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ABSTRACT This paper provides an extensive and thorough overview of the models and techniques
utilized in the first and second stages of the typical information retrieval processing chain. Our discussion
encompasses the current state-of-the-art models, covering a wide range of methods and approaches in
the field of information retrieval. We delve into the historical development of these models, analyze the
key advancements and breakthroughs, and address the challenges and limitations faced by researchers
and practitioners in the domain. By offering a comprehensive understanding of the field, this survey is a
valuable resource for researchers, practitioners, and newcomers to the information retrieval domain, fostering
knowledge growth, innovation, and the development of novel ideas and techniques.

INDEX TERMS First-stage retrieval, information retrieval, second-stage retrieval.

I. INTRODUCTION
Currently, Information Retrieval (IR) holds significant impor-
tance in people’s daily lives due to its integration in
various useful functions alike as internet browsing, question-
answering systems, personal assistants, chatbots, and digital
libraries. The primary objective is to recognize and retrieve
information that is associated with the user’s request. Since
multiple records may be relevant, the results are frequently
ranked according to their similarity score to the user’s query.
At the beginning of the IR field, traditional text retrieval
systems predominantly rely on matching terms between
documents and queries. However, these term-based retrieval
systems have drawbacks, such as polysemy, synonymy,
and lexical gaps, which can limit their effectiveness [1].
Recently, the field of Natural Language Processing (NLP)
has undergone significant advancements due to the increased
availability of large labeled datasets and enhanced computing
power, which has allowed researchers to employ deep
learning methods for various purposes. These techniques
have been utilized to enhance traditional text retrieval systems
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and address the limitations of term-based retrieval techniques.
However, applying these techniques requires substantial
amounts of data and computational resources. As a result,
researchers are constantly developing more advanced deep
learning algorithms to meet these demands and achieve better
results in NLP tasks [2]. With the use of these advanced
deep learning algorithms, the performance of IR systems has
been significantly improved, leading to more precise and
efficient retrieval of information for end-users. Some of the
advancements in deep learning techniques that have been
employed in IR include neural network architectures such
as convolutional neural networks [3] and recurrent neural
networks [4], in addition to transfer learning and pre-training
techniques [5]. These methods have improved text data
representation and enhanced the IR system’s understand-
ing of natural language queries. Moreover, attention-based
mechanisms like the Transformer architecture [6] have been
implemented to enhance the capability of IR systems to focus
on critical parts of the query and documents for matching
purposes. Further, adopting pre-trained language models,
such as BERT [5] and GPT-2 [7], has demonstrated the
ability to improve IR systems performance by providing
superior cognition of the semantics and context of natural
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FIGURE 1. Overview of modern Information Retrieval system.

TABLE 1. Categorization of Previous Surveys on Information Retrieval
Models into Retrieval and Ranking Categories.

language queries and documents. Similarly, researchers also
concentrated on integrating external knowledge to enhance
the relevance of the retrieved information. One approach is
to incorporate knowledge graph embeddings [8] into the IR
process, which can aid in linking the query and documents
to relevant entities and concepts, thereby producing more
accurate results. Moreover, the use of multi-modal informa-
tion retrieval, which involves combining text, image, and
audio information, has demonstrated the ability to enhance
the performance of IR systems [9].

In general, developing deep learning techniques has sig-
nificantly improved the performance of information retrieval
(IR) systems, enabling them to handle the complexity of
natural language queries. This is due to the availability of
large labeled datasets and high computational power, yet
there is still room for development and investigation in this
area.

This survey covers both the first and second stages; models
covered in our discussion include those built using words,
semantic retrieval, and neural methods. The density term plot
depicted in Figure (2) offers a graphical representation of
the relative frequency of keywords in the surveyed literature,
providing valuable insights into current research trends in the
field. The table (1) categorizes previous surveys into retrieval
and ranking categories. The table provides a useful summary
of the research trends in the field of information retrieval and
the topics covered in previous surveys.

To the best of our knowledge, this is the second survey
that covers both first-stage retrieval and second-stage ranking
models. This survey focuses on papers published in major
conferences and journals in the fields of deep learning,

FIGURE 2. Term map of the information retrieval. Colors indicate the
recent term density extracted from survey papers.

natural language processing, and information retrieval from
2013 to June 2022. Table (1) summarizes previous surveys
on neural models for Information Retrieval. We also include a
comprehensive mind-map, Fig. (3), visually representing the
techniques and methods discussed in the subsequent sections.
The mind map is organized into two main stages—Retrieval
and Ranker—covering conventional retrieval, dense retrieval
methods, sparse retrieval methods, hybrid retrieval methods,
learning to rank, and deep learning-based ranking models.

The organization of this paper is as follows. Section II
introduces the two typical stages of information retrieval
models and provides background knowledge, including prob-
lem formalization. Section III discusses first-stage retrieval.
Section IV discusses second-stage ranking. Section V intro-
duces the SOTA benchmark datasets, while Section VI covers
current challenges and future directions. Finally, we conclude
the survey in Section VII.

II. INFORMATION RETRIEVAL: OVERVIEW
This part initially discusses the two-stage process, retrieval,
and ranking, followed by formulating dense retrieval.

A. DENSE TEXT: RETRIEVAL AND RANKING
Modern information retrieval aims to provide users with the
most relevant information to their queries. This objective is
accomplished in two stages: retrieval and ranking, as depicted
in Figure (1). During the retrieval stage, a collection of
initial documents which are potentially relevant to the query
is retrieved. After the relevance of these documents is

76582 VOLUME 11, 2023



K. A. Hambarde, H. Proença: Information Retrieval: Recent Advances and Beyond

FIGURE 3. Overview of Information Retrieval and Ranking Techniques: A Mindmap.

reassessed based on their similarity scores, the ranking
is adjusted accordingly. This is done by using various
algorithms and models like vector space model [10], Boolean
model, Latent Semantic Indexing [11], Latent Dirichlet
Allocation [12], and recent techniques such as pre-trained
models like BERT [5].

Within the second stage, ranking, the main goal is to adjust
the ranking of the initially retrieved documents based on
the relevance score. The ranking process typically employs
different models than those used in the retrieval stage, as the
primary focus is improving the results’ effectiveness rather
than their efficiency. Traditional models such as BM25 [18]
are used as initial retrievers as they prioritize efficiently
recalling relevant documents from a massive document pool.
Traditional ranking models encompass a range of techniques;
such models include RankNet [19] and [20] for learning to
rank and DRMM [21] and Duet [22] for neural models. These
models leverage various techniques, including reinforcement
learning [23], contextual embeddings [24], and attention
mechanisms [25], to learn how to rank documents based on
the user’s query criteria.

B. FORMULATION
Formally, let q represent a query and di symbolize a text
from an extensive text collection D = dimi=1, comprised
of m documents. Text retrieval aims to provide a ranked
list of n highly relevant texts L = [d1, d2, . . . , dn] based
on the relevance scores generated by a retrieval model.
Technically, we can employ either sparse retrieval models or
dense retrieval models to create the retriever. Dense retrieval
is characterized by representing queries and texts as dense
vectors, enabling the computation of relevance scores using
a similarity function between these vectors. This can be
expressed as:

Rel(q, d) = fsim(φ(q), ψ(d)), (1)

where φ(·) ∈ Rl and ψ(·) ∈ Rl denote functions that
map queries and texts to l-dimensional vectors, respectively.
In the context of dense retrieval, φ(·) andψ(·) are constructed

using neural network encoders, and similarity measurement
functions can be used to implement fsim(·).

III. FIRST STAGE: RETRIEVAL
This section presents a comprehensive literature review
of the first-stage retrieval, divided into four categories:
conventional, sparse, dense, and hybrid retrieval techniques.

A. CONVENTIONAL RETRIEVAL
Over the past several decades, substantial progress has been
made in developing and improving term-based retrieval
methods. A diverse array of approaches have been introduced
to optimize query and document representations for infor-
mation retrieval. These techniques often incorporate external
resources or capitalize on the inherent information within the
collection to enrich the representations. The following section
provides a concise overview of some prominent methods in
this domain.

