8 and Bi-orthogonal 3.1). The simplest wavelet (Haar) had
the best performance, which was expected because IrisCodes
are binary and maximally correlate to this type of wavelet.
The bottom image gives the results for different shapes of
the w() function: the best performance was observed for
low α values, corresponding to heavily nonlinear sigmoid
shapes. Additionally, as illustrated in Figure 8, the parameter
ν determines the proportion of elements stored in each level of
the tree. When ν = 0, all identities are stored in leaves (black
bar), and as ν increases, a higher proportion of elements are
stored in the upper levels of the tree. ν ≈ 0.1N gave the best
results in our experiments.

Residual (ν)

Pr
op
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tio

n
ID

’s
/

L
ev

el

Fig. 8. Effect of the parameter ν in the proportion of elements that are
stored at each level of the n-ary tree. The brightness in the bars denotes the
proportion of elements per level, being elements in the deepest levels of the
tree represented by the lowest intensities.

IV. COMPARISON WITH RELATED METHODS

Performance comparison was carried out at three different
levels: 1) a set of synthetic signatures was generated to
perceive the effect of slight changes in genuine / impostors
separability, which will be extremely hard to obtain using
real data; 2) a data set of relatively well separated near-
infrared data (CASIA.v4 Thousand) was used to predict the
performance on scenarios that correspond to the currently
deployed iris recognition systems; and 3) a data set of visible
wavelength data with poor separability between classes was
used (UBIRIS.v2), which fits closely the purposes of the pro-
posed method. Three methods were selected for comparison,
based on their property of operate at the IrisCode level: Gadde
et al. [5], Hao et al. [6] and Mukherjee and Ross [13]. All the
results correspond to our implementations of these algorithms.

To summarize performance by a single value, the measure
due to Gadde et al. [5] was used, combining the hit and
penetration rates. Similarly, a new measure τ was defined,
corresponding to the Euclidean distance between an operating
point (h, p) and the optimal performance (h = 1, p ≈ 0):

γ(h, p) =
√
h(1− p)

τ(h, p) =
√

(h− 1)2 + p2,
(20)

where (h, p) express the hit and penetration rates.

A. Synthetic IrisCodes

A set of synthetic binary signatures was generated as
described in1. This method is based in data correlation and
simulates signatures extracted from data with varying quality,
ranging from extremely degraded to optimal. This is illustrated
in Figure 9, showing five decision environments, from optimal
quality (Env. A, quality index=1.0) to extremely poor separated
(Env. E, quality index=0.0).

When applied to good quality data, the effectiveness of the
Hao et al.’s [6] method is remarkable (upper plot of Figure 10):
this method outperforms any other by more than one order of
magnitude. However, its effectiveness decreases in the case
of degraded codes (bottom plot), which might be due to the
concept of multiple collisions that becomes less effective as the
probability for a collision approaches for genuine and impostor
comparisons. The method of Gadde et al. [5] had the poorest
performance for all the environments, whereas the method of
Mukherjee and Ross [13] ranked third for environments of
good quality. However, this method was the unique where hit
values above 0.9 were not observed, neither for good quality
nor degraded data.

The proposed method ranked second on good quality data
and showed the least decreases in performance for degraded
data. Its higher robustness was particularly evident for high
hit rates, which are exactly the most important for biometrics.
Table II summarizes the performance indicators (20) and the
corresponding 95% confidence intervals for three types of
environments. Each cell contains two values: the top value
regards the full operating range, and the bottom values regard
the hit ≥ 0.95 range. Again, these values confirm the above

1http://www.di.ubi.pt/∼hugomcp/doc/TR VWII.pdf
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Good Quality Data Poorly Separated Data

Env. A
(0.49, 0.02)

(0.14, 0.05)

Env. B
(0.49, 0.02)

(0.23, 0.07)

Env. C
(0.49, 0.02)

(0.31, 0.08)

Env. D
(0.49, 0.02)

(0.37, 0.08)

Env. E
(0.49, 0.02)

(0.42, 0.07)

Fig. 9. Illustration of the separation between genuine (dashed lines) and impostor (continuous lines) comparisons, for different levels of quality. At the far
left, histograms correspond to data acquired in heavily controlled scenarios (Env. A). The separability between classes decreases in the right direction.

observations about the relative performance of the methods
analyzed.

