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Abstract—In order to broad the applicability of biometric
systems, the data acquisition constraints required for reliable
recognition are receiving increasing attention. For some of the
traits (e.g., face and iris) significant research efforts were already
made toward the development of systems able to operate in
completely unconstrained conditions. For other traits (e.g., the
ear) no similar efforts are known. The main purpose of this paper
is to announce the availability of a new data set of ear images,
which main distinguishing feature is that its images were acquired
from on-the-move subjects, under varying lighting conditions and
without demanding to subjects any particular care regarding
ear occlusions and poses. The data set is freely available to
the research community and should constitute a valuable tool
in assessing the possibility of performing reliable ear biometric
recognition in such d challenging conditions.

I. INTRODUCTION

Due to increasing concerns about safety and security in the
modern societies, the use of biometric systems has been en-
couraged by both governmental and private entities to replace
or improve effectiveness of the traditional human recognition
systems. Several traits were already acknowledged as possess-
ing the key features of a biometric trait: universality (ability
to be collected in as much subjects as possible), collectibil-
ity (easiness in performing data acquisition), distinctiveness
(high variability between different subjects) and stability (low
variability over a single subject in human lifetime). For these
traits (e.g., fingerprint, iris, face, retina, palm vein. . . ) several
recognition systems were already deployed and operate with
remarkable success.

Among other traits that are still in embryonal development
stages, the human ear is presently accepted as a promising
biometric trait: two studies conducted by Iannarelli [1] provide
substantial evidence of the distinctiveness of the ear biometric
trait. The first study compared over 10 000 ears drawn from
a randomly selected sample in California and the second ex-
amined fraternal and identical twins, in which the appearance
of most physiological features appears to be similar. These
studies support the hypothesis that each ear contains unique
physiological features: all examined ears were found to be
unique though identical twins were found to have similar ear
structures.When compared to other biometric traits, the ear has
several major advantages:
• its structure does not change over lifetime, from the birth

into mature age;

• its surface is relatively small, allowing systems to cope
with reduced spatial resolution images;

• it has a uniform color distribution;
• its appearance does not change according to different

facial expressions.

Ears have played a significant role in forensic sciences for
many years. In 1949, Iannarelli created his anthropometric
identification technique based upon ear biometrics, based in
twelve measurements illustrated in figure 1. The identification
process relies in these twelve measures plus gender and
ethnicity information. In order to support the development of
automated ear recognition methods, several data sets were con-
structed and made publicly available, all of these containing
images of relatively good quality acquired in high constrained
conditions and environments.

Fig. 1. Iannarelli system [1].

The main purpose of this paper is to announce the
availability and to describe a new free available data set
(UBEAR) of ear images, which major discriminating features
were that data was collected from on-the-move subjects,
under dynamic lighting conditions and without requiring to
subjects and special care regarding the ears occlusions or
poses. This facts turn the UBEAR into a preferable tool
in evaluating the robustness of the currently developed ear
recognition methods and in the research for new methods able
to operate in uncontrolled conditions, toward the applicability
of ear recognition systems in real-world scenarios.



The remaining of this paper is organized as follows: sec-
tion II discusses the related works, section III overviews the
existent data sets of ear images. A detailed description of
the UBEAR data set, its imaging framework and statistical
significance can be found in section IV. Section V describes
our experiments and, finally, section VI concludes the paper.

II. RELATED WORK

It’s possible to rearrange the proposed methods used in ear
recognition, in 3 main categories.

A. 2D Images

• Burge and Burger [2] modeled each subject’s ear as an
adjacency graph built from the Voronoi diagram of its
curve segments. They introduced a novel graph matching
based algorithm which takes into account the erroneous
curve segments likely to occur, and proposed the use
of thermogram images to overcome the problem of hair
occlusion.

• Moreno et al. [3] investigated the performance of var-
ious neural classifiers and combination techniques in
ear recognition. The ear image is analyzed by 3 neural
classifiers using outer ear feature points, ear morphology
and macro features extracted by a compression network.

• Z. Mu emphet al. [4] used two feature vectors to ear
recognition. The first vector is composed by features
of the outer ear region, the second contains structural
features of the inner region. A back propagation neural
network is used as classifier.

