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Abstract. Iris recognition has been increasingly used with very satisfactory re-
sults. Presently, the challenge consists in unconstrain the image capturing con-
ditions and enable its application to domains where the subjects’ cooperation is
not expectable (e.g. criminal/terrorist seek, missing children). In this type of use,
due to variations in the image capturing distance and in the lighting conditions
that determine the size of the subjects’ pupil, the area correspondent to the iris
in the captured images will be highly varying too. In order to compensate this
variation, common iris recognition proposals translate the segmented iris image
to a double dimensionless pseudo-polar coordinate system, in a process known as
the normalization stage, which can be regarded as a sampling of the original data
with the inherent possibility of aliasing. In this paper we analyze the relationship
between the size of the captured iris image and the overall recognition’s accuracy.
Further, we identify the threshold for the sampling rate of the iris normalization
process above which the error rates significantly increase.
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1 Introduction

In 1987, L. Flom and A. Safir [5] estimated at 1 in 1072 the probability for the existence
of two similar irises and concluded about the stability of iris morphology over human
lifetime. Since then, the use of the iris as biometric measure has been increasingly
encouraged by both government and private entities. Iris is commonly recognized as one
of the most reliable biometric signals: it has a random morphogenesis and apparently
no genetic penetrance.

From our viewpoint, the present challenge consists in achieve accurate iris recog-
nition in less constrained image capture environments, either under natural luminosity,
from different image capturing distances and without users’ cooperation.

In order to achieve invariance to the varying size of the pupil and to the distance
and angle of the image capturing framework, common iris recognition proposals apply
a normalization process to the segmented iris. The translation to a double dimensionless
pseudo-polar coordinate system with fixed dimensions can be regarded as a sampling
process, with the inherent possibility of aliasing that deteriorates the recognition’s ac-
curacy.
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Given a power spectrum (a plot of power versus frequency), aliasing is a false trans-
lation of power falling in some frequency range (−fc, fc) outside the range. It can be
caused by discrete sampling below the Nyquist frequency and causes that different sig-
nals could become indistinguishable when sampled. When this happens, the original
signal cannot be uniquely reconstructed from the sampled signal.

In this paper we analyze the relationship between the size of the captured iris im-
ages and the iris recognition’s accuracy, regarding the probability of aliasing in the
normalization stage.

We selected two highly dissimilar iris image data sets (UBIRIS [12] and UPOL [4])
and analyzed the results obtained by the classical Daugman’s recognition method [2],
when varying the size of the captured iris images.

It will be shown that when the area correspondent to the iris in the captured image
is below 30% of the size of the normalized one, it occurs a large deterioration in the
recognition accuracy, specially due to a substantial increase of the false rejections.

The remainder of this paper is organized as follows: section 2 briefly summarizes
the most cited iris recognition methods. A detailed description of two common iris
normalization proposals is given in section 2.2. Section 3 reports the experiments and
results and, finally, section 4 concludes this paper.

2 Iris Recognition

2.1 Overview

In spite of the specificities from distinct proposals, typical iris recognition systems share
the common structure illustrated by figure 1.

Fig. 1. Typical stages of the iris recognition systems

The initial stage deals with iris segmentation. This consists in localize the iris inner
(pupillary) and outer (scleric) borders. There are two major strategies for iris segmen-
tation: to use a rigid or deformable template of the iris or its boundary. In most cases,



the boundary approach is very similar to the proposed by Wildes [16]: it begins by the
construction of an edges map followed by the application of some geometric form fit-
ting algorithm. Authors of [13] used this strategy together with a clustering process to
increase the accuracy in noisy environments. The template-based strategies usually in-
volve the maximization of some equation, as proposed by Daugman [2] and Roche et.
all [10].

In order to compensate the varying size of the captured iris it is common to trans-
late the segmented iris region, represented in the cartesian coordinate system, to a
fixed length and dimensionless polar coordinate system. This is usually accomplished
through a method similar to the Daugman’s Rubber Sheet [2].

The next stage is the feature extraction. From this viewpoint, iris recognition ap-
proaches can be classified into three major categories: phase-based methods (e.g. [2]),
zero crossing methods (e.g. [1] and [10]) and texture analysis based methods (e.g [16], [7]
and [9]).

