
Journal of Classification 34 (2017)
DOI: 10.1007/s0035

Fusing Vantage Point Trees and Linear Discriminants
for Fast Feature Classification

Hugo Proença

University of Beira Interior, Portugal

João C. Neves

University of Beira Interior, Portugal

Abstract: This paper describes a classification strategy that can be regarded as a
more general form of nearest-neighbor classification. It fuses the concepts of nearest
neighbor, linear discriminant and Vantage-Point trees, yielding an efficient indexing
data structure and classification algorithm. In the learning phase, we define a set of
disjoint subspaces of reduced complexity that can be separated by linear discrimi-
nants, ending up with an ensemble of simple (weak) classifiers that work locally. In
classification, the closest centroids to the query determine the set of classifiers con-
sidered, which responses are weighted. The algorithm was experimentally validated
in datasets widely used in the field, attaining error rates that are favorably compara-
ble to the state-of-the-art classification techniques. Lastly, the proposed solution has
a set of interesting properties for a broad range of applications: 1) it is determinis-
tic; 2) it classifies in time approximately logarithmic with respect to the size of the
learning set, being far more efficient than nearest neighbor classification in terms of
computational cost; and 3) it keeps the generalization ability of simple models.

Keywords: Vantage-point tree; Linear discriminants; Nearest neighbor classifica-
tion.

Corresponding Author’s Address: H. Proença, Instituto de Telecomunicaçõe s (IT) Uni
ver

-
sity of Beira Interior, Tel.: +351 275 242 081, Fax: +351 275 319 899, email: hugomcp@di.

ubi.pt.

Published online

7-017-9223-0

Instituto de Telecomunica es ()IT , çõ

,

mailto:hugomcp@di.ubi.pt

1. Introduction

Supervised feature classification (or simply classification) is the as-
signment of a category (class) to an input value, on the basis of a learning
set. For n pairs (�xi, yi), �xi is represented in a d-dimensional space Ω and yi
its label (class), the goal is to find a function f : Ωd → N that maps feature
points into labels. In this context, an ensemble fe : Ωd×m → N combines
the output of multiple classifiers and seek to improve performance, when
compared to individual elements. Ensemble classifiers are widely seen in
the literature (e.g., Kuncheva, 2004 and several performance evaluation ini-
tiatives were conducted (e.g., Bauer and Kohavi, 1999; Banfield et al., 2007;
Dietterich, 2000; Alpaydin, 1999; Demsar, 2006).

Under a computational perspective, the burden of classification is a
primary concern for various domains (e.g., computer vision), due to ex-
tremely large amounts of data or to very demanding temporal constraints.
Here, the turnaround time of classification is usually more concerning than
the one of learning, as the latter is carried out off-line and a reduced number
of times. As an example of demanding temporal requirements for classifica-
tion, the defect detection in industrial environments can be referred, where
a high number of frames per second must be processed (Kumar, 2008).

This paper proposes an efficient ensemble algorithm based on the con-
cepts of Vantage-Point trees (Yianilos, 1993) and linear discriminant analy-
sis, and is from now on designated as Vantage-Point Classification (VPC).
The idea accords the philosophy of boosting and combines a set of base
(weak) classifiers learned from feature subspaces and positioned in leaves
of tree. The insight is that, regardless the complexity of the feature space,
a linear discriminant is able to separate classes at a sufficiently deep level
in the tree. Classification results from weighted voting of the base classi-
fiers, selected according to the distance between the unlabelled sample and
the centroid of each subspace. We come out with a solution that has two
interesting properties: it attains classification accuracy similar to the state-
of-the-art techniques in different problems, and it is efficient in terms of the
computational cost of classification.

Hence, the major findings reported in this paper are: 1) for a broad
range of the problems considered, VPC obtains better performance than
state-of-the-art individual and ensemble models; 2) improvements in clas-
sification accuracy were observed along with a decrease in the computa-
tional cost of classification, when compared to related models (e.g., neural
networks and K-nearest neighbors). Also, it should be stressed that experi-
ments were carried out in datasets widely used in the classification domain
(UCI Machine Learning Repository, Univ. California), that vary in terms of
different criteria: binary/n-ary classification, discrete/continuous features,

H. Proença and J.C. Neves

balanced/unbalanced prior probabilities and densely/sparsely populated fea-
ture spaces.

The remainder of this paper is organized as follows: Section 2 summa-
rizes the most relevant ensemble classification methods. Section 3 provides
a description of the VPC algorithm. Section 4 presents and discusses the
results. Finally, the conclusions are given in Section 5.

2. Related Work

Sharing several properties with the method proposed in this paper,
Ting et al. (2011) proposed the concept of Feating, a generic ensemble
approach that is claimed to improve the predictive accuracy of both stable
and unstable classification models. As in our case, their original concept is
that “a local model formed from instances similar to one we wish to classify
will often be more accurate than a global model formed from all instances”
(Frank, Hall, and Pfahringer, 2003). The idea is to divide the feature space
into a set of disjoint subspaces, according to user-specified features that con-
trol the level of localization. Their trees use, at a given level, the same
attribute for feature subspace division; which does not happen in our case,
and we claim to be a much more intuitive variant, i.e., the feature that best
divides a subspace is not guaranteed to optimally divide another subspace,
even if both spaces are represented at the same level of the tree. Another
major difference is that in Feating, all models in the ensemble are used for
every query (as in Bagging), while in VPC only the models that regard the
closets subspaces to the query instances are used, in a weighted way. Com-
paring the results observed for our strategy and the results reported in Ting
et al. (2011), a major advantage is the ability of our ensemble model to
get error rates comparable to state-of-the-art classification algorithms, while
keeping a relatively short ensemble size, i.e., without building classification
trees that are impracticable for most situations.

According to Canuto et al. (2007), there are two major ensemble cate-
gories: 1) hybrid ensembles, that combine different types of algorithms; and
2) non-hybrid ensembles, where a single type of algorithm is replicated mul-
tiple times. The most popular schemes are non-hybrid and apply a base algo-
rithm to permutated training sets. Among these, Bagging and Boosting are
the most prominent strategies. Originally proposed by Breiman (1996), Bag-
ging (Bootstrap aggregating) builds multiple models for a problem, each one
based on a subset of the learning data. Then, voting combines the outputs,
improving stability and accuracy when compared to base models. Kuncheva
and Rodrı́guez (2007) replaced each classifier by a mini-ensemble of two
classifiers and a random linear function (oracle). In classification, the or-
acle decides which classifier to use. The classifiers and oracle are trained

Fast Feature Classification

together, so that each classifier is pushed into a different region of the fea-
ture space. Also, Hothorn and Lausen (2005) construct a set of classifiers for
different bootstrap samples. Then, the predictions of such classifiers in each
element of the bootstrap are used for a classification tree. This tree implic-
itly selects the most effective predictors, which authors consider to bundle
the predictions for the bootstrap sample. Classification is done by averaging
the predictions from a set of trees. In a related topic of tree-based regression
models, Ceci, Appice and Malerba (2003) used two basic operations (prun-
ing and grafting) to obtain simpler structures for the regression tree. The
core of these simplification operations is to put aside some data for inde-
pendent pruning, which was observed in practice to improve classification
performance.