• B. Arbab-Zavar and M. S. Nixon [5] used a log-Gabor
filter to create a template of the ear, which was previously
represented in polar coordinates, followed by an occlu-
sion test. Previously, B. Arbab-Zavar et al. [6] used the
Scale Invariant Feature Transform (SIFT), to detect ear
features. They compared the performance of SIFT versus
the Principal Components Analysis (PCA) method in the
occlusion test.

• A. F. Abate et al. [7] proposed the use of a rotation in-
variant descriptor, the Generic Fourier Descriptor (GFD)
[8], to extract meaningful data from ear images. The GFD
is applied in the polar representation of the ears images.

• D. Hurley et al. [9] treated the ear image as an array
of mutually attracting particles that act as source of a
Gaussian force field. The original image is described by a
set of potential channels and positions of potential wells.

• L. Yaun and Z. Mu [10] used an automatic ear normal-
ization method based on improved Active Shape Model
(ASM). The ear images are rotated so that all ears have
the same rotation angle. Full-space Linear Discriminant
Analysis (FLDA) is applied for ear recognition. Also,
they found the acceptable head rotation range between 10
and 20 degrees, to right and left rotations respectively.

B. 3D Images

• Yan and Bowyer [11] used a Minolta VIVID 910 1 range
scanner to capture both depth and color information.
They developed a fully automatic ear biometric system
using Iterative Closest Point (ICP) based in 3D shape
matching for recognition, and used both 2D appearance
and 3D depth data for automatic segmentation of the iris,
also separating it form hair and earrings. The reported a
decrease in matching performance where both ear images
to be matched have more than 15 degrees of difference.
Previously, they tested different approaches [12] and
concluded that ICP based matching achieves the best
performance.

• Chen and Bhanu [13] proposed to fuse range and color
images to detect ears, and both global and local features
for the extraction of the meaningful information.Also,
they used the ear helix/anti-helix and a LSP (Local
Surface Patch) representation for estimating the initial
rotation and translation between a gallery/probe pair
and then the modified ICP algorithm to compensate the
distortion.

C. Acoustic

• Akkermans et al. [14] exploited the acoustic properties
of the ear for recognition purposes. It turns out that the
ear by virtue of it’s special shape behaves like a filter so
that a sound signal played into the ear is returned in a
modified form. This acoustic transfer function forms the
basis of the acoustic ear signature.

III. RELATED DATASETS

Three different datasets are most widely used in the evalua-
tion of ear recognition proposals: the UND2 (University Notre
Dame), the XM2VTS3 (the extended M2VTS Database) and
the USTB4 (University of Science and Technology Beijing).
Other datasets were developed or referred in academic re-
search, but are not publicly available and not constitute the
scope of this section. In the following we briefly describe the
main features of its dataset, together with a set of example
images shown in figure 3.

A. UND
The University of Notre Dame supplies four collections of

ear datasets:
• CollectionE: 464 visible-light profile ear images from 114

human subjects;
• CollectionF: 942 3D ,plus corresponding 2D profile ear

images from 302 human subjects;
• CollectionG: 738 3D, plus corresponding 2D profile ear

images from 235 human subjects;
• CollectionJ2: 1800 3D, plus corresponding 2D profile ear

images from 415 human subjects.

1http://www.konicaminolta.com/instruments/products/3d/non-contact/
vivid910/index.html

2http://www.nd.edu/$\sim$cvrl/CVRL/Data\ Sets.html
3http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
4http://www.ustb.edu.cn/resb/



Fig. 2. The platform of the camera system from USTB4 dataset.

B. XM2VTS

The University of Surrey supplies several collections of
image, audio and video datasets. For ear recognition purposes,
the focus should be putted in the head image dataset, described
as : 1 left and 1 right profile image (720x576) per person and
session, for a total of 2 360 images.

C. USTB

The University of Science and Technology of Beijing
(USTB) supplies four datasets of ears, with multi-pose and
angles data faces:
• Dataset I - 60 subjects, 3 images each from the right ear,

with some of the ears experiencing some shearing and
rotation;

• Dataset II - 77 subjects, 4 images per subject. The
distance between subject and camera is about 2 meters
with variations in terms of illumination and angles. 2
images for different lighting setups and the remaining for
pose variations, with rotations of -30 degrees and +30
degrees. Each image is 24-bit true color with 300x400
pixels.