Daugman [2] uses multiscale quadrature wavelets to extract texture phase infor-
mation and obtain an iris signature with 2048 binary components. To characterize the
texture from the iris, Boles and Boashash [1] computed the zero-crossing representation
of a 1D wavelet at different resolutions of concentric circles. Wildes [16] proposes the
characterization of the iris texture through a Laplacian pyramid with 4 different levels
(scales). This pyramid is further used to compute the normalized correlation between
images and conclude about their similarity. One of the most typical approaches consti-
tutes the proposal of [8], characterizing the iris texture through its decomposition by
the dyadic wavelet transform, either using Haar, Daubechies or other mother wavelets.
This approach was found with minor variants in several other works (e.g. [14]).

In the final stage it is made a comparison between iris signatures, producing a nu-
meric dissimilarity value. If this value is higher than a threshold, the system outputs
a ”non-match”, meaning that each signature belongs to different irises. Otherwise, the
system outputs a ”match”, meaning that both signatures were extracted from images of
the same iris. This stage is highly constrained by the feature extraction method. When
the produced iris signature is binary, it is common to apply the Hamming distance met-
ric. Otherwise, different metrics like the Euclidean, Weighted Euclidean or methods
based on signal correlation (e.g. [16]) can be applied.

2.2 Iris Normalization Methods

Robust representations for pattern recognition must be invariant to changes in the size,
position and orientation of the patterns. In the iris biometric compass, this means that
a representation of the iris data invariant to changes in the distance between the eye
and the capturing device, in the camera optical magnification factor and in the iris ori-
entation, caused by torsional eye rotation and camera angles, must be accomplished.
As described in [3], the invariance to all of these factors can be achieved by the trans-
lation of the captured data to a double dimensionless pseudo-polar coordinate system.
Figure 2 illustrates the translation process, that is based in a polar (θ) and radial (r)
variables.

The rubber sheet is a linear model that assigns to each pixel of the iris, regardless
its size and pupillary dilation, a pair of real coordinates (r, θ), where r is on the unit



Fig. 2. Normalization of the iris image through the ”Daugman rubber sheet” model [3]. ”i” and
”p” represent respectively the center of the iris and of the pupil. (ox, oy) is the difference between
both centers. The normalization is anti-clockwise processed, extracting a fixed number of pixels
from circumferences with successive radius values, into the normalized rectangular image with
fixed dimensions.

interval [0, 1] and θ is an angle in [0, 2π]. The remapping of the iris image I(x, y) from
raw cartesian coordinates (x, y) to the dimensionless non concentric polar coordinate
system (r, θ) can be represented as:

I(x(r, θ), y(r, θ)) → I(r, θ) (1)

where x(r, θ) and y(r, θ) are defined as linear combinations of both the set of pupil-
lary boundary points (xp(θ), yp(θ)) and the set of limbus boundary points along the
outer perimeter of the iris (xs(θ), ys(θ)) bordering the sclera:

{
x(r, θ) = (1− r) ∗ xp(θ) + r ∗ xs(θ)
y(r, θ) = (1− r) ∗ yp(θ) + r ∗ ys(θ)

(2)

Authors of [17] proposed a slightly different iris normalization model, which com-
bines linear and non-linear methods to unwrap the iris region. They start by performing
a non-linear transformation of all iris patterns to a reference annular zone with a pre-
defined ratio of the radii of inner and outer boundaries of the iris. Further, this refer-
ence annular zone is linearly unwrapped to a fix-sized rectangle block for subsequence
processing.

Both normalization processes can be regarded as point sampling operators, defined
by:

s(I) = (I(t1), I(t2), . . . , I(tn)), ti =
i

n
, i = 1, . . . , n (3)

where I is the original signal (image).



2.3 Aliasing

Let I1 and I2 be two iris images similar to the ”Initial Image” of figure 1. Also, let A(I)
denote the area correspondent to the iris in image I (”Segmented Image” of figure 1). In
the normalization stage (s), as in any other point sampling process, aliasing can occur
in two distinct forms:

– I1 and I2 are very dissimilar and s(I1) and s(I2) are highly similar. In the iris
biometric compass, this will increase the false accept rate (FAR).