Good Quality Data (Env. A)

Poorly Separated Data (Env. D)

Extremely Poorly Sep. Data (Env. E)

Fig. 10. Comparison between the hit / penetration rates observed for the
proposed strategy and three methods used as reference. Results are expressed
for three levels of data quality.

Figure 11 shows a statistic of the penetration rates (vertical
axes) for queries that returned the true identity, in five en-
vironments, ranging from poorly separated (Env. quality 0.0,
leftmost boxes) to good quality data (Env. quality 1.0, right-
most boxes). This plot emphasizes the extreme performance of

the Hao et al.’s method for good quality data, having obtained
penetration values close to 0. For data of reduced quality,
though the median penetration value of our method is higher
than Hao et al.’s (≈ 0.52 versus 0.13), it should be stressed that
this statistic only accounts for cases in which the true identity
was returned, which is more frequent in our proposal than in
any other. Additionally, the inter-quartile range of penetration
values was narrower in our method than in Hao et al.’s, which
points for its highest stability in performance with respect
to different queries. For all methods tested, the penetration
values decreased substantially for good quality data, though
this is less evident for Mukherjee and Ross’ proposal. This
was explained by properties of the clustering process involved
here: clusters tend to have similar number of elements, and
for any query, all identities inside a cluster are returned. This
prevents that only a small set of identities is returned, which
should happen in high quality data.

Proposed Method Hao et al.

Gadde et al. Mukherjee and Ross

Fig. 11. Boxplots of the penetration rates observed in cases where the
true identity was retrieved. Values are shown for different levels of data
separability, starting from data of poorest quality (Env. 0.0) to good quality
data (Env. 1.0).

To highlight the performance improvements of our proposal,
Figure 12 shows a zoom-in of the hit / penetration rates
for the most degraded environments. It is evident that the
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TABLE II
SUMMARY OF THE PERFORMANCE INDICATORS (20) OBSERVED IN SYNTHETIC DATA, WITH RESPECT TO FOUR OTHER STRATEGIES USED AS

COMPARISON TERM. THE CORRESPONDING 95% CONFIDENCE INTERVALS ARE GIVEN.

Good Quality Data (Env. A) Poorly Sep. Data (Env. D) Extrem. Poorly Sep. Data (Env. E)
Method γ τ γ τ γ τ

Proposed
0.91± 0.01
0.90± 0.01

0.12± 0.01
0.15± 0.01

0.67± 0.02
0.50± 0.02

0.47± 0.01
0.54± 0.02

0.64± 0.02
0.46± 0.03

0.50± 0.03
0.78± 0.01

Hao et al. [6]
0.99± 0.00
0.99± 0.00

0.01± 0.00
0.01± 0.00

0.76± 0.03
0.44± 0.13

0.33± 0.01
0.79± 0.13

0.74± 0.03
0.44± 0.05

0.37± 0.05
0.79± 0.02

Gadde et al. [5]
0.65± 0.01
0.44± 0.07

0.49± 0.00
0.80± 0.04

0.58± 0.03
0.37± 0.07

0.59± 0.02
0.86± 0.01

0.58± 0.02
0.31± 0.05

0.59± 0.01
0.90± 0.02

Mukherjee and Ross [13]
0.67± 0.01

-
0.48± 0.00

-
0.59± 0.03

-
0.58± 0.03

-
0.57± 0.01

-
0.60± 0.01

-

proposed method consistently outperforms all the others for
hit values above 0.95. Additionally, it is the unique with full
hit at penetration rates smaller than one (note the upper right
corner of each plot), meaning that it was the unique that
always retrieved the true identity and simultaneously reduced
the search space.

The minimum hit value above which the proposed method
starts to be the best appears to be a function of the data quality.
This is evident in the bottom-right plot of Figure 12, which
relates the quality of data and that minimum hit value. For
the worst kind of data (Env. E), the proposed method out-
performs any other for hit values above 0.88. As data quality
increases, the minimum hit value varies roughly linearly, and
for environments with moderate quality, the method of Hao et
al. starts to be the best and should be used instead of ours.

