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Abstract In this paper, we propose a re-weighted elastic
net (REN) model for biometric recognition. The new model
is applied to data separated into geometric and color spatial
components. The geometric information is extracted using a
fast cartoon - texture decomposition model based on a dual
formulation of the total variation norm allowing us to carry
information about the overall geometry of images. Color
components are defined using linear and nonlinear color
spaces, namely the red-green-blue (RGB), chromaticity-
brightness (CB) and hue-saturation-value (HSV). Next,
according to a Bayesian fusion-scheme, sparse representa-
tions for classification purposes are obtained. The scheme
is numerically solved using a gradient projection (GP) algo-
rithm. In the empirical validation of the proposed model,
we have chosen the periocular region, which is an emerg-
ing trait known for its robustness against low quality data.
Our results were obtained in the publicly available FRGC
and UBIRIS.v2 data sets and show consistent improvements
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in recognition effectiveness when compared to related state-
of-the-art techniques.
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1 Introduction

Biometrics attempts to recognize human beings according
to their physical or behavioral features [18]. In the past,
various traits were used for biometric recognition, out of
which iris and face are the most popular [20, 33, 39, 45].
The use of the periocular region was found to be useful on
unconstrained scenarios [42]. The exploration of the peri-
ocular region as a biometric trait started with Park et al.’s
pioneering approach [35], who performed local and global
feature extraction. Images were aligned to take advantage
of iris location, in order to define a 7 × 5 region of inter-
est (ROI) grid. Patches were encoded by applying two well
known distribution-based descriptors, local binary patterns
(LBP) [30] and histogram of oriented gradients (HOG) [10],
quantized into 8-bin histograms. Finally, they merged all
histograms into a single-dimension array containing both
texture and shape information, and matching was carried
out based on the Euclidean distance. For the local anal-
ysis, authors employed Scale-Invariant Feature Transform
(SIFT) [25]. The reported performance was fairly good,
showing periocular fitness for recognition purposes, and
further analysis was held on noise factors impact on perfor-
mance [34].

Recently, various extensions and improvements based on
Park et al. work [35] have been carried out. Miller et al.
[26] presented an analysis which focused on periocular
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skin texture, taking advantage of uniform local binary pat-
ters (ULBP) [31] to achieve improved rotation invariance
with uniform patterns and finer quantization of the angu-
lar space. Their work was extended by Adams et al. [1],
who proposed using Genetic & Evolutionary Computing
(GEC) to optimize feature set. Juefei-Xu et al. [21] used
multiple local and global feature extraction techniques such
as Walsh transforms and Laws’ masks, discrete cosine
transform (DCT), discrete wavelet transform (DWT), Force
Fields, Speed Up Robust Transform (SURF), Gabor filters
and Laplacian of Gaussian (LoG). In their later work [22]
efforts were made to compensate aging degradation effects
on periocular performance. The possibility of score level
fusion with other biometric traits was also addressed, for
example in iris recognition [50]. Bharadwaj et al. [2] pro-
posed the fusion of uniform local binary patters (ULBP)
with five perceptual dimensions, usually applied as scene
descriptors: naturalness, openness, roughness, expansion
and ruggedness – GIST [32]. In their approach the images
were pre-processed with with Fourier transform for local
contrast normalization, and then a spacial envelope com-
puted with a set of Gabor filters (4 scales × 8 orientations).
On the final stage, χ2 distance was used to match the feature
arrays, and results fused with a weighted sum. Woodard et
al. [50] assessed how periocular texture information could
improve iris data reliability, thus overcoming the difficul-
ties associated with non-ideal imaging. To handle periocular
information the LBP was computed over a ROI grid (on both
datasets), and at the matching stage the LBP histograms
were matched using Manhattan distance. Iris processing
was achieved following Daugman’s approach [11], except
with manual segmentation. Information from both traits was
combined at score-level using a simple weighted sum after
min-max normalization.

Based on the pioneering work of Wright et al. [51],
the sparse representation theory is emerging as a popular
method in the biometrics field and is considered specially
suitable to handle degraded data acquired under uncon-
trolled acquisition protocols [28, 37, 44]. A query image
is first sparsely coded over the template images, and then
the classification is performed. Sparse Representation based
Classification (SRC) is robust to occlusion, illumination and
noise, and achieves excellent performance.

1.1 Sparse Representation

Model selection in high-dimensional problems has been
gaining interest in the statistical signal processing commu-
nity [4, 12]. Using convex optimization models, the main
problem is recovering a sparse solution x̂ ∈ R

n of an under-
determined system of the form y = Ax∗, given a vector
y ∈ R

m and a matrix A ∈ R
m×n. There is a special interest

in signal recovery when the number of predictors is much

larger than the number of observations (n� m). A direct
solution to the problem is to select a signal whose mea-
surements are equal to those of x∗, with smaller sparsity by
solving a minimization problem based on the �0-norm:

min
x

‖x‖0 subj. to Ax = y, (1)

(‖x‖0 = #{i : xi �= 0}), being a direct approach to seek
the sparsest solution. Problem (1) is proved to be NP-hard
and difficult to approximate since it involves non-convex
minimization [5]. An alternative method is to relax the prob-
lem (1) by means of the �1-norm (‖x‖1 = ∑n

i=1 |xi |).
Hence problem (1) can be replaced by the following �1-
minimization problem:

min
x

‖x‖1 subj. to Ax = y,

which can be solved by standard linear programming meth-
ods [9]. In practice, signals are rarely exactly sparse, and
may often be corrupted by noise. Under noise, the new
problem is to reconstruct a sparse signal y = Ax∗ + κ ,
where κ ∈ R

m is white Gaussian noise with zero mean
and variance σ 2. In this case the associated �1-minimization
problem adopts the form:

min
x

{

τ‖x‖1 + 1

2
‖y − Ax‖2

2

}

, (2)

where τ is a nonnegative parameter and ‖ · ‖2 denotes the

�2-norm (‖x‖2 = (∑n
i=1 x2

i

) 1
2 ). The convex minimization

problem (2) is known as the least absolute value shrinkage
and selection operator (LASSO) [47].