• Dataset III - this dataset is divided into 2 sub sets: the
first contains 79 subjects with right and left rotation.
The second includes 24 subjects, and each one has 6
images with different ranges of occlusion. The images
are 768x576 pixels, 24-bit true color.

• Dataset IV - The capture process consists of 17 CCD
cameras which are distributed in a circle with radius
being 1 meter and the subject is placed in the center,
as illustrated in figure 2. The volunteers (500 in total)
were required to look eye level, look upwards, look
downwards, look right and look left for the photograph.

IV. UBEAR DATASET

As above stated, our fundamental purpose was to un-
constraint the image acquisition scenario, so that images ap-

Fig. 3. UND dataset in first column, the second column show USTB dataset
and the last column XM2VTS dataset.

pear to be captured in real-world conditions, i.e., with subjects
on-the-move and without requiring them any particular care
about occlusions of the ears and poses. Also, the lighting
conditions were highly varying between different sessions o
that the typical imagers from each session have notorious
differences. This peculiar setup were devised to simulate the
covert acquisition of biometric data.

A. Imaging Framework

The setup of the video and imaging framework is given in
table I. Samples of the collected images and its corresponding
binary ear masks (manually made) are illustrated in figure 4.
The video capture sequence starts with all subjects facing front
and 3 meters apart from the camera sideways, it’s also required
of the individual to move his head upwards, downwards,
outwards, towards. After these, subjects should step ahead
and backwards from the initial position. For each subject
both ears were captured in two different sessions, giving a
total of four videos per subject. Each video sequence was
manually analyzed and 17 frames were selected according to
the following criteria:
• 5 frames when the subject was stepping ahead and

backwards,
• 3 frames of the subject’s head moving upwards,
• 3 frames of the subject’s head moving downwards,
• 3 frames of the subject’s head moving outwards,
• 3 frames of the subject’s head moving towards.

B. Data Variability and Statistics

As illustrated in figure 5, there are three major varying
factors in the UBEAR images: 1) lighting variations, either by
natural or artificial light; 2) multiple head poses either with
yaw and pitch rotations and 3) occlusions due to hair and
earrings. Apart from these, images of the UBEAR data set
have significantly heterogenous levels of image quality, which
can be useful to evaluate the algorithms robustness to changes



(a) Outwards (b) Towards (c) Downwards (d) Giving steps (e) Upwards

(f) (g) (h) (i) (j)

Fig. 4. Images from the UBEAR dataset and this corresponding binary ear mask.

TABLE I
VIDEO AND IMAGE FRAMEWORK

Video Acquisition Framework and Set-Up
Camera Stingray F-504B 2/3”
Focal length 35mm
Color Representation gray scale
Video Resolution 1280x960 pixels
Frames per second 15
Videos Codec Avi uncompressed

Details of the selected frames
Image Resolution 1280x960 pixels
Color Representation gray scale
Image Codec tiff

Volunteers
Totals = Subjects 126;
Ears 252; Images 4430

Gender = Male: 44.62%
Female: 55.38%

Age = [0, 20] 43,85%
[21, 25] 47.69%
[26, 30] 3.85%
[31, 35] 2.31%
[36, 99] 2.30%

in data quality and to assess the actual deterioration in the
corresponding error rates.

Figure 6 gives five histograms that describe some of the
major features of the ears regions contained in our dataset. The
area histogram (figure 6a) gives the values that correspond to
the sum of all pixels inside the ear region, in order to give an
idea of the ears size. The eccentricity histogram (figure 6b)
describes the proportion between the major axis of the ears.
For almost round ears, as in figure 7e, it will return a value
near to 0, while for more suchlike elliptical ears (figure 7d),
the value will approach 1. The length histogram (figure 6c),
exhibits the length of the major axis of the visible part of
the ears, as illustrated in figure 7 . The orientation histogram
(figure 6d) gives the typical orientation of the major axis of the
ears, that can be high varying, as illustrated in figures 7(b) and
(c). Finally, the perimeter histogram (figure 6e), corresponds
to the sum of all pixels in the ear boundaries, which can be

(a) Good quality
image

(b) Over illumi-
nation

(c) Blurred im-
age

(d) Earrings oc-
clusion

(e) Strong hair
occlusion

(f) Weak hair oc-
clusion

Fig. 5. Comparison between a good quality image and several types of
non-ideal images of the UBEAR dataset.

useful for recognition purposes based in boundary descriptors
methods.