– I1 and I2 are very similar and s(I1) and s(I2) are are highly dissimilar, increasing
the false rejection rate (FRR).

Commonly, the normalized iris images have fixed dimensions of 512 × 64 pixels,
respectively in the angular and radial directions, thus A(s(I)) = 32768 pixels. The
sampling rate r of the normalization process s can be given by:

r =
A(s(I))
A(I)

=
32768
A(I))

(4)

where I is the captured iris image.
In our experiments, we varied the size of the captured iris image (A(I)) and ana-

lyzed its influence in the overall accuracy of iris recognition. It will be shown that when
r > 4 there is a strong increase of the recognition error rates, induced by the aliasing
occurred in the normalization process.

3 Experiments

In the experiments, we implemented the method described by Daugman [2].

3.1 Daugman’s Method

As described in [2], the Daugman’s recognition method is composed by the following
stages:

– Iris segmentation. We implemented the integrodifferential operator proposed by the
author to find both the inner and outer iris borders, given by:

maxr,x0,y0

∣∣∣Gσ(r) ∗ δ

δr

∮
r,x0,y0

I(x, y)
2πr

ds
∣∣∣

This operator searches over the image domain (x, y) for the maximum in the blurred
partial derivative (by a Gaussian kernel Gσ with respect to increasing radius r, of
the normalized contour integral of I(x, y) along a circular arc ds of radius r and
center coordinates (x0, y0).

– Normalization. To compensate the variations in the size of the pupil, we translated
the images to dimensionless polar coordinate system through a process known as
the ”Daugman Rubber Sheet” [2] that is described in section 2.2.



– Feature Extraction. The iris data encoding was accomplished through the use of
two dimensional Gabor filters. These spatial filters have the form:

G(x, y) = e−π[(x−x0)
2/α2+(y−y0)

2β2].e−2πi[u0(x−x0)+v0(y−y0)]

where (x0, y0) defines the position in the image, (α, β) is the filter width and length
and (u0, v0) specify the modulation, with spatial frequency w0 =

√
u2

0 + v2
0 and

direction θ0=arctan(v0/u0).
The real parts of the 2-D Gabor filters are truncated to be zero volume and achieve
illumination invariance. For each resulting bit the sign of the real and imaginary
parts from quadrature image projections are analyzed and through quantization
assigned binary values: 1 and 0 respectively for positive and negative projection
values.

– Feature Comparison. The binarization process in the feature extraction allows the
use of the Hamming distance as similarity measure for iris signatures. Given two
binary sets with N bits: A = {a1, ..., aN} and B = {b1, ..., bN}, the Hamming
distance is:

HD(A,B) =
1
N
∗

N∑
i=1

ai ⊗ bi

where a ⊗ b is the logical ”XOR” operation. Thus, for two completely equal and
different signatures, the value of the Hamming distance will be respectively 0 and
1.

3.2 Data Sets

There are presently 5 public and free available iris image databases for biometric pur-
poses: CASIA [6], MMU [11], BATH [15], UPOL [4] and UBIRIS [12].

CASIA database is by far the most widely used for iris biometric purposes. How-
ever, its images incorporate few types of noise, almost exclusively related with eyelid
and eyelash obstruction, as the images from MMU and BATH databases. UPOL images
were captured with an optometric framework, obtaining optimal images with extremely
similar characteristics. Oppositely, UBIRIS database was builded with the objective of
simulate non-cooperative image capturing. This fact explains the higher heterogeneity
of its images.

Based on this, we chosen two data sets from the databases with most opposite char-
acteristics: UBIRIS and UPOL, in order to enable the analysis of the recognition’s
accuracy in high quality images (UPOL) and in lower quality (highly noisy) images
(UBIRIS). These types of images correspond respectively to the image capturing with
and without users’ cooperation.

We selected 130 images from each database, belonging to 13 different subjects.
Table 1 contains information about the images of each data set. The first column iden-
tifies the data set, the second specifies the dimensions of the images. The third and
forth columns contain respectively the average radius of the pupil and the iris. Finally,
the fifth and sixth columns contain the average area of the iris ring and the average



sampling rate (4) of the normalization processes for the images of the data set. As can
be seen in figure 3, although smaller than the UBIRIS images, the iris region in the
UPOL images is much larger, corresponding to smaller sampling rates of the normal-
ization process.