The idea of Boosting resulted from the stochastic discrimination the-
ory (Kleinberg, 1990), a branch that studies the ways to divide the feature
space for class discrimination. This algorithm combines several weak clas-
sifiers, each one with high bias and low variance. Experiments point out
that is possible to meet high accuracy far before using all the weak classi-
fiers. A relevant boosting method was due to Shapire (1990), but the most
well-known is the Adaboost variant (Freund and Schipire, 1995), that in-
creases adaptability by tweaking subsequent classifiers in favor of instances
misclassified by previous ones.

Ho (1995) suggested the notion of Random Forest, from where a gen-
eralization was proposed (Random Subspace: Ho, 1998), later known as
Attribute Bagging (Bryll, Gutierrez-Osuna and Quek, 2003). The idea is to
build an ensemble of classifiers, each one using a subset of the available
features. In classification, voting produces the final answer. In this con-
text, Zaman and Hirose (2013) enlarged the feature space of the base tree
classifiers in a random forest, by adding features extracted from additional
predictive models, having empirically concluded that such hybrid random
forests can be a more efficient tool than the traditional forests for several
classification tasks.

Domingos (1996) described an algorithm based on rule induction and
instance-based learning, considering individual instances as maximally spe-
cific rules, and then devising an algorithm to gradually fuse instances into
more general rules. The proposed algorithm was considered an inductive
learning approach that produces specialized rules that span the entire fea-
ture space, by searching for the best mixture of instances and increasingly
augment abstraction of rules, yielding a more general-form of nearest neigh-
bor classification.

Particularly interested in problems with a reduced amount of learning
data, Lu and Tan (2011) sought for a subspace that minimizes the within-
class to between-class distances ratio. To enlarge the amount of learning

H. Proença and J.C. Neves

data, they used a linear model to interpolate pairs of prototypes, simulat-
ing variants of the available samples. Bock, Coussement and Poel (2010)
used generalized additive models as base classifiers for ensemble learning,
proposing variants based on bagging and random subspaces. Classification
yields from average aggregation.

In a related topic, instance selection aims at obtain a subset of the
learning data, so that models on each subset have similar performance to the
attained in the complete set. Garcı́a-Pedrajas (2009) used instance selection
in boosting processes, optimizing the training error by the weighted distribu-
tion of instances erroneously classified by previous models. Yu et al. (2012)
divided the feature space into disjoint subspaces. Then, defined a neighbor-
hood graph in each subspace and trained a linear classifier on this graph,
used as base classifier of the ensemble. In classification, the majority-voting
rule is used. Starting from models learned by random space and bootstrap
data samples, Yan and Tešić (2007) estimated the decision boundaries for
each class, concluding that a few shared subspace models are able to sup-
port the entire feature space. This scheme is claimed to reduce redundancy
while enjoying the advantages of being built from simple base models.

Considering that—typically—the performance of classifier ensembles
is maximized in case of Uniform distributions of observations, Jirina and
Jirina Jr. (2013) suggested a transformation on the data space that approx-
imates the distribution of observations in the feature space into a uniform
distribution, at least in the neighborhood of a query observation. Their trans-
formation is based on a scaling exponent that relates distances between pairs
of points in a multivariate space.

As described in the next section, the VPC model shares some of the
above referred foundations: similar to the concept behind boosting, we di-
vide the feature space into subspaces, pushing each base classier into disjoint
regions of the feature space. Similar to Lu and Tan (2011), the within-to-
between class distances proportion is used to determine the number of divi-
sions of the feature space. Then, by preserving neighborhoods between sub-
spaces, for a given query we are able to select a subset of the base-classifiers
in a computationally effective way.

3. Vantage Point Classification

Figure 1 illustrates the key idea behind the VPC scheme: the feature
space is divided into subspaces Ωi, according to the distance of elements to
pivots pi. Each subspace (leaf) is simple so that a linear discriminant Φi sep-
arates classes with a reduced expected error. In classification, for a query �x,
only the closest subset of the leaves vote, according to the distances between
�x and pi. This schema creates a set of spacesΩi where classification is done
locally.

Fast Feature Classification

p1
p2

p3

Φ1

Ω1

Φ2
Ω2

Φ3

Ω3
Φ4

Ω4 p1

p2

IN OUT

p3

Φ2

IN OUT

Φ1 Φ3 Φ4

IN OUT

• • ◦ ◦ ◦ • • ◦ ◦ • • ◦ ◦ • • • ◦ ◦◦

Figure 1. Illustration of the idea behind VPC. At left, the dotted line segments denote the pro-
jections Φi found for compact spaces Ωi and the dashed circles denote the median distance
between pivots pi and elements on that space. This value is used to separate elements at each
side of the vantage point tree. The right figure gives the VPC data structure corresponding to
this feature space.

3.1 Learning

The learning process starts by evaluating if a linear projection Φ sep-
arates the feature space with a misclassification rate lower than γ. Let Ω
be a d-dimensional feature space containing n instances �xi with labels yi.
According to Johnson andWichern (1988), multiple discriminant analysis is
a natural extension of the Fisher linear discriminant, having the within-class
matrix given by:

Σ̂w =
k∑

c=1

∑
�xi|yc

(�xi − �̄xyc
)(�xi − �̄xyc

)T , (1)

where k is the number of classes, �xi|yc denotes the elements in the cth class
and �̄xyc

is the centroid of these elements. The scatter matrix is given by:

Σ̂s =
k∑

c=1

nyc
(�̄x− �̄xyc

)(�̄x− �̄xyc
)T , (2)

being nyc
the number of training samples in class yc. �̄x is the dataset mean

vector. A linear transformation, Φ, is obtained by solving the generalized
eigenvalue system:

Σ̂sΦ = λΣ̂wΦ, (3)

where λ is a scalar that is usually called the generalized eigenvalue ofΣs and

H. Proença and J.C. Neves

Σw. Classification is done in the transformed space according to a distance
function ξ(., .). Each query element �x is classified by:

k̂i = argmin
k

ξ(�xΦ, x̄yk
Φ). (4)

Our stopping criterion for the division of Ω considers the error rate in
the learning set, given by:

e(Ω) =

∑
i I{ki �=yc}

n
, (5)

where I is an indictor function that evaluates if the predicted and true class
values are the same. When e(Ω) ≤ γ, we consider that Φ appropriately dis-
criminates the feature space and the node is considered a leaf, with support
s(Ω) = n. Otherwise, Ω is divided into two halves, according to a pivot.