1) QUERY AUGMENTATION
The need for query augmentation arises due to the inherent
challenges in information retrieval, such as vocabulary mis-
match between queries and documents, users’ limited ability
to express their information needs, and the inherent ambiguity
of natural language. To address these challenges, early
query augmentation efforts primarily focused on employing
query expansion techniques to boost retrieval performance.
One approach involved using global models to pinpoint
and incorporate concepts relevant to a query [26]. Another
strategy harnessed lexical-semantic relationships to identify
terms semantically related to the query [27]. These methods
exemplify how external resources or the collection itself can
be effectively utilized to enrich query representations.

Another effective strategy to enhance query representation
is integrating external user feedback into the retrieval process,
an extensively researched method. The Rocchio relevance
feedback algorithm [29], a well-established local model,
is the basis for numerous contemporary relevance feed-
back techniques. By employing a divergence minimization
model, Zhai and Lafferty [30] introduced a technique
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for integrating user feedback into information retrieval
systems. Cao et al. [31] presented amethod for implementing
pseudo-relevance feedback (PRF) in these systems. In con-
trast, Lv and Zhai [32] conducted an analysis of various
PRF approaches for information retrieval systems. Further-
more, Zamani et al. [33] proposed an innovative method for
incorporating PRF into information retrieval systems using
matrix factorization. These methods significantly enhance
term-based retrieval approaches, leading tomore accurate and
relevant search results. Despite query augmentation’s bene-
fits, it has some drawbacks, such as the potential for query
drift and overfitting. Researchers have explored document
augmentation techniques to address these challenges as an
alternative approach. In the next section, we will investigate
these document augmentation methods and how they have
been employed to enhance information retrieval performance.

2) DOCUMENT AUGMENTATION
Document augmentation is an alternate approach to query
augmentation conducted on all documents in the corpus. This
method supplements every posting list within an inverted
index, which has been found to be particularly useful.
However, while document augmentation enhances the data
richness, it is crucial to avoid over-augmentation that could
introduce redundancy, leading to inefficiencies or potential
overfitting in the subsequent stages of data processing or
model training.

The concept of document expansion, which originated in
the field of speech retrieval [133], has since been explored and
developed by numerous researchers, highlighting its signifi-
cance in information retrieval. Multiple studies, such as [38]
and [39], have demonstrated the effectiveness of various
document augmentation methods. For instance, Kurland and
Lee [34] and Liu and Croft [35] investigated the relations
between language models, corpus structure, and ad-hoc
retrieval. Liu and Croft [35] put forth a document clustering
approach, whereas Billerbeck and Zobel [36] conducted a
comparative analysis of document augmentation and query
augmentation techniques in ad-hoc retrieval. In addition,
several researchers have focused on expanding document rep-
resentations by incorporating related terms to boost retrieval
performance. Tao et al. [37] proposed innovative techniques
for this purpose, while Agirre et al. [38] explored WordNet,
a comprehensive lexical database of English, for document
expansion. Alternatively, Efron et al. [39] concentrated on
enhancing short text retrieval by adding semantically related
terms to each document’s representation. Furthermore,
Sherman et al. [40] expand document representations using
external collections like WordNet. These studies demonstrate
the field’s evolution, with more recent papers building upon
their predecessors’ ideas and exploring novel document
expansion methods in information retrieval systems.

3) LEXICAL DEPENDENCY MODEL
Traditional methods in information retrieval often treat terms
in a document as independent entities without considering

their order or relationships. This approach may result in an
inaccurate representation of concepts that consist of multiple
contiguous words and a less effective capture of relevance
that arises from the specific order of terms when matching
queries and documents. To overcome these limitations,
lexical dependency models have been developed to incorpo-
rate term dependencies into their representation functions.
By considering the relationships and order of terms, these
models can more accurately capture the underlying structure
and meaning of the text. This, in turn, enables a more
precise representation of concepts and improved match-
ing between queries and documents, ultimately enhancing
information retrieval performance. Researchers have studied
this; Fagan [41] have significantly contributed to the area
of lexical dependency models by attempting to incorporate
phrases within the vector space model, treating them as
additional dimensions within the representation space. Their
study compares the effectiveness of different automatic
phrase indexing methods. Another pivotal contribution is by
Salton and Buckley [134], which introduced a novel term
dependency weighting scheme that considers the relationship
between terms in a document. Subsequent research has
expanded on these ideas, such as Mitra et al. [42], who
propose a new phrase-based retrieval method using a
vector space model and term dependency weighting. Song
and Croft [43] presented a strategy based on a general
language model incorporating term dependency weighting.
Probabilistic models have been explored in this context as
well. Jones et al. [44] suggested a new probabilistic model
that builds on the vector space model and incorporates term
dependency weighting. Nallapati and Allan [45] recommend
using sentence trees to capture term dependencies. More
recent studies have introduced innovative approaches to
information retrieval based on lexical dependency models.
Gao et al. [46] proposed the Dependence Language Model,
which leverages term dependencies to enhance retrieval effec-
tiveness. Similarly, Xu et al. [47] put forth a kernel-based
strategy for relevance ranking that models term dependencies
in a manner akin to the schemes proposed in earlier research.

4) TOPIC MODEL
Topic modeling is another research direction that enhances
information retrieval by considering semantic relationships
between words. This approach typically uncovers latent
text topics by modeling word associations, which allows
matching queries and documents based on their topics [135].
In natural language processing tasks, topic modelingmethods
have become increasingly popular due to their ability
to represent each dimension as a topic rather than a
term. However, this can make using an inverted index
impractical due to the sparsity of topic representations.
Generally, topic models can be divided into probabilistic and
non-probabilistic. Non-probabilistic models include latent
semantic indexing [11] and non-negative matrix factorization
(NMF) [136]. Wong et al. [48] proposed the Generalized

76584 VOLUME 11, 2023



K. A. Hambarde, H. Proença: Information Retrieval: Recent Advances and Beyond

Vector SpaceModel (GVSM) for information retrieval, which
extends the traditional vector spacemodel by usingweights to
represent term frequency and importance, thereby enhancing
retrieval effectiveness. Diaz [49] introduced a regularization
approach for improving the accuracy of ad hoc retrieval
scores.

A noteworthy probabilistic model is the Latent Dirichlet
Allocation (LDA) proposed by Blei et al. [12], which cap-
tures latent topics within document collections and represents
each document as a topic distribution. Experimental results
reveal that the LDA-based model outperforms other state-
of-the-art retrieval models. Yi and Allan [51] conducted
a comparative study of various topic modeling methods,
including LDA, PLSA, and LSI, and found that LDA
generally performed best. Similarly, Lu et al. [52] compared
LDA and PLSA in an empirical study, and their results
also favored LDA for most tasks. Atreya and Elkan [53]
demonstrated the limitations of Latent Semantic Indexing
(LSI) for TREC collections and proposed a new retrieval
model that utilizes word co-occurrence statistics to estimate
document similarity. Their experimental results indicate that
this method outperforms LSI and several other retrieval
models.

5) MULTILINGUAL RETRIEVAL MODEL
The challenge of vocabulary mismatch in information
retrieval has been tackled using various approaches, including
the statistical translation method. This method extends the
document representation function from merely considering
frequency to incorporating translation models. This frame-
work treats queries and documents as texts in different lan-
guages, and statistical machine translation (SMT) techniques
are employed to model their relationship. Retrieval with
translation models requires learning translation probabilities
from queries to corresponding relevant documents, which can
be obtained from labeled data, making it a supervised learning
technique.

Berger and Lafferty [138] introduced the idea of formu-
lating retrieval tasks as an SMT problem, where a query q
is translated to document d with the conditional probability
P(d |q). The model can be expressed as:

P(d |q) ∝ P(q|d)P(d) (2)

In this equation, P(q|d) denotes a translation model that
translates d to q, while P(d) represents a language model that
generates d . Translation probabilities can be calculated using
queries and their relevant documents, such as click-through
datasets, while the language model can be trained through
various methods like BM25. Karimzadehgan and Zhai [55]
observed that the translation probability P(q|d) allows
incorporating semantic relationships among terms with non-
zero probabilities, providing a form of ‘‘semantic smoothing’’
for P(d |q). A crucial difference between machine translation
and conventional translation for retrieval is that queries and
documents are actually in the same language. The probability
of translating a word to itself should be relatively high (i.e.,

P(w|w) > 0), which corresponds to exact term matching in
retrieval tasks.

