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Abstract—The number of visual surveillance systems deployed
worldwide has been growing astoundingly. As a result, attempts
have been made to increase the levels of automated analysis of
such systems, towards the reliable recognition of human beings
in fully covert conditions. Among other possibilities, master-slave
architectures can be used to acquire high resolution data of
subjects heads from large distances, with enough resolution to
perform face recognition. This paper/tutorial provides a compre-
hensive overview of the major phases behind the development of
a recognition system working in outdoor surveillance scenarios,
describing frameworks and methods to: 1) use coupled wide
view and Pan-Tilt-Zoom (PTZ) imaging devices in surveillance
settings, with a wide-view camera covering the whole scene, while
a synchronized PTZ device collects high-resolution data from
the head region; 2) use soft biometric information (e.g., body
metrology and gait) for pruning the set of potential identities
for each query; and 3) faithfully balance ethics/privacy and
safety/security issues in this kind of systems.

I. ”SURVEILLANCE” AND ”BIOMETRIC RECOGNITION”
SETTINGS → ”NON-COOPERATIVE RECOGNITION”

Various attacks in crowded urban environments have been
reducing the perception of safety in modern societies, while
the citizens’ tolerance to what they recognize as reasonable
risks has also been decreasing. There are growing needs of
assuring the safety of people, specially in places/events that
concentrate large crowds, which are perceived as those with
the highest risk (e.g., due to 2001 New York 9/11, 2004 Madrid
train bombing or 2013 Boston marathon attacks).

To counterbalance these fears, the use of visual surveillance
has been promoted worldwide. The deployment of outdoor
surveillance cameras has grown astonishingly in the recent
years, with more than 5.9 million CCTV cameras already
set in the United Kingdom [3]. However, the automated
understanding of data in this kind of systems is still mostly
reduced to action recognition. Simultaneously, biometrics is
considered an especially successful case of pattern recognition:
systems have been deployed for different applications (e.g.,
security assess or refugee control), but performance is still
strongly conditioned by the levels of cooperation demanded
from subjects and by the environmental conditions required to
obtain data with minimal levels of quality.

There is an evident complementarity between the ’visual
surveillance” and ”biometrics” domains, not only in the envi-
ronmental conditions under which both kinds of systems work,

but also the tasks they perform: surveillance systems work
in uncontrolled conditions but do not automatically identify
suspects in a crowd, whereas biometric systems are effective in
automatic identification, but work in environments that enable
to acquire good quality data [38].

According to the above points, the tutorial described in
this paper focuses on the research carried out to develop bio-
metric recognition systems that work in conditions currently
associated to visual surveillance. In particular, we discuss the
challenges behind master-slave architectures, composed of: 1)
a wide-view (static) camera covering the whole outdoor scene;
and 2) a Pan-Tilt-Zoom (PTZ) device that points to specific
regions in the scene and acquires data of the human head, with
enough resolution to be used in biometric recognition (Fig. 1).

Fig. 1. Example of the data resulting from a master/slave dual camera
architecture for biometric recognition in surveillance environments: while a
wide view (static) camera covers the whole scene, the coordinates of detected
human heads are sent to a calibrated Pan-Tilt-Zoom device that acquires data
with enough resolution to be used in biometric recognition.

II. MASTER-SLAVE DATA ACQUISITION ARCHITECTURES

A. System Overview

In terms of the hardware infrastructure required by mas-
ter/slave visual surveillance recognition systems, Fig. 2 gives
an example of a laboratorial prototype mounted at the outdoor
wall of our lab1. The rationale is to use the PTZ camera as
a foveal sensor, i.e., the video stream from the wide camera
is analyzed to infer the location of subjects’ heads, so that

1SOCIA: Soft Computing and Image Analysis Lab., http://socia-lab.di.ubi.pt



the PTZ camera can acquire samples of the facial regions at
a high-magnification state.

Fig. 2. Example of a synchronised pair of wide-view (W) and PTZ (P)
cameras, from a master/slave laboratorial prototype mounted at the SOCIA:
Soft Computing and Image Analysis laboratory outdoor wall. This prototype
is able to automatically detect and track subjects passing by and acquire high
resolution images of subjects heads located up to 50 meters away of the
recognition system.