Although sparsity of representation seems to be well
established by means of the LASSO approach, some limi-
tations were remarked by Hastie et al. [54]. LASSO model
tends to select at most m variables before it saturates and
in case predictors are highly correlated, LASSO usually
selects one variable from a group, ignoring others. In order
to overcome these difficulties, Hastie et al. [54] proposed
the elastic net (EN) model as a new regulation technique
for outperforming LASSO in terms of prediction accuracy.
The elastic net is characterized by the presence of ridge
regression term (�2-norm) and it is defined by the following
convex minimization problem:

min
x

{

τ1‖x‖1 + τ2‖x‖2
2 + 1

2
‖y − Ax‖2

2

}

, (3)

where τ1 and τ2 are non-negative parameters. An improve-
ment for the EN model was proposed in [55] where a
combination of the �2-penalty and an adaptive version of
the �1-norm have been implemented by considering the
minimization problem

min
x

{

τ1

n∑

i=1

ωi |xi | + τ2‖x‖2
2 + 1

2
‖y − Ax‖2

2

}

, (4)
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where the adaptive weights are computed using a solution
given by the EN minimization problem (3). If we let the
solution of EN to be x̂(EN), then the weights are given by
the equation ωi = 1/(|x̂i (EN)|+(1/m))ϑ where ϑ is a pos-
itive constant. A variant of the above model was proposed in
[17] by incorporating the adaptive weight matrix W in the
�2-penalty term:

min
x

{

τ1

n∑

i=1

ωi |xi | + τ2

n∑

i=1

ω2
i x

2
i + 1

2
‖y − Ax‖2

2

}

. (5)

In this paper we use a re-weighted elastic net regularization
model for periocular recognition application.

1.2 Summary of Contributions

The main contribution of this paper is to propose a
re-weighted elastic net (REN) regularization model that
enhances the sparsity of the solutions found. The pro-
posed REN model is a regularization and variable selection
method that enjoys sparsity of representation, particularly
when the number of predictors is much larger than the num-
ber of observations. The weights are computed such that
larger weights will encourage small coordinates by means
of the �1-norm, and smaller weights will encourage large
coordinates due to the �2-norm. Our model differs from the
schemes in [55] and [17] (see Eqs. 4 and 5 above), since
the �1 and �2 terms are automatically balanced by weights
which are continuously updated using ωi = 1/(|x̂i | + ε)

with ε a positive parameter [7]. We also provide a concise
proof of the existence of a solution for the proposed model
as well as its accuracy property.

A complete presentation of the numerical implementa-
tion of the REN model using a gradient projection (GP)
method [15], seeking sparse representations along cer-
tain gradient directions is described in this paper. We use
a reformulation of the REN model as a quadratic pro-
gramming (QP) problem. As a main application of our
model, we consider the periocular recognition problem.
The periocular region has been regarded as a trade-off
between using the entire face or only the iris in biomet-
rics. Periocular region is particularly suitable for recognition
under visible wavelength light and uncontrolled acquisition
conditions [34, 35, 50].

We enhance periocular recognition through the sparsity-
seeking property of our REN model over different perioc-
ular sectors, which are then fused according to a Bayesian
decision based scheme. The main idea is to benefit from
the information from each sector, which should contribute
in overall recognition robustness. Two different domains are
considered for this purpose: (1) geometry and (2) color.
Full geometry information is accessed by decomposing a
given image into their cartoon - texture components by
means of a dual formulation of the weighted total variation
(TV) scheme [3, 29, 41]. For color, a key contribution is
the use of nonlinear features such as chromaticity and hue
components, which are thought to improve image geometry
information according to human perception and previously
used for image processing tasks [23, 27, 38]. Our methodol-
ogy is inspired by two related works: 1) Wright et al. [51],
which introduced the concept of sparse representation for
classification (SRC) purposes; and 2) Pillai et al. [37], that
used a SRC model for disjoint sectors of the iris and fused
results at the score level, according to a confidence score
estimated from each sector.

Our experiments are carried out in periocular images of
two different data sets: (1) FRGC data set [36] which con-
tains neutral and smiling frontal faces captured in scenarios
under uniform and uncontrolled illumination conditions as
shown in Fig. 1a. Noise effects such as eye blink, motion
blur, occlusion and reflections presented in this database
leads to difficulties in performing high recognition accu-
racy. (2) UBIRIS.v2 data set [40] in which images were
acquired at visible wavelengths, from 4 to 8 meters away
from the subjects and uncontrolled acquisition conditions.
Varying gazes, poses and amounts of occlusions (due to
glasses and reflections) are evident in this data set and
makes the recognition task harder, see Fig. 1b. The results
obtained using our model allowed us to conclude about
consistent increase in performance when compared to the
classical SRC model and other important approaches (e.g.,
Wright et al. [51] and Pillai et al. [37]). Also, it should
be stressed that such improvements were obtained without
a significant overload in the computational burden of the
recognition process.

The rest of the paper is organized as follows. Section 2
summarizes the most relevant approaches in the scope of
this work concerning penalized feature selection for sparse

Figure 1 Examples of
periocular images of different
subjects with and different
illumination conditions (FRGC)
and varying gazes (UBIRIS.v2),
containing the corneal,
eyebrows and skin regions.

(a) Periocular images from the FRGC database

(b) Periocular images from the UBIRIS.v2 database
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representation. The re-weighted elastic net (REN) model is
introduced together with statistical motivation ensuring high
prediction rates. An algorithm based on gradient projec-
tion (GP) for the REN model is also introduced. Section 3
describes the different geometrical information extracted
from periocular images for performing recognition based
on cartoon - texture and chromaticity features in a total
variation framework. Section 4 describes the experimental
validation procedure carried out together with remarkable
comparisons. Finally, Section 5 concludes the paper.

2 The Reweighted Elastic net Model
for Classification Model

2.1 The LASSO Model for Recognition

We first briefly describe the sparse representation based
classification framework which is a precursor to our REN
based approach. Having a set of labeled training samples (ni

samples from the ith subject), they are arranged as columns
of a matrix A(i) = [vi,1, . . . , vi,ni

] ∈ R
m×ni . A dictionary

results from the concatenation of all samples of all classes:

A = [A(1), . . . , A(k)] = [v1,1, · · · , v1,n1 | . . . |vk,1, · · · , vk,nk
].