Further studies have offered theoretical analyses of
the translation language model for information retrieval.
Karimzadehgan and Zhai [57] investigated the model’s
properties and constraints using axiomatic analysis. Riezler
and Liu [58] proposed a query expansion technique that
utilizes monolingual statistical machine translation (SMT) to
improve retrieval efficiency. Gao and Nie [59] introduced a
query expansion method that leverages translation models
and search logs to enhance retrieval effectiveness.

B. SPARSE RETRIEVAL METHODS
The growing popularity of sparse retrieval methods can be
attributed to their ability to represent individual documents
and queries using sparse vectors, which only activate a small
number of dimensions. This approach aligns with human
cognitive processes and can be easily integrated into existing
indexing mechanisms, optimizing retrieval performance.
Sparse retrieval approaches can be divided into two main
categories. The first category involves using neural models
to enhance term weighting schemes while preserving the
symbolic encoding of documents and queries. This method
is commonly known as neural weighting schemes. On the
other hand, the second category focuses on directly obtaining
sparse representations of documents and queries in the
latent space through the application of neural networks. This
particular technique is referred to as sparse representation
learning.

1) NEURAL WEIGHTING SCHEME
There are two methods to leverage neural models in sparse
term-based retrieval. The first method involves designing
neural models that predict term weights based on semantics
rather than relying on predefined heuristic functions. This
approach allows for the re-weighting of term significance
before indexing. The second strategy involves expanding
each document with additional terms and indexing the
expanded documents using classical term-based methods.
One of the earlymodels to learn termweights is DeepTR [60],
which employs neural word embeddings to determine term
importance. It constructs a feature vector for each query
term and learns a regression model to map feature vectors
onto ground truth term weights. These estimated weights
can replace traditional term weighting schemes, such as
BM25 and LM, enhancing retrieval performance for bag-of-
words query representations. Another approach involves inte-
grating neural word embeddings into information retrieval
systems [61]. The authors propose a method to evaluate
the effectiveness of various neural word embeddings in
information retrieval and describe how to incorporate these
embeddings and re-weighting into retrieval models. Context-
aware term weighting methods, like ‘‘DeepCT’’ [62],
improve the first-stage retrieval process’s effectiveness by
assigning higher weights to more relevant terms based on
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their context. The authors suggest a deep learning-based
method that learns to estimate term importance in a sentence
or passage according to context. Frej et al. [63] presented
an alternative approach to learning term discrimination in
information retrieval, using a deep learning-based method
that distinguishes relevant terms from irrelevant ones based
on context. Expanding on ‘‘DeepCT,’’ the authors [62]
consider term importance at multiple granularity levels, from
document to sentence level, enhancing retrieval effectiveness.
The efficiency of the ‘‘DeepCT’’ approach is evaluated and
compared with traditional term weighting methods in terms
of computational cost and retrieval performance [65]. Lin
and Ma [66] offered a conceptual framework for analyzing
and comparing various information retrieval techniques, par-
ticularly neural-based methods. They introduced ‘‘DeepIm-
pact’’ and ‘‘COIL’’ as two different framework dimensions,
proposing ‘‘uniCOIL’’ as a unified approach that combines
the strengths of both dimensions. Nogueira et al. [67]
proposed a model called ‘‘Doc2Query,’’ which predicts
relevant documents given a document using a neural network.
They demonstrate that this approach can improve document
retrieval effectiveness. Nogueira et al. [68] enhanced their
previous work by incorporating additional information, such
as document titles and clicked snippets, into the Doc2Query
model. They also propose a new evaluation metric, ‘‘Top-k-
TTTTT,’’ showing that the new model, ‘‘DocTTTTTQuery,’’
outperforms the previous model on the benchmark dataset.

Mao et al. [69] proposed a model called ‘‘GAR,’’
which generates new queries based on a given question,
then retrieves relevant documents using those queries.
This approach is shown to improve open-domain question-
answering effectiveness. Yan et al. [70] proposed a model
called ‘‘UED’’ that is trained on a large text corpus using
a combination of supervised and unsupervised learning,
effectively ranking and expanding passages. The authors [67],
[68], [69], [70] proposed novel methods for expanding a
given document or query by predicting or generating relevant
queries and then using those queries to retrieve additional
information. These methods have improved the effectiveness
of document retrieval, open-domain question answering, and
passage ranking. As new approaches are introduced, the field
of information retrieval continues to evolve and improve.
Models like MacAvaney et al.’s [71] used a neural network to
predict term importance in a document and retrieve additional
information. Others, such as SparTerm [72], used a neural
network to learn a sparse term-based representation of a
document. Likewise, SPLADE and SPLADE v2 [73] employ
neural networks to learn a sparse lexical representation of
a document and expand the query. DeepImpact, proposed
by Mallia et al. [74], utilizes a neural network to learn the
impact of passages on retrieval. TILDEv2, suggested by
Zhuang and Zuccon [75], applies a neural network to learn
term-based representations of passages and expand the query.
Similarly, SpaDE, proposed by Choi et al. [76], uses a neural
network to learn a sparse representation of a document
and encode the document with two encoders. These models

demonstrate the potential of neural networks in enhancing
information retrieval by refining term weighting, expanding
queries, or learning sparse representations.

2) SPARSE REPRESENTATION LEARNING
One key advantage of sparse representations is their ability to
capture semantic relationships between words and phrases,
going beyond simple term frequency measures. This allows
for better handling of synonymy and polysemy issues, which
can be challenging for traditional term weighting schemes.
Sparse representations can also encode higher-level semantic
information, enabling the retrieval system to understand
better the context and meaning of a document or query.
Unlike term-weighting approaches in symbolic space, sparse
representation learning techniques concentrate on construct-
ing sparse vectors for both queries and documents. These
representations aim to encapsulate the semantic essence
of each input text, thereby placing queries and documents
within a latent space. However, unlike the topic models
discussed in Section III-A(4), the dimensions of the latent
space created by neural models lack distinct concepts. The
resulting sparse representations can be effectively stored and
searched using an inverted index. Each entry in the index table
corresponds to a ‘‘latent word’’ rather than a conventional
term. Salakhutdinov and Hinton [77] proposed a method
called semantic hashes, which use a neural network to map
documents to compact binary codes that can be used for
efficient approximate nearest neighbor search. They showed
that this approach could achieve state-of-the-art performance.
Zamani et al. [78] proposed a model called SNRM, which
uses a neural network to learn a sparse representation of a
document and showed that it could improve the effectiveness
of information retrieval. Jang et al. [79] proposed a model
called UHD-BERT, which uses a neural network to learn
ultra-high-dimensional sparse representations of a document
and showed that it could improve full-ranking effectiveness.
Yamada et al. [80] proposed a model called BPR, which
uses a neural network to learn a semantic hash for each
passage and showed that it could improve the efficiency
of open-domain question answering. Lassance et al. [81]
proposed a model called CCSA, which uses a neural network
to learn a composite code sparse representation of a document
and showed that it could improve the effectiveness of first-
stage retrieval. All these papers propose new methods that
use sparse representations to improve the effectiveness and
efficiency of information retrieval systems.

C. DENSE RETRIEVAL METHODS
The advent of deep learning techniques has significantly
transformed the information retrieval landscape. As seen
in fig. (4), dual-encoder architecture, also known as a
siamese network [29], is the typical design for dense retrieval
models. It comprises twin networks that receive different
inputs (queries and documents) and independently develop
standalone dense embeddings for them. This section provides
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FIGURE 4. Dual-encoder architecture of dense retrieval methods.

a comprehensive overview of state-of-the-art deep learning
methods for semantic information retrieval, outlining key
advancements and their respective contributions to the field.

1) WORD-EMBEDDING-BASED APPROACHES
Word embeddings, which are dense and continuous word
representations that capture semantic meaning, have gained
popularity for document and query representation in informa-
tion retrieval systems. Various techniques have been proposed
to use word embeddings in combination with other meth-
ods. These include aggregation techniques [82], bilingual
word embeddings [83], dual embedding spaces [85], and
context representation for natural language generation [86].
In addition, researchers have turned to neural networks
to map documents and queries into continuous spaces,
using similarity measures for document ranking [87], [88],
[89]. By incorporating these diverse approaches, information
retrieval systems can harness the power of word embeddings
to improve their overall performance and effectiveness.