Regarding the software components, they can be broadly
divided into: 1) low-level vision tasks; and 2) high-level vision
tasks. The first group contains the phases that are required to
run in real-time and involve the perception of the scene, up
to the moment the PTZ device is pointed out to a particular
3D position, in order to acquire a high-resolution image of
a subject’s head. All the subsequent phases belong to the
second group and don’t have strict requirements in terms of
the computational burden, as they can be forked to separate
processes, each one performing for one recognition attempt
per query sample.

B. Camera Calibration

The requirement of inter-camera calibration is the major
bottleneck of master/slave configurations, since determining
the mapping function from static image coordinates to pan-
tilt parameters requires depth information. To address this
problem, most master-slave systems use 2D-based approxi-
mations, but, in turn, they are compelled to rely on different
assumptions (e.g., similar points-of- view or intermediate
zoom states) to alleviate pan-tilt inaccuracies. The use of
multiple optical devices has been pointed as a solution to infer
depth information through triangulation. Choi et al. [8] and
Park et al. [43] were the first to exploit this alternative without
using stereographic reconstruction, which is not feasible in
real-time applications. Instead, they disposed the cameras in
a coaxial configuration to ease triangulation. In addition, the
authors ascertained the feasibility of facial recognition at-a-
distance using the proposed calibration method. However, the
highly stringent disposition of the cameras restrains its use in
outdoor environments as well as its operational range (up to
15m)

Aiming at improving the existing master-slave systems, in
particular the work of Choi et al. [8] and Park et al. [43],
we extended PTZ-assisted facial recognition to surveillance

scenarios. We introduced [36] a calibration algorithm capable
of accurately estimating pan-tilt parameters without resorting
to intermediate zoom states, multiple optical devices or highly
stringent configurations. Our approach exploits geometric cues
(the vanishing points available in the scene) to automatically
estimate subjects height and thus determine their 3D positions
(Fig. 3). Furthermore, we have built on the work of Lv et
al. [30] to ensure robustness against human shape variability
during walking.

Fig. 3. Illustration (adapted from [36]) of the principal bottleneck of master-
slave systems and the proposed strategy to address this problem. One image
pixel (xs, ys) might correspond to multiple 3D positions in the scene, and
consequently to different pan-tilt {θp, θt} values. Our work is based on the
premise that human height h can be exploited to infer depth information and
avoid the 2D → 3D ambiguity.

III. LOW-LEVEL VISION TASKS

This section describes the major phases that compose the
initial part of the processing chain: from the global analysis
of the scene up to the moment when the PTZ device is
pointed to image a subject’s head. We start by pruning the data
coming from the wide-view camera (background subtraction),
followed by human detection and tracking steps. Next, the
order for imaging the existing subjects is established and their
corresponding coordinates are sent to the PTZ device.

A. Background Subtraction

Background subtraction (BS) aims at dividing the scene into
two disjoint parts: 1) the background, containing the static
regions in the input data that should be disregarded; and 2)
the foreground, that contains the regions-of-interest (ROIs) of
the objects that the system should care about. Essentially, this
phase enables to prune the scene and reduce the amount of
information to be handled [40].

The existing methods for background subtraction can be
divided into three families: 1) basic; 2) Gaussian-based; and 3)
machine-learning based, ordered by their level of complexity.
The first family regards the most simple strategies and the



pioneering approach dates back to 1979, when Jain and
Nagel [18] analysed the differences in pixel intensity with
respect to time to discriminate the useless regions in a scene.
Similar approaches were published (e.g., [60]) and have as
main advantage their reduced computational cost. Other type
of methods derives a coarse estimate of the background from
the earliest frames or from the last frames in a scene, using
simple statistics with respect to time (median filtering).

A family of methods of intermediate complexity models
the density of the intensities of each pixel with respect to
changes in time, either assuming single Gaussian (e.g., [67]),
mixture of Gaussians (e.g., [61]) or non-parametric models
(e.g., [13]). The underlying strategy is to obtain an estimate
of the typical changes in each position in the image, and then
report a pixel as foreground every time an outlier is observed.
Simultaneously, the models are continuously updated, so to
adapt to slight changes in the scene.

The most complex family of methods relies in machine-
learning algorithms to obtain local representations of the
background. Clustering-based approaches estimate the back-
ground by grouping pixels in different clusters, each one cor-
responding to a different source of background. The Codebook
model [22] uses a set of words to represent each cluster.
Nearest neighbour techniques are used for background estima-
tion, fed by features such as luminance and chrominance [6].
More recently, unsupervised neural models have been tested
to enhance robustness in real-world conditions. In this kind
of methods, each pixel is modelled by a neural map, where
each element stores typical RGB values at that position and
acts as cluster centroid,. The idea behind competitive neural
networks [29] is highly similar to this strategy.