The key insight is that any probe y can be expressed as a
linear combination of elements of A. As the data acquisi-
tion process often induces noisy samples, it turns out to be
practical to make use of the LASSO model. In this case it
is assumed that the observation model has the form y =
Ax∗ + κ .

Classification is based on the observation that high values
of the coefficients in the solution x̂ are associated with the
columns of A of a single class, corresponding to the iden-
tity of the probe. A residual score per class 1i : Rn → R

n

is defined: x̂ → 1i (x̂), where 1i is a indicator function that
set the values of all coefficients to 0, except those associ-
ated to the ith class. Over this setting, the probe y is then
reconstructed by ŷi = A1i (x̂), and the minimal reconstruc-
tion error deemed to correspond to the identity of the probe,
between y and ŷi given by id(y) = arg mini ri(y), with
ri(y) = ‖y − ŷi‖2.

In [51] a sparsity concentration index (SCI) is used to
accept/reject the response given by the LASSO model. The
SCI of a coefficient vector x̂ ∈ R

n corresponds to:

SCI (x̂) =
k maxi ‖1i (x̂)‖1

‖x̂‖1
− 1

k − 1
∈ [0, 1].

If SCI(x̂) ≈ 1, the computed signal x̂ is considered to be
acceptably represented by samples from a single class. Oth-
erwise, if SCI(x̂) ≈ 0 the sparse coefficients spread evenly

across all classes and a reliable identity for that probe cannot
be given.

The recognition model proposed by Pillai et al. [37]
obtains separate sparse representations from disjoint regions
of an image and fusing them by considering a quality index
from each region. Let L be the number of classes with
labels {ci}Li=1. A probe y is divided into sectors, each one
described by the SRC algorithm. SCI values are obtained
over each sector, allowing to reject those with quality bel-
low a threshold. Let {d}i represent the class labels of the
retained sectors, and P(di |c) be the probability that the i-th
sector returns a label di , when the true class is c:

P(di |c) =

⎧
⎪⎪⎨

⎪⎪⎩

t
SCI (di )

1

t
SCI (di )

1 +(L−1)t
SCI (di )

2

if di = c,

t
SCI (di )

2

t
SCI (di )

1 +(L−1)t
SCI (di )

2

if di �= c,

being t1 and t2 constants such that 0 > t1 > t2 > 1.
According to a maximum a posteriori (MAP) estimate of the
class label, the response corresponds to the class having the
highest accumulated SCI:

c̃ = arg max
c∈C

∑L
j=1 SCI (dj )δ(dj = c)
∑L

j=1 SCI (dj )
. (6)

2.2 The Re-weighted Elastic net (REN) Method

The proposed REN model is a sparse representation scheme
balancing the LASSO shrinkage term (�1-norm) and the
strengths of the quadratic regularization (�2-norm) coeffi-
cients by the following minimization problem:

min
x

{
n∑

i=1

ωi |xi | +
n∑

i=1

(1 − ωi)
2x2

i + 1

2
‖y − Ax‖2

2

}

, (7)

where ω1, . . . , ωn are positive weights taking values in
(0, 1). The REN-penalty

∑n
i=1 ωi |xi | +∑n

i=1(1 − ωi)
2x2

i

is strictly convex and it is a compromise between the ridge
regression penalty and the LASSO. The convex combina-
tion in the REN-penalty term is natural in the sense that
both the �1 and �2 norms are balanced by weights con-
trolling the amount of sparsity versus smoothness expected
from the minimization scheme. As in [7], the weights are
chosen such that they are inversely related to the computed
signal according to the equation ωi = 1/(|x̂i | + ε) with ε

a positive parameter. Under this setting, large weights wi

will encourage small coordinates with respect to the REN-
penalty term, whereas small weights imply big coordinates
with respect to the REN-penalty term, respectively. Then,
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it is straightforward that the new model combines simulta-
neously a continuous shrinkage and an automatic variable
selection approach. We next consider the existence of solu-
tion and the sign recovery property of the REN model.

Next we describe an algorithm for the REN model allow-
ing us to directly deal with the case n � m. It turns out
that our REN model can be expressed as a quadratic pro-
gram (QP), thus allowing us to apply a gradient projection
approach to perform the sparse reconstruction.

2.3 Numerical Implementation

The algorithm that alternates between the computed signal
and redefining the weights is as follows:

1. Choose initial weights wi = 1/2, i = 1, . . . , n.
2. Find the solution x̂ of the problem

min
x

‖Wx‖1 + ‖(1 − W)x‖2
2 + 1

2
‖y − Ax‖2

2, (8)

3. Update the weights: for each i = 1, · · · , n, wi =
1/(
∣
∣x̂i

∣
∣+ ε), where ε is a positive stability parameter.

4. Terminate on convergence or when a specific number
of iterations is reached. Otherwise, go to step 2.

Note that our REN problem in Eq. 8 can also be
expressed as a quadratic program [16], by splitting the vari-
able x into its positive and negative parts. That is, x = x+
−x−,where x+ and x− are the vectors that collect the pos-
itive and negative coefficients of x, respectively. Then, we
handle the minimization problem,

min
z

{
Q(z) = cT z + zT Bz

}
, (9)

where z = [x+, x−]T , wn = [ω1, . . . , ωn]T , c = w2n +
[−AT y; AT y]T and B = 1

2B1 + B2 with

B1 =
(

AT A −AT A

−AT A AT A

)

, B2 =
(

(1 − W)2 −(1 − W)2

−(1 − W)2 (1 − W)2

)

.

The minimization problem (9) can then be solve using
the Barzilai-Borwein Gradient Projection Algorithm [43].
Under this approach the iterative equation is given by,
z(k+1) = z(k)−ζ (k)ν(k), where ζ (k) is the step size computed
as ζ (k) = (z(k) − α(k)∇Q

(
z(k)
))

+ − z(k), with

α(k+1) =

⎧
⎪⎪⎨

⎪⎪⎩

mid

{

αmin,

∥
∥ζ (k)

∥
∥2

(
ζ (k)
)T

Bζ (k)
, αmax

}

, if
(
ζ (k)
)T

Bζ (k) �= 0

αmax, otherwise.