2) TRANSFORMER-BASED APPROACHES
The advent of transformer based models have paved
the way for developing various encoding techniques for
questions and documents. Nie et al. [93] proposed a decou-
pled encoding approach using DC-BERT, which enhances
document retrieval effectiveness. Similarly, Yang et al. [94]
introduced a question-answering method that employs a
neural retrieval component, a cross-attention mechanism for
response generation, and a data augmentation technique to
boost performance.

3) APPROXIMATE NEAREST NEIGHBOR SEARCH AND
NEGATIVE CONTRASTIVE LEARNING APPROACHES
Recent research has also delved into the use of approximate
nearest neighbor search and negative contrastive learning
for dense text retrieval. Xiong et al. [95] put forth a method
called ANCE, which utilizes a neural network to encode
documents and queries. This is followed by applying
approximate nearest neighbor search and negative contrastive
learning for document ranking. Zhan et al. [96] presented an
efficient technique for training dense retrieval models using a
combination of hard and soft negative sampling. Meanwhile,
Shan et al. [97] employed a global weighted self-attention
network for web search. Other researchers have explored

optimization techniques and innovative methodologies to
enhance the performance of dense retrieval models in various
scenarios [98], [99], [100], [101], [102], [103].

4) PASSAGE-CENTRIC APPROACHES
In an effort to further improve dense retrieval models,
researchers have explored new approaches, such as passage-
centric similarity relations, which concentrate on the relation-
ship between passages rather than individual words [104].
Moreover, Khattab et al. [105] proposed relevance-guided
supervision for training ColBERT, a pre-trained transformer
model designed for OpenQA tasks, to enhance passage
relevance learning. Singh et al. [106] introduced an end-to-
end training method for the multi-document reader and
retriever systems in open-domain question answering. These
advancements showcase the ongoing efforts to refine and
expand upon existing retrieval methods to achieve better
performance in information retrieval tasks.

5) PSEUDO RELEVANCE FEEDBACK APPROACHES
Pseudo Relevance Feedback (PRF) is a widely-used tech-
nique in information retrieval that aims to improve the
effectiveness of the initial query by leveraging the informa-
tion obtained from top-ranked documents in the preliminary
search results. The assumption behind PRF is that these docu-
ments are likely to be relevant to the user’s information needs.
The system can refine the query by analyzing their content
and producing more accurate retrieval results. Building upon
the concept of PRF, Yu et al. [107] proposed a method
to enhance query representations for dense retrieval using
pseudo-relevance feedback. This technique extracts relevant
information from a set of retrieved documents to improve
retrieval performance. Building on this, Wang et al. [108]
introduced a method for training dense retrieval models
utilizing pseudo-relevance feedback and multiple represen-
tations, allowing the model to learn more robust query
representations.

6) DISCRIMINATIVE SEMANTIC RANKING APPROACHES IN
DENSE RETRIEVAL
As researchers strive to improve information retrieval, they
have developed methods to train models that can effectively
distinguish between relevant and non-relevant documents
in dense retrieval settings. Cai et al. [109] suggested a
method for training a discriminative semantic ranker for
question retrieval, focusing on this crucial aspect of accu-
rate retrieval. To further refine the understanding of the
relationship between passages and queries, Wu et al. [110]
proposed a representation decoupling method that improves
open-domain passage retrieval by separating the encoding of
passages and queries.

Continuing this research line, Ren et al. [111] introduced
a dense passage retrieval and re-ranking model training
approach. Meanwhile, Lindgren et al. [112] presented a more
efficient method for training retrieval models through nega-
tive caching, Lu et al. [113] proposed a technique for training
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FIGURE 5. Cross-Architecture Knowledge Distillation [159].

neural passage retrieval models usingmulti-stage training and
improved negative contrast.

7) KNOWLEDGE DISTILLATION APPROACHES
Knowledge distillation, a technique for transferring knowl-
edge from a pre-trained, larger model to a smaller model,
has been employed to enhance performance on various tasks
such as document ranking [114], chat-bot systems [115],
question answering [116]. Large-scale retrieval tasks [117].
Researchers have explored using pre-trained BERT models,
transferring knowledge across different model architectures,
and applying Margin-MSE loss functions [118] for knowl-
edge distillation.

Kim et al. presented EmbedDistill Figure (5), an innovative
distillation approach for information retrieval that leverages
relative geometry among queries and documents. It improves
upon traditional methods by using embedding matching
for stronger local geometry signals and query generation
for better global data manifold coverage. Applicable to
both dual-encoder and cross-encoder models, EmbedDistill
shows promising results on benchmarks like MSMARCO
and NQ. The paper’s theoretical analysis also supports the
effectiveness of the proposed approach.

Furthermore, the relationship between pre-trained models
and the effects of distilling knowledge from one model to
another have also been investigated [119], [120].

8) CROSS-MODAL APPROACHES
Cross-modal techniques for dense text retrieval have gained
interest as a means to bridge the gap between different
modalities, such as text and images. Researchers have
focused on developing methods that enable the encoding
of textual and visual information into shared latent spaces
for retrieval tasks [139], [140], [141]. These methods often
employ deep learning techniques such as convolutional neural
networks (CNNs) for image feature extraction, combined
with word embeddings or recurrent neural networks (RNNs)
for textual data representation. Some notable advancements
in this area include using attention mechanisms [142], [143]
and incorporating transformer-based models, such as BERT,
for cross-modal tasks [144], [145].

9) REINFORCEMENT LEARNING APPROACHES
Reinforcement learning techniques have been employed in
dense text retrieval to optimize retrieval policies and explore

the interaction between users and retrieval systems [146],
[147]. Reinforcement learning approaches, such as Deep
Q-Networks (DQNs) and policy gradient methods, have
been applied to tasks such as document ranking [148] and
query auto-completion [149]. These approaches focus on
learning optimal actions and strategies in response to user
interactions and feedback to improve retrieval performance.
Some research has also explored incorporating reinforcement
learning into pre-trained transformer models, such as BERT,
to fine-tune the models for specific retrieval tasks [150].

10) GRAPH-BASED APPROACHES
Graph-based methods for dense text retrieval exploit the
relationships between documents, terms, and other entities
to improve retrieval performance [151], [152]. Recently,
graph neural networks (GNNs) have been used to model
such relationships in various retrieval tasks, including
document ranking [153] and question answering [154].
Graph-based approaches can leverage local and global
information within the graph structure, enabling the model
to capture complex relationships and dependencies between
various entities [155], [156]. Moreover, integrating GNNs
with pre-trained transformer models, such as BERT, has
been explored to enhance the performance of retrieval
tasks [157], [158].

D. HYBRID RETRIEVAL METHODS
Hybrid retrieval methods aim to improve the perfor-
mance of text retrieval systems by combining different
representations, architectures, and techniques. This section
discusses various approaches and their contributions to
the field of information retrieval. Vulić and Moens [83]
presented a method that linearly combines monolingual
and cross-lingual word embeddings to enhance retrieval
performance. Their approach leverages the strengths of
both monolingual and cross-lingual embeddings, facilitating
better alignment between different languages and leading
to improved results in multilingual retrieval tasks. Gan-
guly et al. [121] introduced the Generalized Language
Model (GLM), which utilizes word embeddings to improve
retrieval performance. By incorporating word embeddings
into the language modeling framework, GLM captures the
semantic relationships between words, allowing for better
query-document matching and, thus, improved retrieval per-
formance. Roy et al. [122] suggested a method for combining
word embeddings using set operations to enhance retrieval
performance. Their approach captures the semantic similarity
between the query and document terms by performing
set operations on word embeddings, improving retrieval
performance while maintaining computational efficiency.
Mitra et al. [85] proposed the dual embedding space model
(DESM), which combines word embeddings to improve
retrieval performance. DESM leverages two different embed-
ding spaces to capture local and global semantic information,
providing a more comprehensive representation of terms and
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TABLE 2. Overview of First Stage Retrieval Techniques in Research Studies: Listing the reference, publication year, paper category, and algorithm used for
first stage retrieval.