B. Human Detection

The detection of humans can be seen simply as a partic-
ular instance of object detection, with some specificities that
increase the difficulty of the task. Such challenges include the
deformations in shape of the human silhouette with respect
to movements of the legs, arms and head, partial occlusions,
clothing and changes in perspective. Using the output of the
background subtraction module, the goal is to define a set of
regions-of-interest (ROIs), such that each one corresponds to
one of the humans in the scene. From the computer vision per-
spective, working in outdoor environments, with both global
and local variations in lighting conditions, and imposing no
constraints about the number of subjects represents a highly
challenging problem, that can be even harder in case of poor
data resolution [69].

There are two major families of methods for human detec-
tion: 1) holistic methods, where the whole body is searched at
once in the image; and 2) part-based methods, where each part
of the body is detected independently, with the information
being further fused for consistency purposes. Most of the
holistic methods learn a discriminative model, being well rep-
resented by the popular Viola and Jones’ [64] method, adapted
to detect humans using motion patterns [65]. Similarly, Dalal
and Triggs [10] use histograms of oriented gradients (HOGs)

to feed a classifier, such as support vector machines (SVMs), in
a way similar to [33]. Along with HOGs, local binary patterns
have also been widely used for human detection (e.g., [66]).

Regarding part-based methods, Mikolajczyk et al. [32] use
a probabilistic model to assemble all parts of the body,
each one detected in a corse-to-fine strategy. Lin et al. [26]
considered the head the most reliable part to be detected and to
estimate the number of persons in a large crowd, similarly to
Subburaman et al. [62]. Zhao and Nevatia [71] analysed the
silhouette boundaries from the background estimation mask
and detect the head by searching for vertical peaks on these
contours. Wu and Nevatia [68] use four body parts (full-
body, head-shoulder, torso, and legs), each one learned by
boosting a set of weak classifiers based on edgelet features
(short segments of edge pixels). The responses given by all
detectors are fused to provide robustness to occlusions.

C. Tracking

Given an initial estimate of the location of one object, the
tracking phase aims at determining the positions of that object
in the subsequent frames, having typically two major goals:
1) by perceiving the object path, accurate predictions of the
location of the object in forthcoming frames can be made,
which allows to timely point the PTZ device for a specific
position; and 2) once the high-resolution data of a subject
is acquired, that object can be ignored of any subsequent
processing.

Approaches for object tracking can be divided with respect
to the feature space they work in: 1) motion-based algorithms,
which exploit the object dynamics based on cues such as
velocity, articulation and periodic constraints. Motion models
are typically related to Bayesian tracking approaches, where
dynamics is used to update the target state over time (e.g.,
Breitenstein et al. [5]) or shape information (e.g., Zhou et
al. [74]). Tracking based on optical flow estimation is also a
relevant example of this family, namely the KLT tracker [59],
that assumes small movements between frames with brightness
constancy, to follow a set of keypoints; 2) appearance-based
algorithms are frequently associated to kernel-based methods
that represent the target as a point in a high dimensional
space, characterized in terms of histograms of intensities (e.g.,
Comaniciu et al. [9]), LBPs (e.g., Kalal et al. [21]) or sparse
representations (e.g., Zhong et al. [72]) from channels of
different color spaces; 3) shape-based algorithms eliminate
the need to consider varying illumination and changes in
appearance, yet turn more difficult to obtain a reliable estimate
of the object boundary. However, shape information is most
times used together with other families of cues (e.g., texture),
which is particularly useful for low quality data (e.g., Liu et
al. [27]).

Complementary, tracking methods can be classified with
respect to the properties of their main algorithm. The earliest
approaches attempted to track objects by searching for specific
patterns in the neighbourhood of the previous known location
(kernel / model tracking) or by evolving the state of the
target according to a motion and appearance model (Bayesian



tracking). More recently, a new strategy has been gaining
popularity (tracking-by-detection), which is particularly suit-
able for arbitrary object tracking in unconstrained scenarios.
A typical example of this family of algorithms is the proposal
of Zhou and Aggarwal [73], using the Kalman filter with
a constant velocity model to estimate the state of humans.
Aiming at improving the robustness of tracking to dynamic
environments, Zhang et al. [70] use a kernel-based Bayesian
framework, where the feature space combines appearance
and shape information. Mixture of Gaussians are also used
to model the appearance model and the Chamfer matching
provides a similarity measure between shapes. In case of shape
cues, it is particular hard to be match shapes subject to severe
occlusions and deformed shapes. For this reason, Saber et
al. [58] use the concept of partial shape matching, as Husain
et al. [16] did, to track objects in surveillance scenarios.