The operator mid is defined as the middle value of three
scalar arguments and αmin and αmax are two given parame-
ters. The parameter ν take the form

ν(k) =

⎧
⎪⎨

⎪⎩

mid

{

0,

(
ζ (k)
)T ∇Q

(
z(k)
)

(
ζ (k)
)T

Bζ (k)
, 1

}

, if
(
ζ (k)
)T

Bζ (k) �= 0,

1, otherwise.

The performance of the REN minimization along with com-
parisons is shown is Fig. 2 for a sparse signal. We want
to reconstruct a length-n sparse signal (in the canonical
basis) from m observations, with m 
 n. The matrix Am×n

is build with independent samples of a standard Gaussian
distribution and by ortho-normalizing the rows, while the
original signal x∗ contains 160 randomly placed ±spikes

and the observation is defined as y = Ax∗ + κ with κ a
Gaussian noise of variance σ 2 = 10−4. The reconstruction
of the original signal over the REN minimization prob-
lem produces a much lower mean squared error (MSE =
(1/n)‖x̂ − x∗‖ with x̂ been an estimate of x∗) equal to
3.499 × 10−05, while the MSE given by the adaptive elastic
model proposed in [17, 55] and LASSO are 5.194 × 10−05,
4.791×10−05 and 1.445×10−04 respectively. Therefore, the
proposed REN approach does an excellent job at locating
the spikes.

Remark 1 The iterative reweighted algorithm falls in the
general class of Majorization - Minimization (MM) algo-
rithms [24]. An interesting example of separable iterative
reweighing for sparse solutions is presented in [7] where the
selection

w
(k+1)
i → 1

∣
∣
∣x

(k+1)
i

∣
∣
∣+ ε

is suggested. Here ε is generally chosen as a fixed,
application-dependent constant. In the noiseless case, it is
demonstrated based on [14] that this amounts to iteratively
solving

min
x

n∑

i=1

log (xi + ε) , subj. to Ax = y,

and convergence to a local minimum or saddle point is
guaranteed. In [49] the reweighting

w
(k+1)
i → 1

(
x

(k+1)
i

)2 + ε

∣
∣
∣x

(k+1)
i

∣
∣
∣

,

is also considered together with the case ε → 0. Related
with the sparse solution of the model

min
x

{

τ‖x‖2 + 1

2
‖y − Ax‖2

2

}

,
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(a) Original Signal

(b) Reweighted EN Model (Proposed) (MSE = 3.499e-05)

(c) Adaptive EN Model [55] ( MSE = 5.194e-05)

(d) Adaptive EN Model [17] (MSE = 4.791e-05)

(e) LASSO Model (MSE = 1.445e-04)

Figure 2 Sparse signal reconstruction with EN and LASSO models. (a) Sparse signal of Length n = 4096 with k = 1024 observations. (b)-(e)
Response signals computed with the proposed reweighted elastic net, [17, 55] and LASSO, respectively.

the reweighting

w
(k+1)
i → 1

(
x

(k+1)
i

)2 + ε(k+1)

is implemented in [8], where ε(k+1) ≥ 0 is regularization
factor the is reduced to zero as k becomes large.

3 Geometric and Color Spaces for Image
Decomposition

Periocular features can be extracted using cartoon, texture
and color components, which are then fused to improve
periocular recognition according to Eq. 6. For this purpose,
we next detail a variational cartoon + texture decomposi-
tion using the well known total variation regularization and
different color spaces including a chromaticity-brightness
decomposition based space.

3.1 Cartoon + Texture (CT) Space

The periocular images contain cartoon (smooth) and tex-
ture parts (small scale oscillations) which can be obtained

using the total variation (TV) [41] model. In this setting, the
grayscale version of a periocular image is divided into two
components representing the geometrical and texture parts.
The TV based decomposition model is defined as an energy
minimization problem,

min
u

{

EL1

T V (u) =
∫

�

g(x)|∇u| dx + λ

∫

�

|u − I | dx
}

(10)

where I is the input grayscale image, and g(x) = 1
1+K|∇I |2

is an edge indicator type function. Following [3] we use a
splitting with an auxiliary variable v to obtain the following
relaxed minimization,

min
u,v

{

ẼL1

T V (u,v)=
∫

�

g(x)|∇u|dx+ 1

2θ

∫

�

(u+v−I )2dx+λ

∫

�

|v| dx
}

.

(11)

After a solution u is computed, it is expected to get the
representation I ≈ u + v, where the function u repre-
sents the geometric cartoon part, the function v contains
texture information, and the function g represent edges.
The minimization (11) is achieved by solving the following
alternating sub-problems based on the dual minimization
technique:
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1. Fixing v, the minimization problem in u is:

min
u

{∫

�

g(x)|∇u| dx + 1

2θ
‖u + v − I‖2

L2(�)

}

. (12)

The solution of (12) is given by u = v − θdivp where
p = (p1, p2) satisfies g(x)∇(θ divp − (I − v)) −
|∇(θdivp − (I − v))|p = 0, solved using a fixed point
method: p0 = 0 and iteratively

pn+1 = pn + δt∇(div(pn) − (I − v)/θ)

1 + δt
g(x) |∇(div(pn) − (I − v)/θ)| .

2. Fixing u, the minimization problem in v is:

min
v

{
1

2θ
‖u + v − I‖2

L2(�)
+ λ‖v‖L1(�)

}

,

and the solution is found as

v =
⎧
⎨

⎩

I − u − θλ if I − u ≥ θλ,

I − u + θλ if I − u ≤ −θλ,

0 if |I − u| ≤ θλ.

Figure 3 illustrates cartoon - texture decomposition of three
grayscale periocular images for different iterations. With the
increase in the number of iterations we notice that the car-
toon component becomes smoother and texture component
picks up more oscillations.