Env. E Env. D

Env. C Best Performance

Fig. 12. Comparison between the hit/penetration plots in the performance
range that was considered most important for biometric recognition purposes
(hit values above 0.85). In poorly separable data the proposed method
outperforms all the others, and the minimal hit value above which it becomes
the best varies roughly linearly with respect to the data separability (bottom
right plot).

B. Well Separated Near-Infrared Data
The CASIA-Iris-Thousand2 was used to represent well

separated data. It contains 20,000 images from both eyes of

2CASIA Iris Image Database: http://biometrics.idealtest.org/

Fig. 13. Examples of the real iris images used in performance evaluation,
segmented according to the method of He et al. [7]. The upper rows regard
the CASIA.v4 Thousand data set, and the bottom rows give images of the
UBIRIS.v2 data set.

1,000 subjects, enabling the evaluation with 2,000 classes.
The noise-free regions of the irises were segmented ac-

cording to the method of He et al. [7] and an elliptical
parameterization was chosen for both iris boundaries, using
the random elliptic Hough transform algorithm. Next, the
reasonability of the segmentation was manually verified, 110
images were discarded due to bad quality and the remaining
data translated into a pseudo-polar coordinate system, using
the Daugman’s rubber sheet model. Three different configu-
rations of Gabor kernels Gb were used in signature encoding
(parameters wavelength ω and orientation θ were varied, phase
φ and ratio r were kept constant) . The parameters for the
Gabor kernels were obtained by maximizing the decidability
index d′ = |µI−µG|√

1
2 (σ2

G+σ2
I )

, being µG, µI the means of the

genuine and impostors distributions and σG, σI their standard
deviations.

Gb(x, y, ω, θ, σx, σy) =
1

2πσxσy
e
− 1

2

(
Φ2

1
σ2
x

+
Φ2

2
σ2
y

)
ei

2πΦ1
ω , (21)

being Φ1 = x cos(θ) − y sin(θ), Φ2 = y sin(θ) − x cos(θ),
ω the wavelength, θ the orientation and σx = σy = ω/2.
The optimal parameters were found by exhaustive evaluation
in a training set of 200 images randomly sampled from the
initial set: (ω, θ) = {(0.33, π/4), (0.28, 3π/4), (0.51, π/2)}.
Figure 13 gives some examples of the noise-free iris masks

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2283458

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. ?, NO. ?, ? ? 10

and of the iris boundaries for the CASIA.v4 Thousand images.
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Fig. 14. Results observed for the CASIA.v4 Thousand iris data set. Plots
at the upper row give the decision environment and recognition performance
(in terms of ROC curves). The bottom-left plot compares the hit / penetration
rates and the bottom-right plot summarizes the penetration rates observed in
cases where the true identity was retrieved.

Results are given in Figure 14. Plots in the upper row give
the decision environment and the recognition performance ac-
cording to the feature encoding / matching algorithm used. The
ROC is expressed in log scale, due to the high performance
observed. In the bottom-left plot, a comparison between the
hit / penetration values for the four techniques is shown, and
the bottom-right plot summarizes the penetration rates in cases
where the true identity was retrieved. Results accord with the
previously obtained for synthetic data: the approach of Hao et
al. largely outperformed any other. The proposed method got a
consistent second rank, followed by Mukherjee and Ross’ and
Gadde et al.’s methods. The smaller variance of the proposed
method and Hao et al.’s in the number of retrieved identities is
also evident, when compared to Gadde et al.’s and Mukherjee
and Ross’.

C. Poorly Separated Visible Wavelength Data
The UBIRIS.v2 [14] data set constitutes the largest amount

of iris data acquired from large distances (four to eight meters)
at visible wavelengths, containing images of poor quality that
decrease the separability between the genuine / impostors
matching scores. It has 11,102 images from 522 classes,
from which 285 images were not considered due to their
extreme bad quality (e.g., out of iris or almost completely
occluded data). Similarly to the process described for the
CASIA.v4 Thousand set, images were segmented according to
the method of He et al. [7] and followed the same processing
chain, yielding the Gabor filters Gb with parameters (ω, θ) =
{(0.18, π/6), (0.35, 4π/6), (0.20, 7π/8)}. The bottom rows of
Figure 13 illustrate some examples of the images used.