As stated above, the iterative use of detectors has been gain-
ing popularity, mainly due to the high flexibility of this kind of
algorithms and the hardware advances that have been reducing
the amount of time required for execution. These algorithms
estimate the target position by searching the position in the
image that maximizes a similarity function between an image
point and the feature vector of the target state. Contrary to
other tracking families, no a priori target representation is
required, inferring the corresponding model by online learning
algorithms, allowing the resulting model to adapt to any kind
of object and its variations in appearance. Regarding the used
machine-learning classifier, online boosting classifiers were a
typical strategy in the earliest approaches, but state-of-the-
art techniques exploit multiple instance learning techniques to
reduce the sensitiveness to slight changes in appearance (e.g.,
Babenko et al. [2]).

Recently, substantial attention has been paid to multiple
object tracking. Despite multiple instances of a tracking al-
gorithm can be used to address multiple targets, there is
an exponential growth of computational complexity that re-
strains their use when the number of targets is high. Greedy
strategies have been used to handle such complexity, where
correspondences are regarded as an assignment problem based
on spatial distance (e.g., Wu and Nevatia [68]). Offline or batch
techniques methods comprise another solution for multiple
target tracking, using the complete set of detections before es-
timate the trajectory. This phase is regarded as an optimization
problem, where a function describes the cost of each solution.
Linear programming techniques are used in several works to
cope with the computational burden of this optimization step.
A continuous formulation of this problem was introduced by
Andriyenko and Schindler [1], which has as main drawback
the high latency required to analyse a video, that turns it
incompatible with real-time requirements.

D. Camera Scheduling: Target Selection

Camera scheduling is the process that determines the order
by which the targets (subjects) in a scene will be imaged, given
a set of scene features (e.g., subject pose, distance, velocity,
levels of occlusion and number of previous imaging attempts

per subject). Scheduling in PTZ-based systems can be broadly
divided in coverage and saccade approaches. In the former,
the cameras are set in an intermediate zoom state so that
multiple targets are observable by the same device. The goal
is to maximise the number of targets seen by the complete
set of cameras. On the contrary, in a saccade approach each
camera just observes one target at a time. A sequence of
saccades is planned, in real-time, to maximize the number
of different targets observed and minimize the cumulative
transition time. Even though previous works have presented
solutions to variants of this problem, but Costello et al. [7]
were the first to explicitly define and propose a solution
to this problem. Considering the similarities with network
packet routing problem, the authors proposed the use of the
Current Min loss Throughput Optimal method to schedule a
set of observations. A similar strategy was used by Qureshi
and Terzopoulos [54], where a greedy best-first search was
employed to determine the optimal plan. Previously, Qureshi
and Terzopoulos [53] have relied on greedy algorithms such
as the Shortest Elapsed Time First and weighted Round Robin
(RR) for the same purpose. Krahnstoever et al. [24] discussed
the best heuristics to dynamically estimate new observation
plans. Targets were modelled as graph nodes and transition
costs were defined according to their distance to the camera
and expected time to exit the scene. Lim et al. [25] constructed
a directed acyclic graph based on the starting time of ”task
visibility intervals”, which were inferred by prediction. The
scheduling problem was formulated as a maximal flow prob-
lem and a dynamic programming scheme was proposed to
solve it. Ilie and Welch [17] relied on a greedy algorithm to
determine a plan based on geometric reasoning.

Based on the above works, we came out with a proposal [37]
for dynamic camera scheduling, capable of determining - in
real-time - the sequence of acquisitions that maximizes the
number of different targets obtained, while minimizing the
cumulative transition time. Our approach models the problem
as an undirected graphical model (Markov Random Field,
MRF), as illustrated in Fig. 4, which energy minimization can
approximate the shortest tour to visit the maximum number of
targets.