3.2 Color Spaces

For color periocular images we can obtain intensity and
chromaticity decomposition which exploits color informa-
tion. In computer vision there has been increasing interest
in non flat image features that reside on curved manifolds
which are well suited for edge detection and enhancement in
color and multichannel images [46]. The flatness concept is
related to functions taking all possible values in an open set
in a linear space. The chromaticity feature of color images
is an example of non-flat features. Given a color periocular
image I : � → R

3, the RGB representation is defined by

a vector with three components I = (I1, I2, I3). From the
RGB color space, the chromaticity-brightness (CB) model
arises by decomposing into the brightness component B :
� → R computed as B = |I| and chromaticity compo-
nents C = (C1, C2, C3) : � → S

2 (where S
2 is the unit

sphere in R
3) is computed by Ci = Ii/B. We also make use

of the Hue-Saturation-Value (HSV) color space since it is
believed to be more natural and is related to human percep-
tion [52]. Figure 4 illustrates CB decomposition, and HSV
color space conversions of a given RGB periocular image. In
our experiments we compare grayscale CT decomposition
and CB, RGB and HSV color space based decompositions
along with the proposed REN model.

4 Experiments and Discussion

4.1 Performance Measures

REN model’s performance was quantitatively analyzed by
using the Receiver Operating Characteristic (ROC) curves.
In this case, given a signal x̂, if SCI(x̂) > β, the classi-
fier outputs a positive response (P), otherwise a negative (N)
result. For a fixed β, the sensitivity corresponds to the pro-
portion of signals correctly detected by the SRC algorithm,
whereas specificity counts the proportion for which the cor-
responding SCI values are bellow β, where β is an accepted
threshold value.

sensitivity = #TP

#TP + # FN
and specificity = # TN

# TN + #FP

where TP, FP, TN and FN correspond to the True Positive,
False Positive, True Negative and False Negative, respec-
tively. Table 1 summarizes these notions, combining the
different classes of periocular signals and their relation with

Figure 3 Cartoon - Texture
components for grayscale
periocular images using a
weighted TV model given in Eq.
(10). (a) Grayscale periocular
images. (b)-(c) Cartoon -
Texture decompositions with 80
iterations. (d)-(e) Cartoon -
Texture decompositions with
400 iterations.

(a) Grayscale periocular images

(b) Cartoon components with 80 iterations (c) Texture components with 80 iterations

(d) Cartoon components with 400 iterations  (e) Texture components with 400 iterations



410 J Sign Process Syst (2016) 82:403–417

Figure 4 Different color
decomposition for a given
periocular image. a RGB color
periocular image. b HSV color
decomposition. c CB color
decomposition.

(a) RGB periocular Image (b) HSVcolor decomposition

(c) CB color decomposition

the classifier induced by the minimal reconstruction error
and the accumulated SCI value. The overall accuracy is
given by:

accuracy = # TN + # TP

# TN + # FP + # TP + # FN
.

In a ROC plot, the optimal recognition method would yield
a point in the upper-left corner, corresponding to full sen-
sitivity (no false negatives) and full specificity (no false
positives). The statistical correlation between the outputs
given by each channels considered in our method was also
assessed. Considering that eventual dependences will be
linear, the Pearson’s sample correlation was used for that
purpose. Given a pair of samples, the correlation coefficient
is given by:

r(x̂(1), x̂(2)) = 1

n − 1

n∑

i=1

(
x̂

(1)
i − x̄(1)

σx̂(1)

)(
x̂

(2)
i − x̄(2)

σx̂(2)

)

,

where x̂
(1)
i , x̂(2)

i denote the systems outputs, x̄(1), x̄(2) are the
sample means and σx̂(1) , σx̂(2) the standard deviations.

4.2 Results for the FRGC Database

Among all the images in this dataset, we have selected those
individuals with at least 14 images, making a total of 163
different classes. We randomly selected for each person half
of the right periocular images for training (7 images) and the
other half (7 images) for testing. For measuring the recog-
nition performance of the REN model, periocular images
are converted to grayscale, and they are also down-sampled
according to the downsampling ratios of 1/24, 1/18, 1/12

and 1/6 which correspond to feature space dimensions of
30, 70, 140 and 560, respectively. The ability for the REN
model to correctly classify a test subject is depicted in
Fig. 5a by means of ROC curve for different downsampling
ratios, and it is compared with the periocular recognition
algorithms of Park et al. [35] and Woodard et al. [50] shown
in Fig. 5b-c respectively.

Table 2 shows better recognition performance for the
proposed REN model in comparison of the models imple-
mented by Park et al. [35] and Woodard et al. [50], in terms
of the sensitivity (sens.) and corresponding accuracy (acc.)
for far (=1-specificity) ≤ 10 %, the area under the curve
(AUC) and the equal error rate (EER) measure. For the pro-
posed REN model using grayscale images, the highest AUC
and the lowest EER values are equal to 0.9218 and 0.0682
for downsampling ratio equal to 1/12. We noticed that the
AUC and EER values are increased when downsampling
ratio are decreased.

4.3 Results for the UBIRIS.v2 Database

For the UBIRIS.v2 data set, left side periocular images were
considered for the biometric performance. We have ran-
domly chosen the feature space dimension equal to 90
which correspond to images down-sampled to 10 × 9 pix-
els (other downsampling ratios can also be utilized as in
FRGC dataset, see Section 4.2) and stored in “png” for-
mat. We took 6 samples from 150 different individuals such
that one image per class is randomly chosen for the test
and the remaining five samples are included in the dictio-
nary. Experiments are repeated, changing the image used

Table 1 Types of errors, according to the SCI value and the sparse signal reconstruction following Wright et al. [51] and Pillai et al. [37] models.

Signal x̂ Optimal Non-Optimal

Signal Recovery Signal Recovery

SCI(x̂) > β → Positive True Positive (TP) False Positive (FP)

SCI(x̂) ≤ β → Negative False Negative (FN) True Negative (TN)
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(a) ROC curves - REN (b) ROC curves - [35] (c) ROC curves - [50]

Figure 5 ROC curves for periocular recognition using the FRGC data set. a ROC curves for the proposed REN model with different
downsampling ratios. b-c ROC curves of the models implemented by Park et al. [35] and Woodard et al. [50], respectively.

as probe (per subject). Hence, 100 dictionaries with dimen-
sion 90 × 750 are considered, each one tested in 150 probe
samples.