leading to better retrieval performance. Combining local and
global embedding spaces allows themodel to capture nuances

and relationships between words, ultimately resulting in
improved query-document matching. Boytsov et al. [123]
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introduced amethod that replaces term-based retrieval with k-
NN search while incorporating translation models and BM25
to improve retrieval performance. This approach enables the
model to consider the semantic relationships between terms
and the traditional statistical weighting schemes, resulting
in a more effective retrieval system. Dos Santos et al. [124]
proposed a method that combines Bag-of-Words (BOW) and
Convolutional Neural Networks (CNN) to enhance question-
answering performance. By integrating the strengths of BOW,
which captures term frequency information, and CNN, which
captures local semantic relationships between words, their
approach achieves a more comprehensive representation
of text and improved performance in question-answering
tasks. Seo et al. [125] introduced DenSPI (Dense-Sparse
Phrase Index), a method designed to improve real-time
question-answering performance. DenSPI combines dense
and sparse representations to capture fine-grained and
coarse-grained semantic information, enabling efficient and
accurate retrieval of relevant passages for question answering.
Lee et al. [126] proposed SPARC (Sparse, Contextualized
Representations) to enhance real-time question-answering
performance. SPARC leverages contextualized representa-
tions to encode the interactions between terms within a text
and capture the context-specific meanings of words. By com-
bining these contextualized representations with sparse
term-based features, SPARC provides a richer text represen-
tation, leading to improved question-answering performance.
Wrzalik and Krechel [92] introduced CoRT (Complementary
Rankings from Transformers), combining transformer-based
models with traditional retrieval methods such as BM25 to
improve retrieval performance. CoRT leverages the strengths
of both deep learning-based models and traditional ranking
algorithms to create an ensemble system that achieves
better retrieval performance than either method alone.
Gao et al. [127] introduced CLEAR (Complement Lexical
RetrievalModel), which combines lexical and semantic resid-
ual embeddings to improve retrieval performance. CLEAR
leverages the complementary nature of lexical and semantic
information to create a more comprehensive representation
of text, resulting in improved query-document matching
and retrieval performance. Kuzi et al. [128] proposed a
hybrid approach that combines semantic and lexical matching
to improve the recall of document retrieval systems. This
method enhances the retrieval system’s ability to identify
relevant documents by considering the semantic relationships
between terms and their lexical co-occurrence patterns. This
leads to improved recall and overall retrieval performance.
Lin et al. [132] introduced uniCOIL (unified Concep-
tual framework for Information Retrieval), a conceptual
framework that aims to unify various information retrieval
techniques. By providing a common ground for diverse
retrieval methods, uniCOIL facilitates the development and
comparison of novel hybrid retrieval approaches, ultimately
driving advancements in the field of information retrieval.
Chen et al. [129] proposed CORW (Contextualized Offline
Relevance Weighting), a method that improves the efficiency

and effectiveness of neural retrieval by utilizing context
and relevance weighting. CORW combines contextualized
representations with relevance weighting to create a more
efficient retrieval system that captures semantic nuances and
relationships between terms, leading to improved retrieval
performance. Arabzadeh et al. [130] introduced a method for
predicting efficiency and effectiveness trade-offs for dense
versus sparse retrieval strategies. This approach provides a
systematic way to balance the trade-offs between compu-
tational efficiency and retrieval effectiveness, enabling the
development of more practical and scalable retrieval systems.
Leonhardt et al. [131] proposed Fast Forward Indexes.
This method aims to improve the efficiency of document
ranking by using a forward index that stores the positions
of terms within documents. This approach reduces the
computational overhead associated with traditional document
ranking methods, enabling faster and more efficient retrieval
without sacrificing the effectiveness of the ranking process.
Lin et al. [132] introduced Representational Slicing, a method
that densifies sparse representations for passage retrieval.
By transforming sparse representations into denser ones,
Representational Slicing captures more fine-grained seman-
tic information and relationships between terms, leading to
improved passage retrieval performance. In general, hybrid
retrieval methods have demonstrated the potential to improve
text retrieval system performance by combining different rep-
resentations, architectures, and techniques. These methods
take advantage of the strengths of diverse approaches, such as
word embeddings, contextualized representations, attention
mechanisms, and traditional ranking algorithms, to create
more effective and efficient retrieval systems. As research in
this area continues to advance, it is expected that novel hybrid
retrieval methods will further enhance the performance of
information retrieval systems, enabling users to find relevant
information more quickly and accurately.

IV. SECOND STAGE - RANKER
In the modern era of information retrieval and web search, the
ranking has become essential to provide users with relevant
and high-quality search results. As a critical component of
the search engine pipeline, the second stage ranker refines
the ranking of the initially retrieved documents to improve
the quality of search results. This section delves into various
learning-to-rank techniques and deep learning-based ranking
models that enhance ranking tasks’ performance.

A. LEARNING TO RANK
Techniques for term weighting, like BM25, are typically
categorized as unsupervised methods, even though they
possess adjustable parameters that can be tweaked using
learning data [18]. Significant progress within text ranking
started end of the 1980s with the introduction of supervised
machine learning algorithms to create ranking models, with
early examples being the work of [160], [161], and [162].
This method, known as ‘‘learning to rank’’ (LTR), is heavily
dependent on manually crafted features, focusing mainly on
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TABLE 3. Overview of Second Stage Ranking Techniques in Research Studies: Listing the reference, publication year, paper category, and algorithm used
for second stage-ranker.

the statistical attributes of terms within texts and the inherent
qualities of the texts themselves.

Statistical attributes of terms include document frequen-
cies, document lengths, term frequencies, and other elements
present in scoring functions like BM25. As a matter of fact,
BM25 scores and other precise matches scoring functions
are frequently used as features within a learning-to-rank

framework, with features occasionally integrating field-
specific proximity constraints [163]. Inherent qualities of
texts vary from basic statistics; in the context of web searches,
hyperlink graph features, including inbound and outbound
link counts and PageRank scores, are also prevalent [164].

Real-world search engines may utilize hundreds or even
more features [163]. For systems with large user bases,
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user behavior-based features, such as query frequency or
link click frequency in various contexts, serve as significant
importance indicators and are fully merged into learning-to-
rank techniques.

The rise of learning to rank was chiefly spurred by the
escalating prominence of search engines as vital mechanisms
for browsing the internet, as earlier techniques reliant on
human-curated directories turned unfeasible owing to the
rapid increase of obtainable content. Log data, which records
user actions such as inquiries and clicks, can be harnessed to
refine machine-learned ranking frameworks [165], [166].

Upgraded search experiences prompted a larger user base,
yielding more records data and conduct-focused aspects to
refine ranking quality further. Learning-to-rank techniques
can be broadly divided into three categories based on
their loss functions’ general forms: pointwise, pairwise, and
listwise approaches [167], [168].

While this classification mainly concentrates on loss
function forms, it can additionally be utilized to depict
rankingmethods using transformers. The zenith of learning to
rank took place at the start of the decade, just before the deep
learning evolution, within the creation of tree ensemble-based
models, specifically gradient-boosted decision trees [169],
[170].

Although transformers for text ranking are additionally
seen as a supervised machine-learning technique, they are not
typically considered learning-to-rank methods. Learning to
rank is distinguished by its multiple sparse-hand-engineered
features, as opposed to the deep learning approaches that
succeeded it [19], [161].

Nevertheless, the term ‘‘deep learning to rank’’ shows
arisen in recent discussions to represent deep learning
methods that also integrate sparse features [171].

Transformers have transformed the area of natural lan-
guage processing and also have been effectively employed in
various tasks, including text ranking. In contrast to learning-
to-rank methods, which typically use hand-crafted features,
transformer-based approaches harness deep learning to learn
intricate representations of input texts and produce rankings.
This transition has facilitated the development of more
advanced text ranking models capable of better capturing
semantic relationships and context, ultimately leading to
improved search engine performance and user experiences.

B. DEEP LEARNING BASED RANKING MODEL
Following the learning-to-rank era, deep learning emerged
as the next significant development within text ranking,
initially gaining traction in computer vision and subsequently
in natural language processing communities. Deep learning
approaches were intriguing from the information retrieval
perspective due to two main factors. First, continuous
vector representations allowed text retrieval to surpass the
limitations of exact term matching. Second, neural networks
eliminated the requirement for labor-intensive manually
created features, which was a significant challenge in con-
structing learning-to-rank systems. Within the realm of DL

methods for text ranking, it is helpful to differentiate between
pre-BERT models and BERT-built models, as the BERT
revolution was a driving force behind the advancements in
the field.