In order to avoid that segmentation errors corrupt the obtained results, we manually
verified that the segmentation algorithm accurately segmented all the images from both
data sets.

The simulation of the different sizes of the captured iris images was accomplished
through bi-cubic resizing of the original images of the data sets. Each image was resized
from 100% to 10% of its original size.

Data set Image size Pupil radius Iris radius Iris area Sampling rate
UBIRIS 800× 600 51 185 99347 0.3298
UPOL 768× 576 69 271 215758 0.1518

Table 1. Characteristics of the data sets used in our experiments.

(a) Iris image from the UBIRIS database. (b) Iris image from the UP OL database.

Fig. 3. Examples of images from the data sets used in the experiments.

3.3 Results

According to (4), figure 4 contains the average sampling rate of the normalization
processes in the images from UBIRIS (figure 4a) and UPOL (figure 4b) data sets
as the dimension of the captured iris images varies. The horizontal axis specifies the
size of the captured iris images proportionally to the size of the images described in
table 1 (values are percent). The vertical axis contains the average sampling rate (r) of
the normalization processes of these images.

Figure 5 contains four measures of the recognition’s accuracy. One again, the hori-
zontal axis denotes the size of the used images in proportion (percentage) with the size
of the images described in table 1.

Figure 5a contains the values for a t-test given by:



(a) Average sampling rate (r) from the images of UBIRIS

data set.

(b) Average sampling rate (r) from the images of UP OL

data set.

Fig. 4. Average sampling rate (r) of the normalization process versus the size of the captured
iris images, given by the proportion with the images’ size specified in table 1. The vertical line
identifies the threshold from which we observed that the recognition’s accuracy significantly
decreases.

τ =
µE − µI√
σI

2

NI
+ σE

2

NE

(5)

where symbols µI and µE respectively indicate the means of the intra- (images
from the same iris) and inter-class (images from different irises) comparisons. σI and
σE indicate the respective standard deviations and NI and NE the total intra- and inter-
class comparisons.

Figure 5b contains the equal error rates and figure 5c the percent values for the areas
under the receiver operating curves (ROC). Finally, figure 5d contains the values of the
false rejections when the false acceptances are minimized.

We observed that the separability between the intra- and inter-class comparisons,
given by equation (5), remained with similar values until the iris area in the captured
image is below 40% of the normalized image one, either in the UBIRIS and in the
UPOL data sets. Moreover, when the area of the original data is below 30% of the
normalized one there is a significant decrease in the separability between the intra-
and inter-class comparisons, corresponding to sampling rates (4) higher than 5. Above
this value we observed a significant increment of the error rates, specially the false
rejections, allowing the conclusion of aliasing in the iris normalization stage.

4 Conclusions

In this paper we analyzed the influence of the sampling rate of the iris normalization
stage in the overall accuracy of iris recognition.

We observed no significant degradation in the accuracy when the sampling rates are
lower than 5. For higher sampling rates (correspondent to original images with iris area
below 30% of the normalized one), the error rates significantly increase.



(a) t-Test values. (b) Equal Error Rate (EER).

(c) Error Area Under the ROC Curve. (d) FRR with FAR=0.

Fig. 5. Iris recognition’s accuracy regarding the size of the images presented to the segmentation
algorithm and used as basis in the iris normalization (sampling) stage. The solid line represents
the results obtained in the UBIRIS data set and the dashed line represents the results obtained
in the UPOL data set. The vertical line corresponds to the identified threshold of 30%, from
which the error rates significantly increase.

This fact indicates a strong probability of aliasing when iris images are captured
at a distance. From our viewpoint, the increase of the error rates, specially the false
rejections, requires alternate sampling/normalization processes more tolerant to highest
variations in the size of the captured iris images.

Moreover, we stress that the observed deterioration in the recognition’s accuracy is
independent of the amount of noise that the iris region contain, since the values obtained
for the minimum demandable sampling rates in the UBIRIS (noisy images) and in the
UPOL (high quality images) data sets were approximately equal.
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