Results are summarized in Table 3 in terms of true
and false positive rates where the best sensitivity (sens.)
and corresponding accuracy (acc.) for far (=1-specificity)
≤ 10 % have been computed for various schemes and
models studied here. The proposed reweighed elastic
net demonstrates to be superior than the original SRC
approach over grayscale impulses. In this case the area
under the curve (AUC) and the equal error rate (EER)
are equal to 0.9643 and 0.0904 for our model, against
0.9307 and 0.1529 produced by the original SRC model.
The proposed models approximates more to the opti-
mal performance point (complement of specificity = 0,
sensitivity = 1). For the REN approach applied to the
grayscale and the texture components alone the minimal
distance from the ROC values to the (0, 1) point was of
0.1511 and 0.0812 respectively, while the value 0.1805 was
observed for the classical SRC model. In relation to other

image representation components, the minimal distance
from the ROC values to the (0, 1) point was of 0.0022
0.0106, 0.0023, 0.0019 for the CT, CB, RGB and HSV
spaces.

Comparisons have been carried out by implementing the
models of Park et al. [35] and Bharadwaj et al. [2]. Even
though both models make full use of local and global peri-
ocular information to perform recognition, they have shown
not to improve better than our approach. In our experi-
ments, a comparative analysis between the REN model with
texture information and the works of Park et al. [35] and
Bharadwaj et al. [2] was performed with respect to AUC and
EER. The highest AUC for [35] and [2] is equal to 0.9564
and lowest EER is equal to 0.0954 when applying their
fusion techniques. Meanwhile, using the texture informa-
tion provided by the cartoon - texture space, our model got
the values 0.9756 and 0.0589 for the AUC and EER, respec-
tively. Our fusion method using different spaces completely
describing the geometry and color periocular feature have
also shown to reach great statistical values in comparison to

Table 2 AUC and EER values, as well as the best sensitivity for far ≤ 10 % using FRGC’s periocular images. The underline fonts indicate the
best model observed in terms of AUC and EER.

Mehtod Feature Ratio Sens. Far Acc. Thres. AUC EER

REN (Proposed)

1/24 75.65 9.23 78.09 0.2200 0.9218 0.1536

Grayscale 1/18 90.19 9.01 90.27 0.2100 0.9673 0.09814

(SRC) 1/12 94.24 9.18 93.95 0.1800 0.9748 0.0682

1/6 93.79 8.42 93.60 0.1600 0.9741 0.0717

Park et al. [35]

LBP – 70.61 10.00 83.54 0.7904 0.8534 0.2173

HOG – 64.59 10.00 81.53 0.6530 0.8375 0.2386

SIFT – 71.08 9.20 83.17 0.1731 0.8496 0.2138

Fusion – 77.39 10.00 85.80 0.2908 0.8777 0.1841

Woodard et al. [50]

GIST – 73.13 10.00 84.37 0.7505 0.8392 0.2170

Iriscode – 52.02 10.00 77.34 0.4908 0.7703 0.2900

Fusion – 75.20 10.00 85.07 0.6092 0.8450 0.2012
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Table 3 AUC and EER values, as well as the best sensitivity for far ≤ 10 % using the UBIRIS.v2 database. The underline fonts indicate the best
model observed in terms of the AUC and EER.

Mehtod Feature sens. far acc. thres. AUC EER

REN (Proposed)

Grayscale (SRC) 90.05 8.55 90.99 0.1553 0.9643 0.0904

Texture (SRC) 92.10 1.89 92.40 0.0756 0.9756 0.0589

CT (Fusion) 99.90 7.18 98.77 0.1641 0.9994 0.0018

CB (Fusion) 99.82 7.37 98.49 0.2333 0.9992 0.0061

RGB (Fusion) 99.83 4.11 99.31 0.1670 0.9990 0.0020

HSV (Fusion) 99.83 2.13 99.57 0.1832 0.9991 0.0019

Wright et al. [51] Grayscale (SRC) 84.70 9.59 85.14 0.05642 0.9307 0.1529

Park et al. [35]

LBP 80.70 9.99 86.90 0.7468 0.9189 0.1553

HOG 69.29 9.99 83.11 0.6421 0.8656 0.2088

SIFT 86.00 9.36 88.96 0.0477 0.9453 0.1232

Fusion 90.58 9.99 90.21 0.1052 0.9564 0.0954

Bharadwaj et al. [2]

LBP 75.56 9.99 85.20 0.7623 0.8927 0.1846

ULBP 85.82 9.99 88.61 0.8673 0.9259 0.1311

Fusion 83.96 9.99 88.00 0.8008 0.9235 0.1386

those values attained by Park et al. [35] and Bharadwaj et al.
[2]. In this case, the highest AUC and the lowest EER values
are given by the CT space with values 0.9994 and 0.0018,
see Fig. 6.

As it can be observed from Table 4, the proposed REN
model applied to grayscale in texture setting is highly
correlated when compared to the signals recovered in the
CT, RGB and HSV spaces. The result is due to the high
accuracy rates achieved over these image representations.
Similarly, the signals recovered in the CB space are in low
correlation with the signals lying in the grayscale setting

and the CT space, and in high correlation with the sig-
nals computed over texture domain alone. The chromaticity
components lying in the unit sphere S

2 are the primary
reason for these results since they have the advantage
of depicting nonlinear features in different directions and
therefore both strong and weak edges are distributed and
represented along chromaticity components. Also, it should
be noted the strong correlation between the outputs given by
the fusion model when using exclusively color components.
This is explained by the fact that the skin region comprises
a large majority of the periocular region (see Fig. 4). It is

(a) ROC curves - Left Side (b) ROC curves - Left Side (c) ROC curves - Left Side

Figure 6 ROC curves for periocular recognition using the UBIRIS.v2
data set. (a) ROC curves for the original REN approach and the SRC
model. (b) ROC curves for the REN approach applied to the texture
components together with different features extrated by Park et al. [35]

and Bharadwaj et al. [2]. (c) ROC curves for the REN model applied
to the proposed fusion over the different geometry and color spaces, as
well as the fusion implemented in Park et al. [35] and Bharadwaj et al.
[2].
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Table 4 Pearson’s sample correlation coefficients between the left
side responses given by the recognition algorithms using the REN
model and the UBIRIS.v2 data set with various components studied
here.