The Deep Learning Track at TREC 2019, the initial
extensive assessment of retrieval methods after the debut
of BERT, demonstrated the influence of pre-trained neural
language models on retrieval efficiency among several team’s
approaches [172].

These pre-BERT models explored different neural archi-
tectures, such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and their variants. These
models aimed to capture semantic information and context
within the text to enhance the significance of document
ranking. While some models leveraged supervised learning,
others utilized unsupervised or semi-supervised strategies to
learn representations of text data [14], [173], [174].

However, the opening of BERT and transformer-based
models significantly impacted the field of text ranking. These
models, pre-trained on considerable portions of text data,
demonstrated unparalleled performance across various nat-
ural language processing tasks, including document ranking.
By learning rich contextual representations and overcoming
the limitations of previous deep learningmodels, transformer-
based approaches have set new standards for effectiveness in
text ranking. These studies exhibit considerable architectural
similarities by excluding another extensive body of literature,
primarily from the NLP society, focusing on the near
corresponding situation of determining semantic likeness
between two sentence models. In this regard, ideas are
exchanged between the IR and NLP communities.

Nevertheless, a significant difference exists: information to
a model for calculating semantic similitude exists symmetric,
whereas queries and documents are different and cannot exist
interchanged as model inputs. This difference implies that
architectures for computing semantic likeness are typically
symmetric though not necessarily for modeling query-
document relevancy.

Neural ranking models can typically be divided into three
categories: interaction-based, representation-based mod-
els, and hybrid representation and interaction models.
Representation-basedmodels Fig. (6) concentrate on learning
dense vector representations of queries and documents alone.
These can be compared using a straightforward metric like
cosine likeness or inner products to determine relevance.
Otherside, interaction-based models Fig. (7) approximate the
representations of terms in the query and document, resulting
in a likeness matrix catching term interactions. This matrix
is additionally analyzed to produce a relevancy score. In both
circumstances, models can employ various neural elements,
such as CNN and RNN, to extract relevant signals.

Representation and interaction models are generally
trained end-to-end using relevancy determinationswith solely
the embeddings of query and document terms serving as
intake. Additional features are usually not incorporated,
representing a significant departure from learning-to-rank
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FIGURE 6. A general structure of representation-focused models is
provided. These models employ two deep neural networks to transform
the query and document into feature vectors. Subsequently, a ranking
function Rel is utilized to convert the feature vectors of both the query
and document into a relevance score expressed as a real number.

techniques. The following provides more detail and examples
of these models:

1) REPRESENTATION-BASED MODELS
The representation models, as illustrated in Fig. (6), utilize
two independent neural network models to represent a
query and a document into feature vectors query and docu-
ment [175]. These models calculate the relevancy score using
a query document duos by utilizing straightforward functions
like cosine likeness or a Multi-Layer Perceptron among the
query and document representations. Huang et al. [176] pre-
sented the foremost deep neural ranking model, the DSSM,
established on the Siamese architecture. Shen et al. [177]
trained Convolutional Deep Structured Semantic Model
utilizing a CNN rather than feed-forward networks.
ARC-I [178] also utilizes CNNs to extract feature repre-
sentations of queries and documents. Qiu and Huang [179]
and Shen et al. [180] developed Convolutional Neural Tensor
Network and Model, respectively, incorporating CNN as the
primary component.

Recurrent neural networks (RNN) have been successful in
representing sentences as fixed-length feature vectors, with
Manhattan LSTM (MaLSTM) by [181] and LSTM-RNN
by [182] employing two LSTM models as feature extractors.
Bidirectional LSTM (bi-LSTM) [183] has been used in
MV-LSTM [184] to apprehend semantic matching in indi-
vidual positions of the document and query by developing
positional sentence representations. The model then utilizes a
tensor layer [185] to model exchanges between the developed
features. To extract the top k strongest interactions, k-max
pooling [186] is applied in the tensor layer, followed by an
MLP to calculate the relevance score.

Representation models, like the DSSM [176], under-
stand vector representations of queries and documents to
compute query–document relevancy scores. Shen et al. [180]
enhanced upon DSSM by employing CNNs to apprehend
context. The Dual Embedding Space Model [85], [187] illus-
trates texts utilizing pre-trained word2vec embeddings [188]
and calculates relevancy scores by aggregating cosine
likenesses across every query–document terms. Language
models based on word embeddings [121] can furthermore be
classified as representation models.

FIGURE 7. A general overview of the interaction-centric model
architecture is presented. These models employ an interaction function to
transform the query and the document into an interaction outcome.
Subsequently, a ranking function Rel is utilized to convert this interaction
output into a relevance score expressed as a real number.

2) INTERACTION-BASED MODELS
Interaction-focused models Fig. (7) address the risk of
missing crucial matching signals in document retrieval tasks,
which is a challenge in representation-focused models. These
models initiate by constructing regional interactions for a
query document duo employing basic representations and
then train a deep model to identify essential interaction
relations among the query and document. Interaction models
catch corresponding signs among the query and document
them at an earlier phase.

Guo et al. [21] introduced the Deep Relevance Matching
Model that employs histogram-established attributes for term
matching. The interaction matrix among the query and
document is calculated using pairwise cosine likenesses
among query and document token embeddings. To regulate
the assistance of individual query tokens to the final relevancy
score, the authors suggested a term gating network with a
softmax operation.

K-NRM [189] uses kernel pooling for soft-match signs
to address the non-differentiability and computational
inefficiency of the histogram-based representation in
DRMM. Other models utilizing cosine similarity interaction
matrix include the Hierarchical Neural maTching model
(HiNT) [190], aNMM [191],MatchPyramid [192], and [193].
In addition to cosine similarity, similarity measures such
as (.) product and indicator function are utilized in HiNT
and MatchPyramid, and Gaussian Kernel is introduced in
MatchPyramid [192] with considerable relations matrices.

Various architectures are employed for feature extractors
to construct query-document relations and for ranking to
pull corresponding signals from interactions of query and
document tokens.

a: LSTM-BASED RANKING MODELS
Models like [190], [194], and [195] utilize LSTM in neural
ranking models. He and Lin [194] employed bi-LSTMs
for context modeling of text intakes, while [195] used two
independent bi-LSTMs to apply queries and documents to
hidden states. Fan et al. [190] suggested a variant of the HiNT
model that sequentially gathers the signs from each passage
in the document using an LSTM model and a dimension-
wise k-max pooling layer. Aberi et al. [196] presented a
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topic-based LSTMmodel to re-rank study outcomes based on
a submitted input query using the previous query sequence
and user click history. The model incorporates the topic
distribution of user documents into the LSTM model.

b: GRU-BASED RANKING MODELS
Match-SRNN [197] uses a 2-D GRU to accumulate matching
signals. Fan et al. [190] use a spatial GRU in their neural
ranking model to pull relevancy corresponding evidence
from query-document interaction tensors. DeepRank [193]
computes a query-centric feature vector using the GRU
network.

c: CNN-BASED RANKING MODELS
CNNs are employed in various interaction-focused mod-
els, including ARC-II [178], PACRR [198], PACRR-
DRMM [199], Match-Tensor [195], Conv-KNRM [200]
and [201], [202], [203]. ARC-II [178] is an interaction-based
method that operates directly on the interaction matrix.
Hui et al. (2017) proposed the PACRR model to capture
position-dependent information. McDonald et al. (2018)
introduced PACRR-DRMM, which adapts the PACRR
model to incorporate contextual information for per query
token. Jaech et al. [195] prepared Match-Tensor to explore
numerous channel models for the interaction tensor.
Dai et al. [200] further investigated n-gram soft matching
within the Conv-KNRM model using CNN filters.

3) COMBINING REPRESENTATION AND INTERACTION IN
HYBRID MODELS
By integrating them into a single model, retrieval models can
bring the edge of representation and interaction-based deep
architectures.

In DUET [22], a network focusing on interaction, called
the local model, is merged with a representation-oriented
network, named the distributed model, to form a unified
deep learning architecture. The regional model processes
the interaction matrix of the query and document, which is
established on the exact matches of query terms within a
document. This matrix is then passed through a CNN [22].