Results in this data set were regarded in a particularly posi-
tive way, as they correspond to the environments for which the
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(0.40, 0.08)
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Fig. 15. Results observed for the UBIRIS.v2 iris data set. Plots at the upper
row give the decision environment and recognition performance (in terms of
ROC curves). The bottom left plot compares the hit / penetration rates and the
bottom right plot summarizes the penetration rates observed in cases where
the true identity was retrieved.

proposed method was designed. As illustrated by the decision
environment in the upper-left plot of Figure 15, classes have
poor separability, which is confirmed by the ROC curve in the
upper-right plot. For this kind of data, the proposed method
outperformed all the others in the most important performance
range, i.e, for hit values above 0.9 (bottom-left plot). The
bottom-right plot gives a complementary perspective of the
results, comparing the penetration rates in queries where the
true identity was retrieved. In this case, the proposed method
got higher penetration rates than Hao et al’s, but the value for
the upper whisker is particularly important: for all queries the
proposed method reduced the set of identities retrieved, which
did not happen in any of the remaining methods. Confirming
the previous results, the method of Hao et al. was the best for
low hit values and got a solid second place in the remaining
performance range. Also, the smaller interquartile range of our
method when compared to Hao et al.’ s was also positively
regarded as an indicator of its smaller variability with respect
to different queries. Mukherjee and Ross’ got slightly better
results than Gadde et al.’s, but in the former method no hit
values above 0.9 were observed.

Table III summarizes the results observed in the CASIA.v4
Thousand and UBIRIS.v2 data sets. The upper value in each
cell regards the full operating range and the bottom value
regards the range most important for biometrics (hit values
above 0.95). The values highlighted in bold confirm the
suitability of the proposed method to work on low quality data
(UBIRIS.v2, ∆γ = +0.11 for our method, when compared to
Hao et al.’s) and stress the effectiveness of Hao et al.’s method
to work in scenarios that correspond to the currently deployed
iris recognition systems (CASIA.v4 Thousand, ∆γ = −0.07
for our method, with respect to Hao et al.’s).
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TABLE III
SUMMARY OF THE PERFORMANCE INDICATORS (20) OBSERVED IN THE
CASIA.V4 THOUSAND AND UBIRIS.V2 DATA SETS, WITH RESPECT TO
FOUR STRATEGIES USED AS COMPARISON TERMS. THE CORRESPONDING

95% CONFIDENCE INTERVALS ARE GIVEN.

CASIA.v4 Thousand (NIR) UBIRIS.v2 (VW)
Method γ τ γ τ

Proposed
0.91± 0.02
0.88 ± 0.02

0.12± 0.01
0.14 ± 0.02

0.71± 0.02
0.53 ± 0.03

0.36± 0.02
0.78 ± 0.02

Hao et al. [6]
0.96± 0.01
0.95 ± 0.01

0.04± 0.01
0.05 ± 0.01

0.75± 0.03
0.42 ± 0.06

0.34± 0.02
0.82 ± 0.04

Gadde et
al. [5]

0.62± 0.01
0.40± 0.07

0.51± 0.02
0.82± 0.02

0.60± 0.02
0.37± 0.04

0.47± 0.02
0.88± 0.03

Mukherjee and
Ross [13]

0.76± 0.02
-

0.43± 0.02
-

0.61± 0.02
-

0.46± 0.02
-

V. CONCLUSIONS

This paper proposed an indexing / retrieval method to oper-
ate in IrisCodes extracted from low quality data 3, i.e., with a
poor separability between the genuine and impostor matching
scores. The proposed strategy is based on the decomposition
of Iriscodes at multiple scales and in their placement in nodes
of an n-ary tree. In retrieval, only a few paths in the tree
are traversed before the stopping criterion is achieved. The
main contributions are three-fold: 1) the proposed method has
consistent advantages over other techniques when applied to
low quality data. This is particularly evident in the perfor-
mance range that is most important for biometrics (hit values
above 0.95); 2) these levels of performance were obtained at
a reduced computational cost, making the proposed method
advantageous (compared to sequential searches in terms of
turnaround time) when more than 54,000 identities are enrolled
in the system; and 3) the method is compatible with different
iris signature encoding schemes, provided that they produce
a binary signature, and use wavelets that resemble (at least
roughly) the ones used in indexing.
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