Note that the term appropriately, in terms of discrimination, is used
to indicate subspaces where a linear discriminant attain classification error
lower than γ. For γ = 0, the term is equivalent to linearly separable. In
practice, for most cases the optimal performance is attained when γ > 0,
i.e., stopping the division of subspaces when the number of elements per
class is still much higher than the dimension of the feature space (otherwise,
the algorithm would simply return the pseudo-inverse of the Fisher linear
Discriminant at a leaf). γ > 0 values are regarded as a soft margins, i.e., we
allow a few mistakes (some points - outliers or noisy examples might be on
the wrong side of the linear discriminant), but most times obtain a solution
that better separates the bulk of data.

If the ith element inΩ is used as pivot, the remaining elements with in-
dexes j ∈ {1, . . . , n}, j �= i, span through its left or right branch, depending
of the distance ξ(�xi, �xj). Let Y 0

ic and Y
1
ic be the sets of labels of class c in the

left and right branches, when using the ith element as pivot. The suitability
of that pivot s(i) is equal the support of the corresponding discriminant:

s(i) = −
1∑

j=0

k∑
c=1

|Y (j)
ic |

n− 1
log2

(|Y (j)
ic |

n− 1

)
, (6)

where |.| denotes set cardinality. The best pivot minimizes (6), i.e., is the
one that puts all elements of each class in different branches of the tree:

î = argmin
i

s(i). (7)

Let dîj = ξ(�xj , �xî), i = 1, . . . , n, i �= î be the n−1 distances between
the pivot and the remaining elements and let d∗

î
be the median value of {dîj}.

The jth element of the training set is included in the left ΩL or right ΩR

Fast Feature Classification

subsets, according to:

{ {�xj , yj} ∈ ΩL if dîj ≥ d∗
î{�xj , yj} ∈ ΩR if dîj ≤ d∗
î
.

(8)

The process is repeated for ΩL and ΩR in a way similar to Ω, un-
til the stopping criterion is verified for all the subspaces. In practice, the
optimal performance of the VPC model is attained when γ > 0, i.e., stop-
ping the learning process before having all elements of a single class, which
contributes to avoid overfitting.

3.2 Classification

Classification is done by traversing the VPC tree and accumulating
the support values of the class predicted at each leaf. Let �x be an unlabelled
element and γ∗ the radius of the query. The classification of �x is given by
(9), where l(Ω) is an indicator function that discriminates between leaves
(l(Ω) = 1) and non-leaves (l(Ω) = 0) nodes:

c(�x,Ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�0 , if l(Ω) = 1 ∧ ξ(�x, �xp) > γ∗

s(Ω).�vi , if l(Ω) = 1 ∧ ξ(�x, �xp) ≤ γ∗

{s(ΩL) + s(ΩR)} , if l(Ω) = 0 ∧ (d∗ − γ∗) ≤ ξ(�x, �xp)
≤ (d∗ + γ∗)

s(ΩL) , if l(Ω) = 0 ∧ ξ(�x, �xp) ≤ (d∗ − γ∗)
s(ΩR) , if l(Ω) = 0 ∧ ξ(�x, �xp) ≥ (d∗ + γ∗)

,

(9)

being �xp the pivot of a node and �vi a unit vector with a single non-zero com-
ponent at the ith position (corresponding to the ith predicted class). This
way, c(�x,Ω) returns a vector with k elements, each one containing the ac-
cumulated support for the predicted class, i.e., �s = {s1, . . . , sk}. The re-
sponse given by the ensemble corresponds to the position where c(�x,Ω) is
maximum:

î = argmax
i

{si}. (10)

For comprehensibility, Algorithm 1 details the VPC classification
scheme in terms of the computational steps. As input, the method receives
the Vantage Point tree with a linear discriminant in each leaf. For a query
element �x, the binary tree is traversed down to leaves. In each leaf, a linear
discriminant predicts the class and the accumulation of the support values
gives the final response.

H. Proença and J.C. Neves

Algorithm 1 VPC Classification Scheme
Require: Vantage Point Tree V , unlabelled instance �x ∈ R

d, radius query γ∗.
1: Get current node: c← V .root;
2: Support values for each class: �s ← [0, . . . , 0]
3: if leaf(c) then
4: Accumulate support: �s ← LDA(c,x)
5: return �s
6: end if
7: Get pivot: p ← c.pivot
8: Get median distance: m ← c.median
9: if distance(�x,p) ≤ m− γ then

10: Accumulate support: �s ← �s + VPC(cn.left, �x, γ∗)
11: end if
12: if distance(�x,p) ≥ m+ γ then
13: Accumulate support: �s ← �s + VPC(cn.right, �x, γ∗)
14: end if
15: return �s

3.3 Usability And Completeness

According to the theory of classification ensembles, it is particularly
important that the ensemble is fully usable and complete. Let Ω be the d-
dimensional feature space with Ωi compact subspaces. The usability of the
projection Φi was approximated by:

P
(
�x ∈ Ωi

) ≈
∑

j I{(x(1)
j ,...,x

(d)
j)∈Ωi}

n
, (11)

where I{.} is the indicator function and n is the number of learning instances.
Based on the stopping criterion used for learning, P

(
�x ∈ Ωi

)
> 0, ∀i ∈

{1, . . . , k}, guaranteeing that every Φi is usable and that the ensemble is
fully usable.

As described in Section 3.1, it can be stated that:

Ωd =
⋃
i

Ωd
i , (12)

assuring that the ensemble completely covers the feature space (provided
that n ≥ d). Similarly, as:

Ωd
j ∩ Ωd

i = ∅,∀i, j | i �= j, (13)

the domains of each discriminant Φi are disjoint and the full diversity of
the ensemble is also assured, i.e., every discriminant Φi is obtained from
completely disjoint data with respect to the remaining discriminants, which
reduces the probability of obtaining correlated models. The fact of using

Fast Feature Classification

disjoint data for building each discriminant might augment the probability
of overfitting. As a counterbalance, we note that several nodes usually vote
for a query, which reduces the probability of overfitting.

3.4 Computational Complexity

Here we analyze the time complexity, which can refer to the learning
or classification phases. But, as the latter phase is done on-line and requires
repeated execution, our efforts were concentrated in keeping low the com-
plexity of the classification phase.

The learning phase has two major steps: 1) create the VPC tree; and
2) obtain a linear discriminant for each leaf node. Let n be the number of
learning instances. Determining one pivot per node takes O(n2). The inser-
tion always takes place at the deepest level, with complexity O(h), being h
the height of the tree (if the tree is balanced, h = lg(n)). Next, learning a
linear discriminant for each leaf involves three major steps: 1) singular value
decomposition to obtain the within and scatter matrices; 2) compute eigen-
vectors; and 3) solve the final linear system, which has O(n dmin(n, d) +
min(n, d)3) (Cai, He and Han, 2008) temporal complexity, being d the di-
mension of the feature space.