C. Statistical Significance of the UBEAR dataset

In this section we address the problem of whether the exper-
iments performed on the UBEAR dataset produce statistically
significant results. Let α be the confidence interval. Let P be
the error rate of a classifier and P̂ be the estimated error rate
over a finite number of test patterns. At an α-confidence level,
we want that the true error rate not exceeds the estimated error
rate by an amount larger than ε(N, α). Guyon et al. [15] fixed
ε(N, α) = βP to be a given fraction of P. Assuming that
recognition errors are Bernoulli trials, authors concluded that
the number of required trials N to achieve (1- α) confidence
in the error rate estimate is N = −ln(α)/(β2P ). A typical
value for α is 0.05 and a typical value for β is 0.2. Based on
these values, Guyon et al. [15] recommended the simpler form



(a) (b) (c)

(d) (e)

Fig. 6. Statistics of the UBEAR dataset images.

(a) Ear length mea-
surment

(b) Orientation near 0
degrees

(c) Orientation near
90 degrees

(d) High Eccentricity (e) Low Eccentricity

Fig. 7. Some cases that illustrate the histogram extreme cases.

N ≈ 100
P . We had a varying number of subjects that offered as

volunteers for the first, second and for both imaging sessions.
However, assuming that each iris image can be used to gener-
ate a biometric template, that the remaining images from the
same eye can be used to analyze intra-class variability and the
remaining images from different eyes can be used to analyze
inter-class variability, it is possible to obtain a bound for the
error that is possible to be tested with statistical significance.
The 4 429 images of the UBEAR dataset enable respectively

41 278 and 9 764 528 intra-class and inter-class comparisons.
This guarantees statistical significance in experiments with an
empirical error rate P̂ down to 1, 02× 10−5%. However, we
stress that this is a lower bound value that would be increased
if we do not assume the independence between images and
error correlations are taken into account.

V. EXPERIMENTS

The main purpose of this section is to describe the deteriora-
tions in performance of typical ear recognition methods due to
factors that degrade the quality of the acquired data. Based in
our earliest experiments, we observed that current methods are
particularly sensitive to rotations of the ears, which became the
focus of our further experiments. To avoid that other factors
bias our results, we selected a sub set of good quality images:
those that are sharp, without significant occlusions. Then, data
was divided into 5 subsets: 624 images without significant ear
rotations (subset 1), 358 images with ears rotated upwards
(subset 2), 332 images with ears rotated downwards (subset
3), 309 images with ears rotated outwards (subset 4) and 343
images with ears rotated towards (subset 5). Figure 4 illustrates
the four types of rotations that were the main criterium for the
division of the data sets.
• Aligned: we compare all images of subset 1,
• Aligned-Upwards: Each image of subset 1 is compared

with all images from subset 2,
• Aligned-Downwards: Each image of subset 1 is compared

with all images from subset 3,



• Aligned-Outwards : Each image of subset 1 is compared
with all images from subset 4,

• Aligned-Towards: Each image of subset 1 is compared
with all images from subset 5.

A. SIFT

The Scale Invariant Feature Transform (SIFT) is one of
the most popular descriptors for image point matching [16].
The SIFT is knwon to be invariant to image point scale
and rotation and robust to affine distortion, changes in 3D
viewpoint, addition of noise and changes in illumination. It’s
application domain has been extended to human identification
and the results are quite promising [17]. Here, keypoints
are represented by vectors indicating scale, orientation and
location. The keypoints location is refined by fitting it to
nearby data and one or more orientations can be assigned using
local image gradient directions for each keypoint [17]. The
feature descriptor is computed by accumulating the orientation
histograms on the 4x4 subregions. Each histogram has 8 bins,
thus the SIFT feature descriptor has 128 elements. Finally,
the feature vector is normalized to reduce the effects of
illumination change [17]. The ratio between the distance of the
closest neighbor and the second-closest neighbor, is used in the
search for corresponding matching points [17] for recognition
strategies. In this paper, we used the D. Lowe’s implementation
of the SIFT operator5.