The convolutional output passes through two fully con-
nected layers, a dropout layer and a final fully connected
layer, producing a relevancy score. On the other hand,
the distributed model generates a lower-dimensional feature
vector for the query and document using a word embed-
ding established representations for encoding query and
document terms. After applying a sequence of nonlinear
transformations to the embedded intake, the matching among
query and document representations is estimated utilizing
an element-wise product. The last DUET architecture com-
puted value is the sum of local and distributed networks’
scores.

Through their observed analysis, Nie et al. [202] demon-
strated that interaction-based neural architectures normally
outperform representation-centric architectures in infor-
mation retrieval tasks. While representation-concentrating

models provide the benefit of better estimation by maintain-
ing a consistent feature vector for a document across every
study. However, they miss matching signals across distinct
tasks and datasets due to their static feature representation.
In contrast, interaction-focused neural networks can be
computationally demanding, requiring pairwise similarities
between query and document token embeddings. However,
they hold the edge of comprehending related cues from
interacting two intakes at the initial phases.

Another reasonably available hybrid model is the DUET
model [204], which supplements a representation knowledge
component with an interaction part accountable for deter-
mining precise term matches. Lin [205] asked a provocative
question: Are neural rankingmodels superior to the ‘‘classic’’
term matching approach in the lack of extensive training
data obtained from behavior records? This question is
crucial because academic researchers consistently struggle
to access such data, typically only available to industry
researchers. To what degree accomplish neural ranking
models ‘‘work’’ on the restricted shares of training data
that are publicly obtainable? Yang et al. [206] addressed this
question by corresponding to different notable interactions
and representation-based neural ranking models. Underneath
these shot data conditions, almost all neural ranking methods
could not perform effectively.

4) ATTENTION BASED REPRESENTATION
Attention-based models have become popular recently, and
many different approaches have been proposed. These
models used an attention mechanism to concentrate on
relevant aspects of input text and create better representations
for various NLP tasks. McDonald et al. [199] presented
the Element-wise Attention-Based approach, which employs
exposed-context embedding and attention importance. This
technique evaluates the importance of attention for each
query token relative to document tokens and generates
an attention-based representation of the document based
on these weights. The encoding of the query token is
familiar to the document through multiplication, and the
ultimate relevance score is calculated using the DRMM
algorithm.

In their work, Kim et al. [207] integrated the attention
mechanism into the DRCN architecture by leveraging
residual connections and co-attention. This enabled the
model to concentrate on pertinent tokens in the input texts.
Additionally, they suggested merging feature vectors from
preceding layers before computing attention weights.

The DRr-Net proposed by Zhang et al. [208] also pur-
sued a comparable approach by implementing an attention
stack-GRU unit and a Dynamic Re-read (DRr) unit. This
model prioritizes significant words and operates based on
attention weights in each step.

Tan et al. [209] proposed the Multiway Attention Network
that leverages multiple attention procedures to improve
semanticmatching. The attention procedures include bilinear,
concatenated, element-wise dot product, and difference of
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two vectors. The model aggregates their results utiliz-
ing a bi-directional GRU network and joined attention
mechanism.

Wang and Jiang [210] used multiple comparison tech-
niques to match token embeddings and their contexts.
These techniques include neural tensor networks, neural
network layers, cosine similarity, Euclidean distance, and
element-wise functions for vectors.

Yin et al. [211] presented an Attention Based Convolu-
tional Neural Network that includes the attention mechanism
to all input layers and the feature maps acquired from
the convolutional filter. This model calculates attention
significances on the intake embedding to enhance feature
maps and reweights feature maps for attention-based avg
pooling.

5) PRETRAINED TRANSFORMERS FOR TEXT RANKING
The advent of BERT by [5] marked a significant milestone
in the domain of NLP. BERT has arisen effectively applied
to various assignments, containing question-answering (QA)
and document retrieval. BERT’s 512 token input limit poses
challenges for ad-hoc document retrieval, especially when
dealing with longer documents. Yang et al. [212] proposed
splitting documents into sentences and employing BERT
for each one. This method, inspired by [213], suggests
that single excerpts are more useful than entire documents
for increased recall in retrieval. To generalize this con-
cept, [212] introduced the top-k sentences established on
BERT-calculated retrieval scores within the sentence duo
classification context. To long document tasks, XLNet [214]
utilizes TransformerXL [215] rather than BERT. Trans-
formerXL incorporates close positional encoding and a com-
ponent recurrence mechanism to apprehend more extended-
term dependencies. Qiao et al. [216] fine-tuned BERT on
two retrieval tasks, proposing four BERT-based ranking
models that employ interaction and representation. BERT
is more effective when working with semantically close
text pairs, benefiting from relevance matching techniques.
MacAvaney et al. [24] introduced a model that combines
[CLS] representation with neural rankers, apprehending
relevancy and semantic matching. Dai and Callan [217]
enhanced BERT-based rankers using search logs, demon-
strating the benefits of tuning with extensive search
knowledge.

Nogueira et al. [218] proposed a multi-stage ranking
architecture using a pointwise ranking strategy (monoBERT)
and a pairwise learning strategy (duoBERT) to get the
absolute ranked index of documents.

Boualili et al. [219] suggested incorporating exact match-
ing signals directly in BERT’s sentence classification setting
for document retrieval. The successful application of BERT to
the MSMARCO passage ranking [220] by [221] encouraged
the research community to produce their impacts, address
constraints, and expand the result differently. The availability
of the MS MARCO dataset made the exploration of neural

benchmarks for ranking accessible to academic research
groups, as noted by [222].

V. DATA-SETS
Table (4) summarizes the state-of-the-art datasets used
in the survey paper. The table includes datasets for
various NLP tasks such as Passage-Retrieval [220], Bio-
Medical Information Retrieval [223], [224], [225], Question
Answering [226], [227], [228], [229], [230], Argument
Retrieval [231], [232], Community QA [118], Entities [233]
and SearchQuery [234]. The table lists the task, dataset name,
domain, and corpus size for each dataset. The datasets are
organized into sections based on the task they are used for.
The table briefly describes each dataset, including its source,
as mentioned in the references, and the corpus size. This table
can be used as a reference for researchers to select appropriate
datasets for their NLP tasks and to cite the datasets used in
their research.

VI. PRESENT CHALLENGES AND FUTURE PROSPECTS
In this section, we delve into some unresolved issues and
potential future developments in the context of semantic
models for the initial retrieval stage. Certain aspects are
critical but have not been adequately addressed in this
domain, while others present exciting avenues for upcoming
research.

Fig. (8) illustrates the key research areas and sub-topics
discussed in the ‘‘Present Challenges and Future Prospects’’
section. It highlights the main theme focused on unresolved
issues and potential future developments in the context
of information retrieval. The diagram provides a clear
overview of the critical research areas and their corre-
sponding challenges or future directions, allowing readers to
quickly understand the essential aspects that warrant further
exploration in the field of IR.

A. PROGRESS IN CUSTOM PRE-TRAINING OBJECTIVES
AND ARCHITECTURES FOR IR
Even though broad-spectrum pre-trained language models
effectively learn global linguistic understanding, creating
pre-training and fine-tuning techniques closely related to
downstream tasks is a more proficient strategy for enhanc-
ing performance in specialized tasks [235], [236]. Initial
exploration has occurred in pre-training objectives, model
structures, and model calibration methods for IR; however,
a more in-depth examination is required.

New Pre-Training Objectives: Pioneering research in
pre-training objectives customization has been carried out
by researchers such as Lee et al. [237], Chang et al. [238],
Guu et al. [239],Ma et al. [240], [241]. For instance, Lee et al.
[237] proposed the Inverse Cloze Task for retrieval tasks
in a large-scale document collection. Chang et al. [238]
introduced Body First Selection and Wiki Link Prediction
to capture inner-page and inter-page semantic relations
for passage retrieval in QA tasks. Ma et al. [240], [241]
presented the Representative Words Prediction objective,
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TABLE 4. SOTA Datasets in Information Retrieval. We provide the corresponding task, domain, and corpus for each dataset. For additional datasets
refere [307].

FIGURE 8. Highlights the main theme focused on unresolved issues and potential future developments in the context of IR.

significantly improving performance. Designing additional
appropriate objectives for IR is still in its early stages.