In classification, the complexity depends of the radius γ∗, varying be-
tween O(n) (when all leaves vote) and O(lg(n)) (when a single leaf votes).
Our experiments confirm that optimal performance is attained when a re-
duced number of nodes vote for the ensemble, yielding a temporal complex-
ity around O(α lg(n)), being α the number of nodes voting (1 ≤ α ≤ n).
At each leaf, the temporal complexity of classification is O(d(k − 1)X),
being k the number of classes. Hence, the time complexity of classifica-
tion is O(αd(k − 1)) + O(αlg(n)). Keeping moderate values for k and
d, the predominant term is clearly O(αlg(n)). Keeping in mind that usu-
ally each node of the tree represents more than one training instance (due
to the parameter γ > 0), it follows that α � n, reducing the complexity to
approximately logarithmic.

3.5 Bias-Variance Tradeoff

In VPC, the tradeoff between bias and variance depends of the number
of classifiers in the ensemble and of the number of votes per query. The
former is determined by γ and the latter by γ∗. Both γI and γq are in direct
proportion to bias, and inversely correlated to variance. As illustrated in
Figure 2, high values for γ and γ∗ reduce the number of leaves, from where a
large proportion is used in classification. At the other extreme, as the values
of γ and γ∗ decrease, more leaves are created, and smaller proportions of

H. Proença and J.C. Neves

lo
g(
vo
te
s)

m
is
cl
as
si
fi
ca
tio

n

γ 0 0

0
0

γ∗

γ

γ∗

Maximum Bias

Maximum Variance

LDA

KNN

Optimal Performance

Figure 2. Top plot: effect of the γ and γ∗ parameters in the number of classifiers that vote
in each query. Bottom plot: corresponding misclassification rates, with the optimal configu-
ration highlighted. The configurations that are equivalent to linear discriminant analysis and
k-nearest neighbors appear inside dashed ellipses.

these are used in each query. This corresponds to getting purer—and less
biased—estimates. However, a tree with more leaves reduces the sample
size per classifier and increases the potential estimation error, increasing the
variance of the model.

It is interesting to note that, under specific parameterizations, VPC is
equivalent to linear discriminant analysis (LDA) or to k-nearest neighbors
(KNN) (Figure 2). It is equivalent to LDA in cases where the tree is com-
posed by a single node (large γ values). Oppositely, for γ = 0, each leaf of
the tree offers perfect separability between classes, which in practice reduces
to the nearest neighbor rule. However, as this example illustrates (”Optimal
Performance” arrow), one of the key findings reported in this paper is that
optimal performance is most times attained for intermediate values of γ and
γ∗.

Fast Feature Classification

4. Experiments and Discussion

4.1 Comparison Terms

Eight well known classification techniques were used as comparison
terms. Four individual models (k-nearest neighbors: Cover and Hart, 1967;
linear discriminant analysis: Duda, Hart and Stork, 2000; neural networks:
Moller, 1993; and support vector machines: Cortes and Vapnik, 1995) and
four ensembles: Bagging with classification trees (CART), quadratic and
pseudo-linear weak classifiers, Boosting and Random Spaces with quad-
ratic discriminants and decision tree weak classifiers and the Random Forest
(Breiman, 2001) with decision trees as weak classifiers.

The selected algorithms were considered to represent the state-of-the-
art in terms of classification. Even though several variants exist, the ones
used are the most frequently reported in the literature and in previous perfor-
mance evaluation initiatives (e.g., Bauer and Kohavi, 1999; Dietterich, 2000;
and Demsar, 2006). This way, our idea is that by transitivity, it is possible
to compare the performance of VPC against any other classification model
that shared any comparison term used in this paper.

Table 1 describes the parameters tested in the optimization of each al-
gorithm. A set of parameterizationswas tested, by an exhaustive grid combi-
nation of parameters in the given range. Additionally, for non-deterministic
methods, each parameterization was tested 10 times and the best perfor-
mance taken. Regarding the VPC method, the Euclidean distance (�2-norm)
was used in all cases as ξ(., .) function. All the results correspond to imple-
mentations in the MATLAB environment.

4.2 Synthetic Datasets

Performance started to be analyzed on synthetic bi-dimensional data-
sets (Figure 3). All regard binary classification problems, ranging from lin-
early separable (Problem A) to complex decision environments: with contin-
uous/discontinuous boundaries (problems B and C) and balanced/unbalanced
prior probabilities (problems D and E). VPC denotes the proposed method,
LDA the linear discriminant analysis, NN stands for neural networks and
KNN for k-nearest neighbor classification. For each problem/algorithm, the
decision boundaries appear in black. An immediate conclusion is the suit-
ability of VPC to handle all classes of problems tested, both linearly sepa-
rable (problem A), with complex decision boundaries (problems C-E) and
different levels of prior probabilities per class (problem E). In these exper-
iments, the smoothness of the decision boundaries of VPC was lower than
for NN and KNN, which was explained by the parameters used (low values
of γ and γ∗ were used in this example).

H. Proença and J.C. Neves

Table 1. Variants of each classification algorithm evaluated and corresponding parame-
ters/intervals evaluated in the optimization process.

Algorithm Parameters Optimization
LDA -
Neural Networks (NN) Learning Algorithm: Levenberg-Marquardt backpropaga-

tion, scaled-conjugate gradient, gradient descend with adap-

tive learning rate/momentum; Topology: neurons hidden

layer; Learning stopping criteria: validation checks, perfor-

mance, and epochs.

KNN Number neighbors: [1, d]

SVM Kernel type: linear, polynomial and sigmoid; kernel degree:

[1, 4]; γ kernel functions: [0.5/d, 2*d]

Bagging (BAG) Number ensemble classifiers: [2, 2*d], Weak learners: clas-

sification trees (CART), quadratic/pseudo-linear

Boosting (BOS) Number ensemble classifiers: [2, 2*d]; Weak learners:

quadratic discriminants and decision trees; Type learning

algorithm: multi-class AdaBoost, RUSBoost (Seiffert et al.,

2008)

Random Subspaces (RSP) Number ensemble classifiers: [2, 2*d]; Weak learners:

quadratic discriminants and decision trees, Gini’s diversity

index/maximum deviance split criteria.

Random Forests (RFO) Number weak classifiers: [2, 2*d]; Number of variables

selected per split: [1,
√

d].

VPC

A B C D E

LDA

KNN

NN

Figure 3. Results attained by the VPC for bi-dimensional synthetic datasets, when compared
to linear discriminant analysis (LDA), neural networks (NN) and k-nearest neighbors (KNN)
classification methods.

Fast Feature Classification

Table 2. Datasets of the UCI Machine Learning Repository (Univ. California) used in the
performance evaluation of VPC.

ID Data Set Instances
(Training/Test)

Features Classes Prior Probs (%).

