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Abstract

The collection of iris data suitable to be used in exper-
iments is difficult due to two factors: 1) the time spent by
each volunteer in the acquisition process; and 2) security
/ privacy concerns of volunteers. Even though there are
methods to synthesize images of artificial irises, there is no
one exclusively focused in the synthesis of the iris biometric
signatures (IrisCodes). This paper describes a stochastic
method to synthesize IrisCodes, to feed experiments on iris
matching, indexing and retrieval phases. We experimentally
confirmed that both the genuine and impostor distributions
obtained on the artificial data closely resemble values ob-
tained in data sets of real irises. Also, the method is easily
parameterized to mimic data of varying levels of quality.

1. Introduction
Among multiple traits, the iris has made rapid strides

in popularity due to the remarkable effectiveness of the
deployed recognition systems [2] and to other interesting
features: 1) its texture has a randotypic chaotic appear-
ance possible to acquire contactless; 2) it has a simple
shape, making easier its detection and segmentation; 3) it
is roughly planar, enabling to compensate for deformations
caused by camera-subject misalignments; and 4) most of its
discriminating information lies in the lowest and middle-
low frequency components of the signal, which are the most
robust to noise. Accordingly, the nationwide deployment
of iris recognition systems has already begun [3]. The
Unique Identification Authority of India [16] is responsi-
ble for planning the largest-scale recognition system in the
world (over 1 200 million persons) and the United King-
dom ID card initiative [7] intends to provide one biometric
identity for each citizen.

To support research efforts, various iris image data
sets are freely available (e.g., the CASIA [8], ICE [12],
WVU [14], BATH [17], MMU [11], Olomuc [4] and
UBIRIS [13]). However, up to the moment, these sets con-

tain less than 104 identities, turning it hard to objectively
assess the effectiveness of algorithms on large-scale scenar-
ios. As a response, several attempts to create artificial iris
images were done, which images acceptably resemble the
appearance of real data.

In this paper we are particularly interested in providing
data for the signatures matching and indexing / retrieval
phases. We describe a stochastic method to obtain a large
number of synthetic binary IrisCodes. The requirement of
such type of method is evident, as generating a large number
of artificial images is computationally expensive and unfea-
sible for practical scenarios. Also, the generation of binary
signatures that closely resemble the extracted from real data
is not straightforward, being important to account for the
following factors:

• Impostors dissimilarity. The bit-by-bit comparison
of signatures from different subjects should produce
a large dissimilarity. The variability of this kind of
scores should be relatively small.

• Genuine dissimilarity. The bit-by-bit comparison of
signatures from the same subject should produce a
smaller dissimilarity than for the impostors. Also, the
variability of this kind of values should be significantly
higher than in the case of impostors.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the most relevant published strategies to
synthesize iris data. Section 3 provides a description of the
proposed method. Section 4 presents and discusses the ex-
periments. Finally, the conclusions are given in Section 5.

2. Related Work
As above stated, several methods were published to cre-

ate artificial images of the iris that can be used for algorithm
evaluation. However, the issue is their computational cost,
turning hard to generate and transmit large data sets (e.g.,
for over 109 subjects). Even though, this section summa-
rizes the most relevant methods published in this scope.
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Figure 1. Cohesive overview of the parameters evolved in the synthesis of iris signatures. The different ρ values signal the correlation
parameters . The left column represents two IrisCodes from subject A (each one with components extracted at two scales) and the right
column illustrates an excerpt of an irisCode of subject B.

Lefohn et al. [9] proposed a method to create and ren-
der realistic looking irises by adding one layer at a time to
the model and rendering an intermediate result, allowing
incremental definition of the iris texture, using single layers
taken from their standard library of textures. This method is
useful in applications ranging from entertainment to ocular
prosthetics. Cui et al. [1] proposed an iris synthesis method
based on the analysis of principal components (PCA). They
used an iris recognition algorithm based on PCA that op-
erates on real images and allows to extract global feature
vectors. These vectors were further used in image recon-
struction. Iris samples that belong to the same class are
constructed through letting the coefficients lie in the same
sphere centered at a sample iris image in a high-dimensional
space. To simulate different classes, they searched in a
limited high-dimensional space. Also, authors concluded
that super-resolution methods enhance the quality of the re-
sulting images. Theoretical analysis and experimental re-
sults showed that the synthetic data mimics the traditional
within-class and inter-class distances of real iris data. Shah
et al. [15] proposed a technique to create digital versions of
iris images used to evaluate the performance of iris recogni-
tion algorithms. Their scheme was divided into two phases:
1) at first, a Markov Random Field model generated a back-
ground texture that represents the global iris appearance;
2) next, a variety of iris features, radial and concentric fur-
rows, collarette and crypts, were embedded in the texture
field. Experiments with iris recognition algorithms vali-
dated the potential of this scheme. Zuo et al. [19] pro-
posed a model and anatomy-based method for synthesizing
iris images, having as purpose provide to the academia and
industry a large data set to test iris recognition algorithms.