New Architectures: Additional investigation direction
involves devising novel architectures based on specific
downstream tasks. For example, Gao and Callan [242]
introduced Condenser, an innovative Transformer designed
to discourse structural readiness. This approach generates
steady advancement over traditional language models and
significantly enhances robust task-specific. However, design-
ing a clever pre-training model architecture suitable has not
been extensively explored compared to investigating new
pre-training objectives for IR.

Beyond Fine-Tuning: Although fine-tuning is the widely
used technique for Pretrained Transformer Models (PTMs)
for downstream tasks, it contains some weaknesses. It acts
inadequately on tasks without sufficient control data to

sustain fine-tuning and is inadequate for fine-tuning parame-
ters on every downstream task. Prompt tuning, which designs
discrete [243], [244] or continuous [245], [246] prompts for
specific downstream tasks, is a good method to decrease
the computational expense of utilizing PT models for down-
stream tasks. Though prompt tuning has gained outstanding
outcomes in domains such as data extraction [247], [248],
text classification [249], [250], and fact probing [243],
[251], there has existed no extended work on prompt
tuning.

In summary, limited progress has been made in developing
large pre-training objectives and architectures. It is crucial
to consider retrieval requirements, such as maximizing
the recall of potentially relevant documents and modeling
task-dependent characteristics when designing innovative
pre-training objectives for IR.
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B. REFINED LEARNING APPROACHES FOR IR
Creating benchmark datasets for information retrieval tasks
involves pooling, leading to a known bias issue [91], [98].
Addressing this problem requires intelligent learning tech-
niques, such as debiased contrastive objectives [252]. Hard
negative instances could enhance the model’s distinguishing
capability, but strategies for mining them have not been
thoroughly explored. Asynchronous ANCE training [95] is
a prominent method but has limitations due to the increased
training cost. Research suggests that learning with hard
and easy negative samples is more effective [101], and
exploring sophisticated training techniques, like curriculum
learning [253], is valuable. Supervised data is often limited
and prone to long-tail and sparsity problems. Weakly
unsupervised or supervised learning methods offer promising
directions, such as contrastive learning [253], [254]. Content-
weak supervision strategies leverage the inner structure of
documents to extract training labels [256].

C. INNOVATIVE INDEXING TECHNIQUES
Indexing schemes are crucial in IR tasks, as they dictate
the organization and retrieval of extensive big documents.
Dense retrieval techniques that comprehend dense repre-
sentations for queries and documents typically depend on
the ANN technique for better vector search in internet
search [109], [257]. Present dense retrieval techniques often
divide representation learning and index building, which
introduces several disadvantages. The indexing operation is
unable to utilize supervised knowledge, and the separately
obtained representation and index are not optimally con-
sistent, affecting retrieval performance. Some studies have
investigated combined training of indexes and encoders in the
recommendation and image retrieval domains [258], [259].
Designing combined learning schemes for retrieval-stage and
indexing techniques in information retrieval represents a
promising research direction.

Additionally, creating more suitable ANN algorithms to
handle big-size documents and sustain better and more
accurate retrieval is vital. Generally, two types of ANN
algorithms are aimed at enhancing retrieval efficiency:
nonspecific ANN search techniques [260], [261] and vector
compression techniques [262], [263], [264]. Each method
has limitations or drawbacks, such as sizable index sizes
for non-exhaustive methods and suboptimal performance
for compression methods. With the growing significance of
dense retrieval methods, there is an urgent need to develop
state-of-the-art ANN algorithms to balance efficiency and
effectiveness better.

D. EXPLORING MULTI-SOURCE DATA FOR PRE-TRAINING
Multi-modal creating PTMs based on cross-modal data,
such as text, image, audio, and video. While progress
has been made in vision-language pre-training (VLP) for
various downstream tasks, existingmodels are not thoroughly
evaluated for IR tasks. The future of multi-modal pre-training

should explore better vision-language objectives, integrating
more modalities and data for IR tasks [265], [266], [267].

Multi-lingual pre-training addresses the need for PTMs
that operate with numerous languages rather than just
English. Although some existing multi-lingual PTMs show
language transfer abilities, they are primarily designed for
NLP tasks and not cross-lingual tasks in IR. Future research
should focus on models better suited for cross-lingual IR
tasks [5], [268], [269].

Knowledge-improved pre-training involves integrating
external knowledge, such as knowledge graphs and field-
specific data, into Pretrained Transformer Models (PTMs) to
enhance IR performance. While there has been significant
work in this area, we observe that there is still potential
for these techniques to be more specifically and effectively
tailored to the unique challenges and requirements of IR
tasks. Future research should explore more efficient ways to
model this knowledge for IR, as well as strive for greater
interpretability in modeling knowledge for downstream
tasks [270], [271], [272], [273], [274].

E. NEXT GENERATION IR SYSTEM: SHIFTING FROM
INDEX-CENTRIC TO MODEL-CENTRIC
With the remarkable advancements within PTMs, traditional
multi-stage systems are index-centric. Still, pre-trained mod-
els with large sizes can encode extensive world knowledge.
This capability may allow them to produce direct results in
response to information needs. Metzler et al. [275] presented
a concept to construct model-based systems using powerful
pre-trained models. This concept incorporates an index
during training. Although this presents an intriguing vision,
it remains somewhat abstract. Tay et al. [276] developed a
new paradigm established on the T5model, achieving notable
enhancement by training with indexing and retrieval in
a multi-task design. Likewise, Zhou et al. [277] introduced
Dynamic Retriever, a model-based IR system built on
BERT. The BERT-based dense retriever is initially fine-tuned
with query-document pairs, and then model parameters are
initialized using the generated document embeddings. The
model is further fine-tuned with query-docid pairs. Despite
these initial explorations, numerous challenges still need to be
addressed. For example, how can we create semantics-based
document identifications, and how should the model be
updated when the document collection changes?

F. ESSENTIAL MATCHING SIGNALS IN DOCUMENT
RETRIEVAL
In information retrieval, neural ranking models concentrate
on two key matching approaches, relevance, and seman-
tic [21]. Semantic matching is utilized to compare a query and
a document. However, relying solely on semantic matching is
inadequate for document retrieval, particularly when queries
contain specific keywords.

Relevance matching [21] tackles the heterogeneity of
queries and documents in ad-hoc document retrieval. Conven-
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tional retrieval models, such as BM25, mainly employ exact
matching to rank documents that can be incorporated with
neural ranking models to boost retrieval effectiveness.

Both relevance and semantic signals are crucial to address
diverse scenarios in ad-hoc retrieval tasks. The joint model
proposed by [24] merges the [CLS] representation from
BERT with existing relevance-based neural ranking models,
providing relevance and semantic signals. Nonetheless, the
length constraint of BERT presents challenges during training
and inference, necessitating the splitting of documents into
sentences or passages and increasing training and inference
durations.

G. REDUCING COMPLEXITY IN NEURAL RANKING
ARCHITECTURES
Employing BERT as a semantic matching component has
drawbacks, including the BERT length limit and compu-
tational complexity. The maximum token count allowed
by BERT is considerably lower than the average docu-
ment length, which presents a challenge when processing
longer texts. Additionally, BERT’s computational complexity
can increase processing time and resource requirements.
Researchers can explore selection techniques for sentences
or passages to address this issue. Models like Colbert [257],
RepBERT [91], and RocketQA [98] have been proposed to
overcome these limitations. Vector compression methods,
such as PQ [264] and LSH [263], have been integrated
into neural ranking models. Hofstätter et al. [118] and
Kitaev et al. [278] introduced methods to reduce the com-
plexity of Transformers, while ElMo can provide deep
contextualized embeddings without a length limit constraint.

VII. CONCLUSION
This review offers an extensive analysis of the current state
of information retrieval models/techniques. Spanning from
early semantic retrieval techniques to the latest advancements
in neural semantic retrieval approaches, we delve into
the intricate relationships between these methods. Our
examination is structured around fundamental IR topics,
such as first-stage and second-stage retrieval and learning
neural semantic retrieval models. Furthermore, the review
emphasizes this domain’s primary obstacles and challenges,
shedding light on potential future research directions. As a
whole, this review aims to serve as a valuable resource for
researchers intrigued by this demanding subject, fostering
innovative thinking and the progression of the field.
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