Grayscale Texture CT CB RGB HSV

Grayscale 1 0.7173 0.5331 0.4272 0.7139 0.6230

Texture − 1 0.6041 0.6285 0.9776 0.9043

− − 1 0.2206 0.6134 0.6146

CB − − − 1 0.6146 0.7213

RGB − − − − 1 0.9180

HSV − − − − − 1

particularly interesting to observe that the positive (and
small) correlation values between the signals are obtained
when using different color spaces representation, pointing
for a complementarity that might contribute for the out-
performing results of the method proposed in this paper.
Although the CT space produces good recognition rates, its
computed signals are in low correlation with respect to other
signals over different domains, owing to the fact that CT
space is given by geometric information in case of cartoon
component, whereas weak and strong edges describe texture
components, see Fig. 3.

5 Conclusions

This paper describes a novel re-weighted elastic net (REN)
model that improves the sparsity of representations in peri-
ocular regions, which is an emerging biometric trait with
high potential to handle data acquired under uncontrolled
conditions. From this perspective, we have fused multi-
ple sparse representations, associated with various spaces
from different domains in geometry and color, which allow
us to faithfully handle distortions in periocular images
such as blur and occlusions. Our experiments were car-
ried out in the highly challenging images of the FRGC and
UBIRIS.v2 and data sets, and allowed us to observe consis-
tent improvements in performance, when compared to the
classical sparse representation model, and state-of-the-art
periocular recognition algorithms. In addition, theoretical
existence results have been proved for the REN minimiza-
tion problem, mainly emphasizing our approach is good
in the sense it performs as well as if the true underlying
model were given in advance. As far as numerical approx-
imation is concerned, the REN model is expressed as a
quadratic programing (QP) expediting the implementation
of the proposed gradient projection (GP) algorithm and

providing good results. Evaluating the proposed methodol-
ogy on other biometric traits (iris, face, etc.) and on different
databases are our future works.

Appendix A: Existence of Solution

We state necessary and sufficient conditions for the exis-
tence of a solution for the proposed model (7). We follow
the notations and similar arguments to those used in [19,
48]. Suppose that Ai = (A1i , . . . , Ami)

T , i = 1, · · · , n are
the linear independent predictors and y = (y1, · · · , ym)T

is the response vector. Let A = [A1, · · · , An] be the pre-
dictor matrix. In terms of �1 and �2 norms, we rewrite the
minimization problem in Eq. (7) as,

min
x

{

m‖Wx‖1 + m

2
‖(1 − W)x‖2

2 + 1

2
‖y − Ax‖2

2

}

. (13)

Let us denote by x∗ and x̂ the real and estimated solution of
Eq. 13 respectively. Given I = supp(x∗) = {i : x∗

i �= 0},
we define the block-wise form matrix

AI,Ic = 1

m

⎛

⎝
AT
IAI AT

IAIc

AT
IcAI AT

IcAIc

⎞

⎠ ,

where AI (AIc ) is a m × #I (m × #Ic) matrix formed by
concatenating the columns {Ai : i ∈ I} ({Ai : i ∈ Ic}) and
AT
IAI is assumed to be invertible.
First we assume that there exist vx ∈ R

n satisfying (13)
and sign(x̂) = sign(x∗). Lets define b = WIsign(x∗

I)

together with the set,

D =
{

d ∈ R
n :
{

di = bi, for x̂i �= 0
|di | ≤ wi, otherwise

}

.

From the Kauush-Kuhn-Tucker (KKT) conditions we obtain

{
AT

i (y − Ax̂) − m(1 − wi)
2x̂i = mwisign(x∗

i ), if x̂i �= 0∣
∣AT

i

(
y − Ax̂

)∣
∣ ≤ mwi, otherwise

which can be rewritten as,

AT
i A(x̂ − x∗) − AT

i κ + m(1 − wi)
2x̂i + mdi = 0, (14)
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for some d ∈ D with components di , i = 1, . . . , n. By
substituting the equality y = Ax∗ + κ . From the above (14)
the following two equations arise:

AT
IAI(x̂I − x∗) − AT

Iκ

m
+ (1 − W)2x̂I = −b, (15)

AT
IcAI(x̂I − x∗) − AT

Ic (κ)

m
= −dIc . (16)

Solving for xI in Eq. 15 and replacing in Eq. 16 to get b in
terms of xI leave us with

x̂I =
(
AT
IAI + (1 − W)2

)−1
(

AT
IAIx

∗
I + AIκ

m
− b
)

,

(17)

AT
IcAI

(
(
AT

IAI + (1 − W)2
)−1
(

AT
IAIx∗

I + AT
Iκ

m
− b

)

− x∗
I

)

−AT
Ic κ

m
= −b. (18)

From Eqs. 17 and 18, we finally get the next two equations:

sign

(
(
AT
IAI + (1 − W)2

)−1
(

AT
IAIx∗

I + AT
Iκ

m
− b

))

= sign(x∗
I)

(19)

and

∣
∣
∣
∣
∣
AT

i AI

(
(
AT
IAI + (1 − W)2

)−1
(

AT
IAIx

∗
I + AT

I(κ)

m
− b

)

− x∗
I

)

− AT
i κ

m

∣
∣
∣
∣
∣
≤ wi, (20)

for i ∈ Ic.
Now, let us assume that Eqs. 19 and 20 both hold. It will

be proved there exist x̂ ∈ R
n satisfying sing(x̂) = sign(x∗).

Setting x̂ ∈ R
n satisfying x̂Ic = x∗

Ic = 0 and

xI =
(
AT
IAI + (1 − W)2

)−1
(

AT
IAIx

∗
I + AT

Iκ

m
− b

)

,

which guarantees the equality sign(x̂I) = sign(x∗
I) due to

Eq. 19. In the same manner, we define d ∈ R
n satisfying

dI = b and

dIc = −
(

AT
Ic AI

(
(
AT
IAI + (1 − W)2

)−1
(

AT
IAIx∗

I + AT
Iκ

m
− b

)

− x∗
I

)

− AT
Ic κ

m

)

,

implying from Eq. 20 the inequality |di | ≤ wi for i ∈ Ic

and therefore d ∈ D. From previous, we have found a point
a point ˆmathbf x ∈ R

n and d ∈ D satisfying (15) and (16)
respectively or equivalently (14). Moreover, we also have
the equality sign(x̂) = sign(x∗). Under these assertions
we can prove the sign recovery property of our model as
illustrated next.