This work also concerned about the bias that might be intro-
duced by using synthetic data, having performed a compar-
ison between the results observed for real and synthetic iris
images. The comparison was quantified at three different
levels: 1) global layout, 2) features of fine iris textures, and
3) recognition performance, including performance extrap-
olation capabilities. In most cases, the results confirm their
expectation of a strong similarity between real and synthetic
iris data generated using their model-based approach. Wei
et al. [18] proposed an iris synthesis method and claimed
to establish an effective paradigm to synthesize large iris
databases, with the purpose to overcome the problems of
data collection. Patch-based sampling was firstly employed
to create prototypes, from where a number of intra-class
samples were derived from each prototype. Experiments
showed that the synthetic irises preserve the major prop-
erties of real ones and bear controllable statistics, turning
them suitable for algorithm evaluation.

3. Proposed Method
Figure 1 illustrates the key parameters evolved in

the synthesis of IrisCodes. The left column gives two
IrisCodes, extracted at two scales of a given subject A. The
right column gives an excerpt of the code of another sub-
ject (B). In real data and standard scenario, each code has
n = 2048 bits extracted from the normalized images, with
dimensions r × c at different scales s. Hence, four cor-
relation parameters were used in the synthesis process: ρa
(denoted by the yellow squares) dictates the strength of the
linear correlation between spatially adjacent bits in the bio-
metric signature. ρs (denoted by the green squares) cor-
responds to the strength of the linear correlation between



bits extracted from the same position of the iris at differ-
ent scales. ρg (denoted by blue squares) is the strength of
the linear correlation between corresponding bits of differ-
ent signatures for each subject. Finally, ρi (represented by
red squares) corresponds to the strength of the linear corre-
lation between bits that correspond to the same region and
scale of signatures extracted from different subjects.

The process is divided into three main phases: 1) at first,
a generic template is created for the complete dataset, which
will be used in the definition of the subjects templates. This
template depends of the ρa parameter; 2) next, a template
is created for each virtual subject. In this case, ρi dictates
the dissimilarity between the templates generated for each
subject; 3) then, a set of sample IrisCodes is created for each
subject, considering the ρg parameter to control how much
different will be these samples per subject; and 4) finally,
occlusions in the irises are simulated, which correspond to
regions of the IrisCodes where bits are purely random.

Formally, the process is based in the notion of linear cor-
relation. Let u be a random value drawn from an uniform
distribution U ∼ U(0, 1). u is quantized into binary values,
and similar probabilities for each value are maintained:

uq =

{
1 , if u ≤ 0.5
0 , if u > 0.5

(1)

Let ρ. be a correlation value, (either ρa, ρi, ρg and ρs).
Every bit of code c at position (x, y) is generated in top-left
to bottom-right order in the following manner:

c(x, y) =

1−
(
H(tr0 −

r2

2
)⊗H(

(1 + erf(|tr0 − 0.5|) ρ.)
2

− uq)
)
(2)

being tr0 is the total number of ’0’ bits in a neighborhood
of radius r, erf is the sigmoid error function, ⊗ the exclu-
sive OR logical operation and H the Heaviside function,
defined as follows:

H(x) =

{
0 , if x ≤ 0
1 , if x > 0

(3)

The top-left bit of the generic template of the data set
is draw in a purely random way. Then, all the template is
generated according to (2), using ρa as correlation param-
eter and r = 1. Next, the first scale of the templates for
each subject is generated, using the ρi value and obtaining
tr0 from the generic template. For all subsequent scales, ρs
controls the correlation and tr0 is taken from the anterior
scale. In a third step, the samples per subject are created,
according to the ρg value and taking tr0 from the subject
template at the corresponding scale. In order to simulate

Parameter Range Description

ρs [0,1] Scale correlation. Controls the probability that
bits extracted from the same positions of the iris
at different scales have similar value.

ρa [0,1] Spatial correlation. Controls the probability that
bits extracted from adjacent positions of the iris
have similar values.

ρg [0,1] Genuine correlation. Controls the probability
that bits extracted from images of a given sub-
ject have similar values.

ρi [0,1] Impostors correlation. Controls the probability
that bits extracted from images of different sub-
jects have similar values.

env [0,1] Corresponds directly to the quality data gener-
ated. ”0” corresponds to data of poorest quality
and ”1” simulates signatures extracted from high
quality data.

Table 1. Summary of the parameters evolved in the proposed
method for the synthesis of IrisCodes.

different quality acquisition environments, a quality param-
eter env∈ [0, 1] weights the values of ρg , i.e., ρg′ = env·ρg .
Table3 summarizes the parameters evolved in the above de-
scribed synthesis process.

Examples of the IrisCodes generated are shown in fig-
ure 2, illustrating the effect of the ρa parameter. Here, large
values increase the correlation between adjacent bits (up-
per rows), whereas small values decrease this dependency
and turn (for ρa = 0) the values of each bit independent of
its neighborhood. The upper row of Figure 3 illustrates the
ρs parameter. Here, two-scale signatures from subjects A
and B are shown. The bottom row gives the effect of ρg
by showing two additional samples B1 and B2 from sub-
ject B. The bottommost table gives the pair wise distances
between IrisCodes, confirming that all requirements about
codes dissimilarity were faithfully modeled.