BC Breast
Cancer
Wiscosin
(Original)

683
(10 × 615/68)

9 2 65.00, 35.00

HS Haberman’s
Survival

306
(10 × 276/30)

3 2 74.00, 26.00

IS Image
Segment

2310
(10 × 2079/231)

19 7 (balanced)

IR Iris 150
(10 × 135/15)

4 3 (balanced)

IT Isolet 7797
(10 × 7 018/779)

617 26 (balanced)

LR Letter
Recognition

20 000 (10 ×
18 000/2 000)

16 26 3.94,3.83,3.68,4.03,3.84,3.87,3.86,

3.67,3.77,3.64,3.69,3.81,3.96,3.91,

3.77,4.01,3.91,3.79,3.74,3.98,4.06,

3.82,3.76,3.94,3.93,3.67

MF Multifeature
Digit

2 000 (10 ×
1 800/200)

649 10 (balanced)

MU Musk
(Version 2)

6 598 (10 ×
5 939/659)

168 2 84.59,15.41

PB Page Blocks 5 473 (10 ×
4 926/547)

10 5 89.77,6.01,0.51,1.61,2.10

SK Skin Seg-
mentation

245 057 (10 ×
220 552/24 505)

3 2 20.75,79.25

SP Spambase 4 601 (10 ×
4 141/460)

57 2 60.60,39.40

ST Statlog
(Shuttle)

58 000 (10 ×
52 200/5 800)

9 7 78.60,0.08,0.29,15.35,5.63,0.01,

0.02

4.3 UCI - Machine Learning Repository

Performance was also compared in theUniversity of California, Irvine:
Machine Learning Repository1 datasets, which are freely available and widely
known in the field of classification. The used sets are summarized in Ta-
ble 2, and were selected according to four criteria: 1) containing multivari-
ate or univariate features; 2) suitable for classification tasks; 3) exclusively
with numeric attributes; and 4) without missing values. We give the num-
ber of instances, features, classes and prior probabilities per class. Values
inside parenthesis denote the amounts of data selected for learning/testing
purposes. For all sets, 10-fold cross validation was adopted and features
were rescaled to [0,1] interval according to the min-max rule.

1. http://archive.ics.uci.edu/ml/

H. Proença and J.C. Neves

http://archive.ics.uci.edu/ml/

Table 3. Results obtained for the datasets of the UCI Machine Learning Repository. The
mean errors are given, together with the standard deviations observed in the 10-fold cross
validation procedure. Cells in bold highlight the best algorithm per data set.

Dataset VPC LDA NN SVM KNN BAG BOS RSP RFO
BC 2.48 ± 1.83 3.68 ± 2.71 3.38 ± 2.78 2.94 ± 2.19 2.50 ± 1.71 3.68± 2.79 2.97± 2.06 6.62± 2.88 2.91± 1.95

HS 20.33± 5.54 28.00± 6.52 24.00± 4.66 25.33± 7.57 23.33 ± 4.16 23.67 ± 4.57 16.70 ± 4.98 25.67 ± 6.49 23.06 ± 6.06

IS 3.58 ± 1.07 11.26± 1.56 5.37 ± 5.29 7.01 ± 1.73 3.12 ± 1.29 8.18± 1.63 5.17± 2.03 21.17 ± 2.13 3.58± 1.52

IR 2.00 ± 1.22 4.00 ± 4.66 4.67 ± 6.32 4.00 ± 5.62 3.33 ± 4.71 1.33± 2.81 2.67± 3.44 4.00± 4.66 3.69± 1.02

IT 5.73 ± 0.72 5.73 ± 0.72 6.78 ± 6.89 3.07 ± 0.84 8.97 ± 1.27 5.35± 0.83 12.91 ± 2.28 30.90 ± 1.79 11.03 ± 2.02

LR 9.01 ± 0.63 37.49± 1.09 26.20± 5.17 17.65± 0.66 3.89 ± 0.29 11.21 ± 0.64 11.30 ± 0.69 49.03 ± 0.72 12.47 ± 1.28

MF 1.75 ± 0.67 1.75 ± 0.68 2.35 ± 2.96 1.55 ± 0.83 1.65 ± 0.58 1.05± 0.69 7.91± 0.97 9.25± 2.12 2.28± 0.80

MU 2.40 ± 0.38 6.43 ± 0.97 0.93 ± 0.45 5.13 ± 0.76 3.11 ± 0.37 3.25± 0.68 3.35± 0.60 11.90 ± 1.55 2.57± 0.94

PB 3.32 ± 0.70 7.35 ± 1.48 3.33 ± 0.77 7.11 ± 1.20 4.04 ± 0.97 5.60± 1.10 4.52± 1.45 7.77± 0.73 3.48± 0.53

SK 0.06 ± 0.01 6.60 ± 0.14 0.31 ± 0.53 1.02 ± 0.06 0.04 ± 0.01 1.64± 0.08 1.64± 0.08 17.45 ± 0.27 1.70± 0.22

SP 6.34 ± 1.31 9.48 ± 2.02 6.17 ± 1.74 9.57 ± 1.82 8.85 ± 1.03 10.80 ± 1.91 6.13± 1.02 34.28 ± 3.71 4.36± 0.80

ST 0.05 ± 0.02 17.48± 0.82 0.42 ± 0.02 3.08 ± 0.22 0.06 ± 0.03 5.52± 0.29 1.59± 0.32 14.66 ± 1.21 0.03± 0.00

Note that the used sets are heterogenous from different perspectives,
ranging from easy problems (such as SK and ST), to extremely hard (such as
the HS), due to low feature-to-instance ratio and classes overlapping. Also,
for some problems large amounts of data are available (e.g., SK), while oth-
ers have a reduced number of instances available (e.g., IR).

Results are given in Table 3 and a first evidence is that VPC only
got the best performance among all algorithms in two different problems
(BC and PB). However, the most important observation is that, for all the
remaining cases, VPC was among the best half of the algorithms. Also—
as expected—KNN got the best results in problems with low feature-to-
instance ratio, that correspond to densely populated feature spaces (e.g.,
SK).

Not only VPC, but also NN, SVM, KNN, Bagging and Random For-
est got the 1st rank in some problem. Among the ensemble algorithms,
Bagging, Boosting and Random Forest outperformed all the remaining al-
gorithm in some problem. In opposition, random subspaces got particularly
hazardous results in low dimensionality datasets, where the projection into
feature subspaces does not keep enough discriminating information.

To perceive the classes of problems where each algorithm got the best
results, their relative effectiveness was tested. Differences in performance
were validated in terms of statistical significance using Student t-tests (at
the 95% level), assuming that errors are normally distributed. Having per-
formance scores of two algorithms (vectors �v1 and �v2, length 10), a t-test
te was carried out, stating as null hypothesis H0 that “�v1 and �v2 are inde-
pendent random samples from normal distributions with equal means and
unknown variances”. The alternative hypothesis was that means are differ-
ent:

te =
abs(μ�v1

− μ�v2
)√

σ2
�v1

+σ2
�v2

10

, (14)

Fast Feature Classification

Table 4. Summary of the algorithm-to-algorithm relative performance, for datasets of the
UCI Machine Learning Repository (represented in each cell in the same order as in Table 2).
The symbol “◦” denotes that the algorithm in the column is better than the algorithm in
the row, with statistical significance at 95% level. “•” denotes worse performance and “·”
corresponds to differences in results without statistical significance. Each cell in the bottom
row summarizes the total of “◦”, “·” and “•” cases for an algorithm.