IV. HIGH-LEVEL VISION TASKS

The low-level group of tasks is responsible for acquiring
high resolution images of moving subjects passing by in the
scene up to 50 meters away from the acquisition system.
This is the kind of data that feeds the high-level vision
processing phases, which are responsible for performing bio-
metric recognition. Fig 5 gives some examples of human
head samples acquired by our prototype. In our case, the
recognition step was further divided into two parts: 1) aiming
at pruning the set of plausible identities for a given query,
which was done mostly according to soft biometric infor-
mation; and 2) aiming at establish an unique correspondence
between a sample and a known identity, according to the face
(e.g. [39]), the iris (e.g., [44], [47] and [52]), the periocular



Fig. 4. Illustrative example (taken from [37]) of the MRF used when four
targets are in the scene. Labels encode the set of targets in the scene, whereas
the nodes correspond to the order that they will be imaged. Unary costs
represent the angular differences between the current position of the camera
and each target, whereas pairwise costs model the transition angles.

(e.g., [46], [45], [45], [48] and [34]), or the gait (e.g. [42])
traits.

Fig. 5. Examples of images (taken from [49]) acquired by a visual surveillance
system, composed by a wide-view camera feeding a pan-tilt-zoom device that
collects data from moving and at-a-distance targets (up to 50 meters away).

A. Identities Pruning: Soft Biometrics

According to [63], soft biometric traits are classified into
three families: 1) global traits, which regard demographic
information (e.g., age, gender, and ethnicity); 2) body traits,
which are concerned with the subjects somatotype, i.e., their
overall appearance (height or body volume); and 3) head traits,
which analyze the regions that humans instinctively use to
identify others (e.g., hair or eye color, nose or neck thickness,
and ear shape/size).

Regarding global traits, Heckathorn et al. [14] measured
lengths of wrists and forearms. Using the concept of in-
terchangeability of indicators, they argued that combining
multiple low accuracy measurements yields a highly accurate
indicator. Jain and Park [19] used demographic information
(gender and ethnicity) and facial marks (scars, moles and
freckles) to improve face image matching and retrieval per-
formance.

In terms of body traits, Lucas and Henneberg [28] concluded
that, upon the availability of accurate anthropometric measure-
ments, the body is actually more distinctive than the face
when distinguishing humans. Previously, other works (e.g.,
Rice et al. [57]) concluded that identification based on body

measurements can be as accurate as using the face. Moustakas
et al. [35] suggested a framework based on height and stride
length information to increase the effectiveness of a gait
recognition system, integrating soft labels directly in the esti-
mation of the matching score instead of the traditionally used
score-level fusion. Drosou et al. [12] proposed a probabilistic
framework for improving the recognition performance via
soft labels (global and body-based), modelling the systematic
intrinsic error of each measurement (e.g., due to clothing).

Finally, various works analyze the discriminability of
hair/facial hair styles and lengths. Dass et al. [11] pre-aligned
the images based on the position of the eyes and defined five
groups of hairstyles according to hair density in image patches.
Hewig et al. [15] observed that the typical hair styles are
heavily correlated with global traits (gender and age), which
might also be useful for identification.

A noteworthy conclusion was drawn by Reid et al. [56]:
comparative descriptors (relative magnitude between subjects’
measurements) have more discriminatory power than the ab-
solute values themselves, and are particularly advantageous in
terms of stability. Detailed information about soft biometrics
can be found in two comprehensive surveys by Kim et al. [23]
and Reid et al. [55].

B. Identities Pruning: Head Shape

Analysing high resolution images of the subjects heads
(illustrated in Fig. 5) enables to infer not only the head poses
but also to obtain a coarse estimation of the head shape of
the subjects, which can be used as auxiliary soft biometric
information. According to this idea, we proposed a method to
infer jointly human head poses and soft labels [49].

During the learning phase, anthropometric head surveys
feed a stochastic process that generates a set of synthetic 3D
head meshes representing the major features of a population.
Such elements are the input of a self-organizing map that
obtains a discretized representation of the feature space, i.e.,
a matrix of centroid heads with a key property; it preserves
the topological properties of the input space and enables us
to define the closeness of its elements (i.e., the similarity of
head shapes). Considering the wildness of the data, we also
generate a set of pose hypotheses. Next, all combinations of
joint poses/head shape hypotheses are grouped and indexed
using as a criterion the proximity of their projected head
landmarks.

In classification, having a query represented by a set of head
image landmarks , we rank the set of hypotheses in approxi-
mate logarithmic time according to the similarity between the
query and the joint pose / head shape 2D projections. The idea
is that the most likely hypothesis is sufficiently close to the
solution so that only slight changes in its parameterization are
required to match the query faithfully. This way, local minima
are neglected and convex optimization techniques are used
to reach acceptable solutions. A convergence test determines
whether the process stops or the next hypothesis is considered.