B. Results

In order to avoid that segmentation errors carry some bias
to the obtained results, we manually segmented all the images
used in this experiment, producing a binary segmentation mask
that distinguishes between the noise-free regions of the ear
and all the remaining types of data in the image, as it is
illustrated in figure 4. Thus, the SIFT method was applied
exclusively to the regions that comprise the un-ocludded ears.
As performance measures, we elected the well known receiver
operating characteristic curves (ROC), the area under curve
(AUC) and the equal error rate (EER) and the decidability
[18] index, given by |µI−µE |√

0.5 σ2
I
+0.5 σ2

E

, where µI and µE denote

the means of the intra-class and inter-class observations and
σI and σE the corresponding standard deviations. The ROC
curve is a graphical plot of the sensitivity, or true positive rate,
vs. false positive rate. The AUC can be perceived as a measure
based on pairwise comparisons between classifications of two
classes. With a perfect ranking, all positives examples are
ranked higher than the negatives ones and the area equal to
1. Any deviation from this ranking decreases the AUC. The
EER of a verification system, when the operating threshold for
the accept/reject decision is adjusted so that the probability of
false acceptance and false rejection becomes equal.

The obtained ROC curves are illustrated in figure 9, and
the decidability, EER and AUC results are given in table
II. The test 1 obtained the best performance, as shown by
the ROC curve, with higher decidability, a lower EER and

5http://www.cs.ubc.ca/lowe/keypoints/

(a) Aligned (b) Aligned-Upwards

(c) Aligned-Downwards (d) Aligned-Outwards

(e) Aligned-Towards

Fig. 8. These images show the matching keypoints according to the used
SIFT encoding matching strategies.

higher AUC. Obviously, this was a priori expected, as all
the matched images do not have significant differences in
pose and SIFT maximally correlates them, as can be seen
in figure 8(a). Oppositely, the worst results was obtained in
tests 4 and 5, which from our viewpoint can be explained
by the fact that significant toward and outward rotations alter
the perception of the ear shape, essentially because the ear
is far from planar and such rotations lead in some cases to
occlusions of portions of the ears. The other types of rotations
(upwards and downwards) didn’t significantly deteriorate the
results, which is in agreement to our perception of the iris
structure according to these rotations.

Figure 8 illustrates the insights of the obtained results,
giving the comparisons between the key points that were
typically matched in each test. It can be confirmed that
maximal correlation was obtained when both ears were aligned
with the camera (figure a). Upward and backward rotations
didn’t significantly changed the number of matched key points
(figures b and c), in opposition with towards and outwards
rotations (figures d and e). From these experiments, we
concluded that significant research efforts are required to
compensate for different poses of the subjects, which will be
a crucial step for the development of ear recognition methods
able to operate under less constrained conditions. Hopefully,
the UBEAR dataset will contribute for such achievement.
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Fig. 9. ROC curves of evaluated tests.

TABLE II
RECOGNITION RATES OF EACH TEST.

DEC EER(%) AUC
Aligned 2.64 12.20 0.95
Aligned-Upwards 1.32 24.99 0.83
Aligned-Downwards 1.43 22.86 0.85
Aligned-Outwards 0.68 36.24 0.69
Aligned-Towards 0.44 42.36 0.62

VI. CONCLUSIONS AND DATA SET AVAILABILITY

In this paper we presented a new dataset of ear images for
biometric purposes, which major discriminating point is that it
simulates the acquisition of data in real-world scenarios, under
varying lighting conditions on moving subjects and without
requiring them any particular care regarding ear occlusions
and poses. Our experiments show that — as it will be expected
— the performance of the most well known ear recognition
methods significantly decreases according to the quality of
the acquired data. Hence, we hope that the UBEAR dataset
constitute as a valuable tool for the research of ear recognition
systems more robust to degraded data, namely due to the
dynamics lighting recognition, subject movements and per-
spective. Finally, the value given to the UBEAR dataset should
have be directly correspondent to the number of persons that
use it in their experiments. Thus, we decided to make UBEAR
public and freely available through the UBEAR datasets web
site: http://www.ubear.di.ubi.pt.
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