Alg. VPC LDA NN SVM KNN BAG BOS RSP RFO

VPC - · · • · · • · • • • · • · · · · · • · ◦ · · · • · · • · ◦ • · • • • · • · · · · • ◦ · • · · • · · · • · · • · • • • • • · · · · • • • • · • · • · · • · • • • • • • • • · · · • • • · · · • ◦ ◦

LDA - · · · · · ◦ · ◦ ◦ ◦ · ◦ · · ◦ · ◦ ◦ · · · ◦ · ◦ · · ◦ · • ◦ · ◦ ◦ ◦ · ◦ · · · · · ◦ · ◦ · ◦ · ◦ · ◦ ◦ · • ◦ • ◦ · ◦ ◦ ◦ · · • · • • • • · • • ◦ · · ◦ · ◦ ◦ · ◦ ◦ ◦ ◦ ◦

NN · · · · · ◦ · • · · · ◦ · · · · · • · • • • · • - · · · · · ◦ · • • · · • · · · · · ◦ · • · · · ◦ · · · · · ◦ · • • • • • · ◦ • • · ◦ • • · • · • · · • · • • • • • • • • · · · · • ◦ · • · • • ◦

SVM · · ◦ · • ◦ · ◦ ◦ ◦ · ◦ · · • · • • · · · • · • · · · · · • · ◦ ◦ · · ◦ - · · ◦ · • ◦ · ◦ ◦ ◦ · ◦ · · · · • ◦ · ◦ · • · • · · · · • ◦ • ◦ · • · · · · • · • • • • · • • • · · ◦ · • ◦ · ◦ ◦ ◦ ◦ ◦

KNN · · · · ◦ • · ◦ · · ◦ · · · • · ◦ • · • • • · • · · · · · • · ◦ · · · • · · • · ◦ • · • • • · • - · · • · ◦ • · · · • · • · · · · ◦ ◦ • · · • · • · · • · • • • • • • • • · · · · · • · · · • ◦ ◦

BAG · · ◦ · · ◦ · ◦ ◦ ◦ ◦ ◦ · · · · · • · • · • · • · · · · · • · ◦ ◦ ◦ ◦ ◦ · · · · ◦ • · • · ◦ · ◦ · · ◦ · • ◦ · · · ◦ · ◦ - · · · · • · • · · · ◦ ◦ · · • · • • • • • • • • · · ◦ · • · · · ◦ · ◦ ◦

BOO · · · · ◦ ◦ ◦ ◦ · ◦ · ◦ · · ◦ · ◦ • ◦ • · • · ◦ · · ◦ · ◦ • ◦ ◦ · ◦ ◦ ◦ · · ◦ · ◦ • ◦ • · ◦ · ◦ · · ◦ · ◦ ◦ ◦ · · ◦ · ◦ · · ◦ · ◦ · ◦ · · · · ◦ - · · · · ◦ • ◦ • · • • ◦ · • · · · · ◦ · · · ·◦

RSP · · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ◦ · ◦ ◦ ◦ ◦ · ◦ ◦ • · · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ◦ · ◦ ◦ ◦ ◦ · ◦ ◦ ◦ · · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ◦ · ◦ ◦ · ◦ ◦ ◦ ◦ • - ◦ · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

RFO · · · ◦ ◦ ◦ · · · ◦ • • · · • · • • · • • • • • · · · · ◦ • · ◦ · ◦ ◦ • · · • · ◦ • · • • • • • · · · · · ◦ · · · ◦ • • · · • · ◦ · · · • · • • · ◦ · · · · • · · · ·• • · • · • • • • • • • • -

Total 43, 48, 5 12, 46, 38 35, 52, 9 25, 45, 26 36, 51, 9 22, 51, 23 23, 48, 25 4, 27, 65 37, 46, 13

where abs(.) denotes the absolute value, μ�v1
and μ�v2

are the means and σ�v1

and σ�v2
the standard deviations. Every time te > 2.10,H0 was rejected and

assumed that both algorithms actually have different performance.
Table 4 summarizes the algorithm-to-algorithm comparison in the

datasets evaluated (in the same order in each cell as in the rows of Table 2).
Symbol “◦” denotes cases where the algorithm in the column got better re-
sults (with statistical significance) than the one in the row. Oppositely, sym-
bol “•” denotes worse performance and “·” denotes results without statistical
significance. As main conclusion, the best performance of VPC among all is
evident: only for three problems VPC got worse results than any other algo-
rithm: Musk (worse than neural networks), Isolet (worse than support vector
machines) and Letter Recognition (worse than k-nearest neighbors). The
bottom row of the table gives the summary statistics, showing the number of
“◦”, “·” and “•” cases. VPC, NN, SVM, KNN and Random Forests got over-
all positive balance, meaning that they were better more times than worse.
VPC attained maximal balance (“◦” - “•”) value (38), followed by KNN (27)
and NN (26) algorithms. Interestingly, the performance attained by two of
the ensemble strategies (Boosting and Random Subspaces) was poorer than
the observed for individual algorithms. When compared to LDA, in no case
did VPC get worse performance, and in the IT dataset results were exactly
equal, corresponding to a case where the VPC learning process stopped at
the tree root (yielding the LDA).

Regarding the ensemble algorithms, Random Forests got the best re-
sults, followed by Bagging, in accordance to the results given by Banfield
et al. (2007). Boosting got smaller errors than Bagging in half of the prob-
lems. The Random Forest algorithm outperformed all the remaining in two
problems (Spambase and Statlog) that share the property of class imbalance.
Random Subspaces got especially bad results in low dimensionality prob-
lems (e.g., Skin) and Boosting was among the best algorithms for problems
with a reduced number of classes (e.g.,Musk).

H. Proença and J.C. Neves

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Acc. Rank

P
ro

ba
bi

lit
y

VPC
LDA
NN
SVM
KNN
BAG
BOS
RSP
RFO

Figure 4. Accumulated probabilities of performance ranks observed for the eight algorithms
in the datasets of the UCI-Machine Learning Repository

Demsar (2006) suggested that the fairest way to compare algorithms
is to use their average ranking onmultiple datasets and cross-validation accu-
racy. Hence, the order-rank of the algorithms in each problemwas compared
and the results illustrated in Figure 4, showing the accumulated probabilities
in terms of ranks, i.e., the probabilities that an algorithm is among the top-k
rank (Acc. Rank axis). Here, the best algorithm appears most close to the
upper-left corner, which enables to intuitively visualise the relative effective-
ness.

It is evident that VPC was the algorithm with ranks closest to the
upper-left corner, followed by KNN and Random Forest. Next, a group of
four algorithms (NN, SVM, Bagging and Boosting) got similar results. LDA
appears next and the Random Subspaces algorithm got the worst results.
Another particularly interesting property of VPC is that—for all problems—
got performance among the top-half algorithms. This had only happened
in about 85% for KNN, and around 60% of the problems for the Random
Forest, which we consider a substantial difference. All the remaining algo-
rithms were among the top-half in less than 50% of the problems.