The soft labels yield from the head shape hypothesis that is
assigned to each sample. Based on two dimensional manifolds



of head shapes (illustrated in Fig. 6), that intrinsically represent
head shape similarity, we obtain a topologically ordered space,
i.e., neighbor prototypes feature similar head shapes. Later,
even if a query is not mapped directly to the same cell as the
enrolment sample with a corresponding identity, it should be
mapped to a neighboring cell.

Fig. 6. Representation of the 3D head centroids resulting of a 4 × 4 manifold
(taken from [49]). Note the similarity in size / shape between adjacent
elements, rooted in the preservation of the topological properties of the input
space that this kind of maps offers.

C. Identities Pruning: Hair Analysis

The descriptions of the facial hair and hair styles are
among the most effective soft biometric traits reported in the
literature [63]. In this scope, the pioneer analysis methods
were designed to work exclusively in good quality images
of frontal subjects. Regardless recents attempts to increase
the robustness, the ambition of working effectively in images
acquired in typical visual surveillance conditions remains to
be achieved.

Having this problem in mind, we proposed a multi-layered
(hierarchical) MRF that does not use high order cliques, but
still typically reaches globally coherent solutions [50]. We
describe an inference process composed of two phases: 1)
three supervised non-linear classifiers run at the pixel level
and provide the posterior probabilities for each image position
and class of interest: hair, skin and background. Each classifier
detects one component based on texture and shape image
statistics; and 2) the posteriors based on data appearance
are combined with geometric constraints and a set of model
hypotheses to feed the MRF, composed of a segmentation
and a classification layer. One layer discriminates locally the
classes of interest, while the other infers the soft biometric
labels that describe the query’s facial hair and hair styles.

The key idea is to combine the strengths of MRFs with
groups of synthetic hypotheses that are projected onto the
input plane and guarantee the global consistency (biological

coherence) of the solution. The proposed model inherits some
insights from previous works that used shape priors to con-
straint the models (e.g., [51]).

During optimization, all layers interact and converge into an
equilibrium state, where the configuration in the bottom layer
implicitly segments the data, and the configuration in the other
layers correspond to the most likely models. Among other
advantages, the proposed MRF architecture can be applied
with minimal adaptations to other segmentation/classification
computer vision problems, particularly in cases where the bi-
ological (global) coherence of the solutions can be objectively
measured.

Fig. 7. Structure of a MRF (taken from [50]) that fuses the data appear-
ance information (upper layer) to global constraints (bottom layer). During
optimization, the the network should converge into a balance point where the
predominant labels at the segmentation level are biologically plausible and
accord globally coherent facial hair / hair hypotheses (at the classification
level).

V. ETHICAL/PRIVACY ISSUES

Undoubtedly, the type of recognition systems discussed here
raises serious concerns in terms of the citizens’ privacy and of
the morality behind recognising someone without asking his
permission. There are various national and international laws
that regulate the functioning of biometric recognition systems:
the Universal Declaration of Human Rights contains an article
(the 12th), stating that: ”No one shall be subjected to arbitrary
interference with his privacy, family, home or correspondence,
nor to attacks upon his honour and reputation. Everyone has
the right to the protection of the law against such interference
or attacks”. However, the 3rd article of the same declaration
also states that ”Everyone has the right to life, liberty and
security of person”. Both articles assure the right to privacy
and security, but what happens in cases where rights cannot
be assured jointly?



The European Parliament issued a directive (95/46/EC),
where the ”notice” and ”consent” properties bias the overall
policy to forbid non-cooperative recognition systems, while
the U.S. government issued a regulation for using biometric
data (8 CFR 103.16). These regulations contain subjective
statements that make hard to objectively perceive the cases
where non-cooperative biometric recognition is acceptable and
where it is not. As Benjamim Franklin stated: ”They that can
give up essential liberty to obtain a little temporary safety
deserve neither liberty nor safety”. On the other side, one
should account that the context in B. Franklin’s life was
completely different, as stated by Neil Young (musician):
”Benjamin Franklin said that anyone who gives up essential
liberties to preserve freedom is a fool, but maybe he didn’t
conceive of nuclear war and dirty bomb” [4].

At the end, it is to the official entities in each country to
consider the levels of threats in each place, and to establish
precise limits for the use of non-cooperative surveillance
recognition systems.
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