Appendix B: Sign Recovery Property

Under some regularity conditions on the proposed REN
model, we intend to give an estimation for which the event
sign(x̂) = sign(x∗) is true. Following similar notations and
arguments to those used in [53, 55], we intend to prove that
our model enjoys the following probabilistic property:

Pr

(

min
i∈I
∣
∣x̂i

∣
∣ > 0

)

→ 1. (21)

For theoretical analysis purposes, the problem (7) is written
as

min
x

{
‖Wx‖1 + ‖(1 − W)x‖2

2 + ‖y − Ax‖2
2

}
.

The following regularity conditions are also assumed:

1. Denoting with �min(S) and �max(S) the minimum and
maximum eigenvalues of a symmetric matrix S, we
assume the following inequalities hold:

θ1 ≤ �min

(
1

m
AT A

)

≤ �max

(
1

m
AT A

)

≤ θ2,

where θ1 and θ2 are two positive constants.
2. limm→∞ log(n)

log(m)
= ν for some 0 ≤ ν < 1

3. lim
m→∞

√
m
n

1
maxi∈I wi

= ∞.

Let

x̃ = arg min
x

{
‖y − Ax‖2

2 + ‖(1 − W)x‖2
2

}
. (22)

By using the definitions of x̂ and x̃, the next two inequalities
arise

∥
∥y − Ax̂

∥
∥2

2 + ∥∥(1 − W) x̂
∥
∥2

2 ≥ ∥∥y − Ax̃
∥
∥2

2 + ∥∥(1 − W) x̃
∥
∥2

2

(23)

and

∥
∥y − Ax̃

∥
∥2

2 + ∥∥(1 − W) x̃
∥
∥2

2 +
n∑

i=1

wi |x̃i |

≥ ∥∥y − Ax̂
∥
∥2

2 + ∥∥(1 − W) x̂
∥
∥2

2 +
n∑

i=1

wi |x̂i |. (24)
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The combination of Eqs. 23 and 24 give

n∑

i=1

wi(|x̃i |−|x̂i |) ≥ ∥∥y−Ax̂
∥
∥2

2 +∥∥(1 −W)x̂
∥
∥2

2 −∥∥y−Ax̃
∥
∥2

2 −∥∥(1−W)x̃
∥
∥2

2

= (x̂ − x̃
)T
(
AT A + (1 − W)2

) (
x̂ − x̃

)

(25)

On the other hand

n∑

i=1

wi

(|x̃i | − ∣∣x̂i

∣
∣
) ≤

n∑

i=1

wi

∣
∣x̃i − x̂i

∣
∣ ≤
√
√
√
√

n∑

i=1

w2
i

∥
∥x̃ − x̂

∥
∥

2 (26)

By combining Eqs. 25 and 26 we get

�min

((
AT A

)
+ (1 − W)2

) ∥
∥x̂ − x̃

∥
∥2

2 ≤ (x̂ − x̃
)T
(
AT A + (1 − W)2

) (
x̂ − x̃

)

≤
√
√
√
√

n∑

i=1

w2
i

∥
∥x̃ − x̂

∥
∥

2

which together with the identity

0 ≤ θ1 ≤ �min

(
AT A

)
≤ �min

((
AT A

)
+ (1 − W)2

)

allow us to prove

∥
∥x̂ − x̃

∥
∥

2 ≤
√∑n

i=1 w2
i

�min

(
AT A

) , (27)

Let us notice that

E
(∥
∥x̃ − x∗∥∥2

2

)
= E

(

−
(
AT A + (1 − W)2

)−1
(1 − W)2 x∗

+
(
AT A + (1 − W)2

)−1
AT κ

)

≤ 2
‖(1 − W)x∗‖2

2 + n�max
(
AT A

)
σ 2

�min
(
AT A

) (28)

From Eqs. 27 and 28 we conclude that

E
(∥
∥x̂ − x∗∥∥2

2

)
≤ 2
(
E
(∥
∥x̃ − x∗∥∥2

2

)
− E
(∥
∥x̂ − x∗∥∥2

2

))

≤ 4
‖(1 − W) x∗‖2

2 + n�max(A
T A)σ 2 + E

(∑n
i=1 w2

i

)

�min
(
AT A

) . (29)

Let η = mini∈I |x∗
i | and η̂ = maxi∈I wi . Because of Eq. 27,

∥
∥x̂I − x̃I

∥
∥2

2 ≤
√

nη̂

θ1m
.

Then

min
i∈I |x∗

i | > min
i∈I |x̃i | −

√
nη̂

θ1m
> min

i∈I |x̂i | − ∥∥x̃I − x∗
I
∥
∥

2 −
√

nη̂

θ1m
. (30)

Now, we notice that
√

nη̂

θ1m
= O

(
1√
n

)(√
n

m
η−1
)
(
η̂η
)
.

Since

E
((

η̂η
)2
)

≤ 2η2 + 2η2E
((

η̂ − η
)2
)

≤ 2η2 + 2η2E
(∥
∥x̂ − x∗∥∥2

)

≤ 2η2 + 8η2

∥
∥(1 − W)2 x∗∥∥2

2 + θ2nmσ 2 + E
(∑n

i=1 w2
i

)

θ1m

and η2m/n → ∞ as long as m → ∞, it follows that
√

nη̂−1

θ1m
= o

(
1√
n

)

OPr(1). (31)

By using Eq. 29, we derive

E
(∥
∥x̂I − x∗

I
∥
∥2

2

)
≤ 4

‖ (1 − W)2 x∗‖2 + θ2nmσ 2

(θ1m)2
=
√

n

m
OPr (1). (32)

Substituting Eq. 31 and 32 in Eq. 30 allow us to conclude
that

min
i∈I

|x∗
i | > η −

√
n

m
OPr(1) − o

(
1√
n

)

OPr(1).

Then Eq. 21 holds.

Remark 2 There is special interest in applying the REN
model in the case the data satisfies the condition n � m.
For the LASSO model it was suggested in [6] to make use of
the Dantzig selector which can achieve the ideal estimation
up to a log(n) factor. In [13] a performing of the Dantzig
selector called the Sure Independence Screening (SIS) was
introduced in order to reduce the ultra-high dimensionality.
We remark that the SIS technique can be combined with the
REN model (7) for dealing the case n � m. Then previous
computations can be still applied to reach the sign recovery
property.
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