Further attention should be given to the levels of correlation between
the responses given by the best algorithms, in order to anticipate the advan-
tages of using meta-ensembles, i.e., the improvements in performance that
might result of fusing at the score level VPC, KNN, NN, SVM and Bagging
classifiers.

4.4 Major Performance Covariates

According to the results given above, it is particularly important to
perceive the factors that most evidently affect the performance of VPC with
respect to the competitors. For such, we decided to compare the results of
VPC to KNN and Random Forest classification strategies, with respect to

Fast Feature Classification

Figure 5. Examples of images used in the GTSR set released by the Institute für Neuroin-
formatik, in the scope of a competition held at the 2011 International Joint Conference on
Neural Networks.

two different factors: 1) balance of classes prior probabilities; and 2) feature
spaces dimension. The choice of the comparison terms used was motivated
by the overall ranking of algorithms in the experiments above, summarized
in Figure 4.

All results reported in this section were based on data from the Ger-
man traffic sign recognition benchmark (Stallkamp et al., 2012) (Figure 5)
was used. This data set is a multi-class image classification challenge held
at the International Joint Conference on Neural Networks (IJCNN) 2011.
There are 43 classes in the data set and more than 50 000 images 2, divided
into disjoint training and test sets. Using the available meta-data that defines
a region-of-interest for each sample, a set of 1,300 features per sample was
extracted, scanning all 3 × 3 patches of the scale-normalized images (40 ×
40 pixels) with the highly popular Local Binary Patterns descriptor (Ojala,
Pietikainen, and Harwood, 1966). According to a bootstrapping-like strat-
egy, random samples with 80% of the available learning and test data were
drew, and the effectiveness of the measured, yielding the results given in the
sub-sections below, where we plot the average performance plus the first and
third quartile of the results, as a confidence interval.

4.4.1 Balance of Classes Prior Probabilities

To perceive the effect that the balance of classes priors has in VPC
performance, we selected the most frequent classes in the GTSR data set
(classes 1, 2, 12, 13 and 38). Next, we drew multiple samples of the learning
and test sets, each one comprising two classes and varying the proportion
of elements per class. Results are given in the left plot of Figure 6, for
VPC (solid line), KNN (dashed line) and Random Forests (dashed-dotted

2. http://benchmark.ini.rub.de/

H. Proença and J.C. Neves

http://benchmark.ini.rub.de/

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

C
la

ss
if.

 E
rr

or
 (

%
)

Class Balance (p)

VPC
KNN
Random Forest

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

C
la

ss
if.

 E
rr

or
 (

%
)

Feature space dimension (d)

VPC
KNN
Random Forest

Figure 6. At left: Variations in performance with respect to the balance of classes prior
probabilities. At right: Variations in performance with respect to the dimensionality of the
feature spaces.

lines) algorithms, with the corresponding first and third quartile performance
values observed (p is the proportion of elements the less frequent class) It
is obvious that the gap between VPC and the competitors tends to increase
directly in proportion to the levels of class unbalance, which accords our
previous observations. Without surprise, KNN showed a larger deterioration
in performance than the remaining algorithms with respect to this factor,
whereas Random Forest showed a relatively small decrease in classification
effectiveness.

4.5 Feature Spaces Dimension

Further, we compared the classification effectiveness of VPC, KNN
and Random Forests with respect to the dimension of the feature space,
which also correlates to the density of the learning feature space (as the
number of used instances was kept constant). In this experiment, all classes
of the GTSR set were considered, using feature subsets composed by 10 to
100% of all the available features, chosen randomly. The results are given in
the right plot of Figure 6 (d represents the proportion of features considered),
and appear to confirm that the performance of VPC with respect to competi-
tors is maximized for problems of reduced andmoderate dimensionality, i.e.,
corresponding to more densely populated feature spaces. For large dimen-
sionality problems, the pivots chosen at each node of the classification tree
were observed to decrease the representativity of the corresponding elements
on that node. Noting that the confidence intervals associated with each al-
gorithm largely overlap, it is still possible to perceive an inverse tendency
between the performance of VPC/KNN and the Random Forest algorithm,
that is the unique where the rule ”the more features the better” appears to
apply. Even due to different reasons, this does not holds for VPC and KNN,

Fast Feature Classification

which is known to suffer from the irrelevant features issue that happens of-
ten in high dimensionality problems.

5. Conclusions

This paper proposes a classification strategy that accords the idea of
Boosting and is based on a Vantage-Point tree that recursively divides the
feature space into compact subspaces (leaves) that are separated by weak
classifiers (linear discriminants). By preserving the neighborhood of sub-
spaces, the binary data structure is traversed in a computationally efficient
way and only a reduced number of leaves vote for the response of the ensem-
ble, which yields the low computational cost of classification.

The resulting ensemble classifies in temporal cost of approximately
O(lg(n)). Also, in terms of accuracy, it attains results similar to the state-
of-the-art in most of the problems tested. The computational cost/accuracy
balance is regarded in a particularly positive way due to the broad range
of problems considered (binary/n-ary classification, discrete/continuous fea-
tures, balanced /unbalanced priori probabilities, with densely/sparsely pop-
ulated datasets).

In terms of the results observed, we highlight the following conclu-
sions:

• Even though the proposed method (VPC) outperformed all the other
algorithms in a relatively short proportion of the problems (2/12), the
interesting property is that, for all problems VPC was among the best
algorithms, which clearly did not happened for any of the remaining
comparison terms.

• With respect to its competitors, the best results of VPC were observed
for problems with unbalanced priori probabilities per class. This was
explained by the fact that VPC classifies (locally) in subspaces, so that
the prior probabilities in the complete feature space do not bias each
local classifier.

• Also in terms of relative effectiveness, VPC is particularly suitable
for problems of moderate dimensionality, where the vantage-point re-
trieval scheme works better. In very large dimensionally problems, as
the �2-norm was used to obtain the distance between feature points,
pivots decrease the representativity of all the elements in the corre-
sponding node.

• When compared to KNN, the major advantage of VPC is its smaller
sensitivity to irrelevant features, which can be naturally disregarded
by the linear discriminants at the tree leaves.

• It should be noted that in all the problems considered, the number of
training instances n was always much higher than the dimensionally

H. Proença and J.C. Neves

d of the feature space. Hence, as further work, we plan to analyze the
effectiveness of VPC in feature spaces with such high dimensionality
and relatively reduced amount of learning data (n ≈ d, or even n <
d).

References

ALPAYDIN, E. (1999), “Combined 5 × 2 cv F-Test for Comparing Supervised Classifica-
tion Learning Algorithms”, Neural Computation, 11(8), 1885–1892.

BANFIELD, R., HALL, L., BOWYER, K., and KEGELMEYER, W. (2007), “A Compari-
son of Decision Tree Ensemble Creation Techniques”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(1), 173–180.

BAUER, E., and KOHAVI, R. (1999), “An Empirical Comparison of Voting Classification
Algorithms: Bagging, Boosting, and Variants”, Machine Learning, 36(1-2), 105–139.