4. Experiments
Figure 4 show histograms of the genuine and impos-

tor comparisons obtained, regarding the env parameter that
simulates the quality of the data from where the signatures
would have been extracted. Previous studies shown that the
conditions in the acquisition environment have a strong ef-
fect in the genuine comparisons, which was also confirmed
in our observations. The top-left figure gives the distribu-
tions for an environment of relatively good quality (Env. A).
Then, for remaining environments, quality decreases and,
in the case of Env. D, there is a significant overlap between
both distributions, as happens in real-world scenarios when
the iris is not properly acquired.

Additionally, IrisCodes were validated in terms of the
performance attained by three state-of-the-art indexing / re-
trieval strategies, when compared to the originally described
by authors in their experiments on real iris data. The se-
lected methods are due to Gadde et al. [5], which analyzed
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Figure 2. Effect of the spacial correlation parameter (ρa). Larger
values augment the probability that neighbor codes have similar
values, whereas the zero value turns the spatial location of each bit
independent of its value.
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Figure 3. Images at the top row illustrate the effect of the ρs value.
Images at the bottom illustrate the effect of ρg . A andB are signa-
tures from different subjects. (B1 andB2 are samples from subject
B). The bottommost table gives the pair wise Hamming distances
between A and B’s.

the distribution of intensities and selected patterns with low
coefficients of variation (CVs) as indexing pivots. For each
probe represented in the polar domain, a radial division of

Env. A
(0.49, 0.02)

(0.14, 0.05)

Env. B
(0.49, 0.02)

(0.31, 0.08)

Env. C
(0.49, 0.02)

(0.37, 0.08)

Env. D
(0.49, 0.02)

(0.42, 0.07)

Figure 4. Illustration of the separation between genuine (dashed
lines) and impostor (continuous lines) comparisons, for different
levels of quality. At the top-left, histograms corresponding to data
acquired in heavily controlled scenarios are shown (A). Data sep-
arability decreases in the bottom-right direction, and the poorest
separable data at far right (D) is only suitable for soft biometric
recognition purposes.

n-bands was performed and indexed using the radial band of
the highest density of CV patterns. Also, Hao et al. [6] used
the spatial spread of the most reliable bits, they propose an
indexing technique based on the notion of multi-collisions.
In the retrieval process, a minimum of k collisions between
the probe and gallery samples is required to identify a po-
tential match. Finally, Mukherjee and Ross [10] approached
the problem from two different perspectives, by analyzing
the iris texture and the IrisCode. The best results in the latter
case were attained when each code was split into fixed-size
blocks. First-order statistics for each block were used as the
primary indexing value. A k-means strategy was used to
divide the feature space into different classes. For compre-
hensibility, a single numeric score was used to assess levels
of performance, in terms of the relation between hit and
penetration rates, as suggested by Mukherjee and Ross [10]
:

τ =
√
h(1− p) (4)

,
being h and p the hit and penetration rates. Table 4

compares the results announced by authors in their exper-
iments with real irises data sets and the results obtained for
synthetic IrisCodes, according to the method proposed in
this paper. For contextualization, four different environ-
ments are shown (columns A to D), corresponding to the
histograms of Figure 4. For both the methods of Gadde et al
and Mukherjee and Ross, the results observed for synthetic
data were poorer than those reported by authors, enabling



Method Real A B C D

Gadde et al. [5] 0.909 0.650 0.637 0.588 0.583

Hao et al. [6] 0.997 0.999 0.981 0.761 0.740

Mukherjee and Ross [10] 0.858 0.675 0.651 0.593 0.568

Table 2. Comparison between the results (expressed in terms of (4)
obtained by three state-of-the-art iris indexing / retrieval methods
on signatures extracted from real irises (Real Irises column) and
using synthetic IrisCodes generated by the proposed method.

to conclude about an extremely high quality level of the im-
ages used in their experiments. I the case of the method of
Hao et al, results obtained in the synthetic IrisCodes were
quite close to the reported by authors, specially in the case
of environment A (highlighted in bold) which genuine / im-
postor distributions closely resemble the corresponding data
given by authors in their paper. This fact was positively re-
garded as a strong indicator of the quality of the synthetic
codes.

5. Conclusions

This paper described a stochastic method to generate
synthetic IrisCodes. When performing an all-agains-all
comparison between the generated codes, we confirmed that
the resulting genuine and impostor comparisons faithfully
resemble the corresponding distributions observed for real
iris data. Also, an additional empirical validation was car-
ried out by comparing the results obtained by three state-
of-the-art indexing / retrieval techniques on real and artifi-
cial IrisCodes. It should be highlighted the easy parame-
terization of the proposed method, so to resemble the con-
ditions in acquisition environments of varying quality. The
proposed method is able to fed experiments on signature
matching and indexing / retrieval phases, which is partic-
ularly important due to the eminent deployment of nation-
wide iris recognition systems.
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