BOCK, K., COUSSEMENT, K., and POEL, D. (2010), “Ensemble Classification Based
on Generalized Additive Models”, Computational Statistics and Data Analysis, 54,
1535–1546.

BREIMAN, L. (1996), “Bagging Predictors”, Machine Learning, 24(2), 123–140.
BREIMAN, L. (2001), “Random Forests”, Machine Learning, 45(1), 5–32.
BRYLL, R., GUTIERREZ-OSUNA,R., and QUEK, F. (2003), “Attribute Bagging: Improv-

ing Accuracy of Classifier Ensembles by Using Random Feature Subsets”, Pattern
Recognition, 36(6), 291–1302,

CAI, D., HE, X., and HAN, J. (2008), “Training Linear Discriminant Analysis in Linear
Time”, in Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering, pp. 209–217.

CANUTO, A., ABREU, M., OLIVEIRA, L., XAVIER JR., J., and SANTOS, A. (2007),
“Investigating the Influence of the Choice of the Ensemble Members in Accuracy and
Diversity of Selection-Based and Fusion-Based Methods for Ensembles”, Pattern
Recognition Letters, 28(4), 472–486.

CECI, M., APPICE, A., and MALERBA, D. (2003), “Comparing Simplification Methods
for Model Trees with Regression and Splitting Nodes”, in Proceedings of the Four-
teenth International Symposium on Methodologies for Intelligent Systems, Lecture
Notes in Artificial Intelligence Vol. 2871, pp. 49–56.

CORTES, C., and VAPNIK, V. (1995), “Support Vector Networks”, Machine Learning, 20,
1–25.

COVER, T., and HART, P. (1967), “Nearest Neighbor Pattern Classification”, IEEE Trans-
actions on Information Theory, 13(1), 21–27.

DEMSAR, J. (2006), “Statistical Comparisons of Classifiers over Multiple Data Sets”,
Journal of Machine Learning Research, 7, 1–30.

DIETTERICH, T. (2000), “An Experimental Comparison of Three Methods for Construct-
ing Ensembles of Decision Trees: Bagging, Boosting, and Randomization”, Machine
Learning, 49(2), 139–157.

DOMINGOS, P. (1996), “Unifying Instance-Based and Rule-Based Induction”, Machine
Learning, 24, 141–168.

DUDA, R., HART, P., and STORK, D. (2000), Pattern Classification (2nd ed.), Wiley
Interscience, ISBN 0-471-05669-3.

FRANK, E., HALL, M., and PFAHRINGER, B. (2003), “Locally Weighted Naive Bayes”,
in Proceedings of the 19th conference on Uncertainty in Artificial Intelligence, San
Mateo, pp. 249–256.

Fast Feature Classification

FREUND, Y., and SCHAPIRE, R. (1995), “A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting”, in Proceedings of the 2nd European
Conference on Computational Learning Theory, pp. 23–37.

HO, T.K. (1995), “Random Decision Forests”, in Proceedings of the 3rd International
Conference on Document Analysis and Recognition, pp. 278–282.

HO, T.K. (1998), “The Random Subspace Method for Constructing Decision Forests” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.

HOTHORN, T., and LAUSEN, B. (2005), “Building Classifiers by Bagging Trees”, Com-
putational Statistics and Data Analysis, 49, 1068–1078.

JIRINA, M., and JIRINA JR., M. (2013), “Utilization of Singularity Exponent in Nearest
Neighbor Based Classifier”, Journal of Classification, 30(1), 3–29.

JOHNSON, R., and WICHERN, D. (1988), Applied Multivariate Statistic Analysis (2nd.
ed.), Englewood Cliffs NJ: Prentice Hall Inc.

KLEINBERG, E.M. (1990), “Stochastic Discrimination”, Annals of Mathematics and
Artificial Intelligence, 1, 207–239.

KUMAR, A. (2008), “Combining Pattern Classifiers: Methods and Algorithms”, IEEE
Transactions on Industrial Electronics, 55(1), 348–363.

KUNCHEVA, L. (2004), Combining Pattern Classifiers: Methods and Algorithms, Hobo-
ken NJ: John Wiley & Sons.

KUNCHEVA, L., and RODRÍGUEZ, J. (2007), “Classifier Ensembles with a Random
Linear Oracle”, IEEE Transactions on Knowledge and Data Engineering, 19(4), 500–
508.

LU, J., and TAN, Y-P. (2011), Nearest Feature Space Analysis for Classification”, IEEE
Signal Processing Letters, 18(1), 55–58.

MOLLER, M. (1993), “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learn-
ing”, Neural Networks, 6, 525–533.

OJALA, T., PIETIKAINEN, M., and HARWOOD, D. (1996), “A Comparative Study of
Texture Measures with Classification Based on Feature Distributions”, Pattern Recog-
nition, 29, 51–59.

GARCÍA-PEDRAJAS, N. (2009), “Constructing Ensembles of Classifiers by Means of
Weighted Instance Selection”, IEEE Transactions on Neural Networks, 20(2), 258–
277.

SCHAPIRE, R. (1990), “The Strength of Weak Learnability”, Machine Learning, 5(2),
197–227.

SEIFFERT, C., KHOSHGOFTAAR, T., HULSE, J., and NAPOLITANO, A. (2008),
“RUSBoost: Improving Classification Performance When Training Data Is Skewed”,
in Proceedings of the 19th International Conference on Pattern Recognition, pp. 1-4.

STALLKAMP, J., SCHLIPSING, M., SALMEN, J., and IGEL, C. (2012), “Man vs. Com-
puter: Benchmarking Machine Learning Algorithms for Traffic Sign Recognition”,
Neural Networks, 32, 323–332.

TING, K.M., WELLS, J.R., TAN, S.C., TENG, S.W., and WEBB, G.I. (2011), “Feature-
Subspace Aggregating: Ensembles for Stable and Unstable Learners”, Machine
Learning, 82, 375–397.

VIOLA, P.A., and JONES, M.J. (2004), “Robust Real-Time Face Detection”, International
Journal of Computer Vision, 57(2), 137–154.

YAN, R., and TEŠIĆ, J. (2007), “Model-Shared Subspace Boosting for Multi-Label Clas-
sification”, in Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 834–843.

H. Proença and J.C. Neves

YIANILOS, P. (1993), “Data Structures and Algorithms for Nearest Neighbor Search in
General Metric Spaces”, in Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp. 311–
321.

YU, G., ZHANG, G., YU, Z., DOMENICONI, C., YOUC, J., and HANA, G. (2012),
“Semi-Supervised Ensemble Classification in Subspaces”, Applied Soft Computing,
12, 1511–1522.

ZAMAN, M., and HIROSE, H. (2013), “DF-SVM: A Decision Forest Constructed on Ar-
tificially Enlarged Feature Space by Support Vector Machine”, Artificial Intelligence
Review, 40, 467–494.

Fast Feature Classification

